
Programming in Modern C++
Professor. Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture 55
C++11 and beyond: Non-class Types and Template Features

(Refer Slide Time: 00:32)

Welcome to Programming in Modern C++. We are in Week 11 and we are going to discuss

Module 55.

(Refer Slide Time: 00:37)



In the last module, we concluded discussions on several features of C++ which relate to classes

and explained how these features enhance the object orientation, generic programming,

readability, type safety and performance in C++11.

(Refer Slide Time: 00:59)

In the current module, we in a way continue that discussion for several features of C++11 that

apply to non-class types, we typically call them other types, and to templates and the objective

remains the same is to enhance the OOP, generic programming, readability, performance, type

safety and so on. In specific, we familiarize with very important features like enum class fixed

width integer, and most importantly, the variadic templates.



(Refer Slide Time: 01:31)

So, here is the outline which as always will be available on the left panel.

(Refer Slide Time: 01:38)

So, first, we will discuss about non-types or non-class types so to say, I mean, other types or

non-class types.



(Refer Slide Time: 01:52)

So, there are quite a few of them. So, the additions, the primary addition is enum class which

solves three significant problems that enum had in C++03. Then we have integer types to discuss

particularly the fixed width integer. Then we will say how unions have been generalized in

C++11 and also the plain old data types have been somewhat generalized in C++11. And in

particular, in between the sea of features that we will introduce here particularly focus on

learning enum class fixed width integer and long long, very well.

(Refer Slide Time: 02:32)





So, first, talk about enum class. enum is available in C++03. Actually, it was available in C as

well. So, by enum we can define a set of tags which in C and C++03 take equivalent integer

values or we can provide specific tag values as well. Now, the problem is that it deals, I mean, it

encounters is that it is implicitly convertible to integer even in C++03. So, even when you do not

want such conversion to happen, you cannot, you have no way to stop them.

Also, the enum in C++03 export the enumerators to the surrounding scope that is it kind of

makes them global. So if you have an enumerated tag having certain name, then you cannot have

another enum or another kind of global variable which has that name. So that is a shortcoming.

And finally there is no underlying type specifiable in C++03 enum. It is always integer. It is

always implemented in terms of integer.

So, in C++11 this is enhanced to, enums are enhanced to enum classes. The good old enum is

also available, but we will prefer to use enum classes, which is also called a new enum, strong

enum, scoped enum, and so on. And they are strongly typed and scoped. So, let us start with

examples. So, here is a C++03 enum. As you can see, I am defining an enum having different

enumerator, four different enumerators. And I am defining a enum class in C++11.

So, what is new is after the keyword enum and before the name of the enumeration you write this

keyword class and rest of it is written in the same way. Now, the moment you write it as a class,

it kind of imposes a namespace on to the set of enumerated values. So there is another enum

class here and you can see that if you see the enum class color and enum class traffic light, you



will see that I am using common enumeration of red which in C++03 would not have been

possible.

Now, let us see what happens if you do try to define a, declare a with initialization 7. This is

error in C++03 because you have only four enumerations. In color if you want to do the same

thing you will also have an error, because if you want to do this first of all the first error that you

get is because 7 is an integer and color is now a defined class, an enum class, so there is no

conversion available between them. Now, old ones like assigning red to a2 is possible because a

lot can be converted to int as you know in C++03.

Now, if you take Alert::red specifically then it is an error in C++03 because in C++03 the names

were global. Now, we are writing it in a scoped manner. So, this is okay only in C++11. If I try to

set blue, it is obviously an error because it is not in the scope. But if I say Color::blue, then it is

fine. But I cannot define a variable of type int and initialized with Color::blue, because

Color::blue has a different type than int and there is no conversion. I can only have a variable of

type color to be able to do this. I can only have this. So, that is the basic thing.

(Refer Slide Time: 06:49)



So, let us look at these three aspects one by one. Let us talk about scope. So, here I have defined

four enums in C++03 and they will have severe problems because Silver is a, is common

between them, Gold is common between them and so on. But if you look at semantically then

these are not synthetic examples. So, in terms of color, you will certainly consider bronze, silver,

gold as color in terms of bullion that is the coins, currency coins. You will certainly have silver

and gold in terms of metal. You will talk about silver, gold, platinum as metal.

In terms of credit card you will talk about silver, gold, platinum. In terms of memberships, you

will talk about that. So, it is the same kind of tag name is applicable in multiple contexts, which

is not expressible in C++03. In C++11, by using this enum class you can easily do that. These

names are all now scoped to within the particular enum class. So, Silver here is actually

Color::Silver, and Silver here is Bullion::Silver. So the names do not clash anymore. So with this

scoping, we can enhance the expressive ability of enums to a significant extent.



(Refer Slide Time: 08:24)

If we look at the underlying type, then we know that in C++03, the underlying type was always

int. It is enum is converted to int, but now you can specify what is the underlying type. So what

you do is the syntax for that is after the enum name and before the list starts, you put a colon and

then write the underlying type name. So, this is kind of similar to the way you write derived

classes you can say so this is the underlying type. And when you do that, the enum enumerator

definitions follow that underline.

For example, if I, for status if I have written std::uint8_t which means it is an unsigned integer of

8 bits is that I will use as my underlying type then this becomes an error. But if you had not



written this, if you had not specified this, then the underlying type by default is int and therefore

9999 is a valid value in int and this will be accepted. So this gives kind of strong typing to enums

and you cannot compare scoped enum values with ints, you cannot compare scope enum objects

of different types, you cannot, I mean, it is not, int is not, cannot be explicitly cast into enum or

otherwise, you have to, implicitly cast in that, you have to do that explicitly and so on.

So, here are a couple of examples of, here is an Elevation and a Voltage, both of them could be

low and high. And for example, if I try to define e with low I will get an error because it is not

scoped. I have to write it whether, I have to specifically say that it is Elevation::low, similarly

Voltage::high. I cannot compare e with Voltage::high because e is of type Elevation and Voltage

is of, Voltage::high is of type Voltage. So, you can see that basic difference that is kind of the

notion that we have, strong typing in terms of classes come in here with the convenience of

having the tags of the enums.

(Refer Slide Time: 10:51)

Finally, with these, another big advantage that you get, you can now forward-declared enums.

So, if you try to just say that, well, I want to say that I have an enumeration, but I am not, right

now, I am not sure about the enumerators and I do not want to list them out, you cannot do that

in C++03. So, if you just write enum this then it will give you an error saying that the size is

unknown, because unless you give the list the compiler does not know the size.



But if you write it like this saying that the underlying type is such and such, then the compiler

immediately understands that you are talking about, not talking about enum in C++03, but you

are talking about an enum class even though you have not written the keyword class, but from

the syntax of the underlying type the compiler figures out that you are talking about an enum

class and it will allow you to specify this without the enumerators being specified.

Similar thing can be done here and then it can be used in terms of passing to, passing as function

parameters and so on. Of course, before the actual execution, you will have to specify what the

enumerations are and the, only then the code can be generated. So, this gives enum class really a

much stronger and much well tight behavior in C++03, C++11 compared to what you had in

C++03 and you must start using them extensively.

(Refer Slide Time: 12:30)





The next feature is about the types, integer types. Now, as you know that we have different

integral types in C++03, there is unsigned char, there is char, there is short, there is int, there is

long and so on so forth. Now, if I asked you what is the size of say int or what is the size of char

or what is the size of long, you will say that it depends on the implementation. The standard has

not defined what the size will be.

So, it depends on the compiler and the actual implementation which defines the size of every

type in C++03 with the exception of unsigned char which has been defined to be 1 byte that is 8

bits in the standard, otherwise this size is an unspecified. Only thing that the standard specify is



there is an ordering between their size that is unsigned char cannot be larger than the size of char

that cannot be larger than the size of short and so on so forth.

In contrast, in C++11 you have a number of types which are either directly implemented or given

us typedefs, that is type alias in this particular component called cstdint. So, you can see that it is

actually being borrowed from the C standard library because this also is a part of the C99 feature.

So, you can, you have things like say int<N>_t, let us just look at one and the rest will become.

So, here by this what I mean, I mean one of these numbers. That is it could be 8, it could be 16, it

could be 32, it could be 64. So, for example, if N is 8, then the name of that type in the cstdint is

int8_t. So, this tells you that this is an integer type which is signed and must be of 8 bits

specifically so fixed one.

So, the implementer has to give you kind of, I mean, a way to do that. So it has to be exactly or

this type will not be available. If it is, then if it is not if available then you will get a compilation

error. So, you know that you cannot do this on the particular implementation you are using. But

if it is available, if it compiles, then you are guaranteed that you will have an 8 bit signed integer.

Similar thing you have for unsigned integer as well and the signed integer represented in n bits

with no padding bits and sign it is represented also as 2’s complement for negative values.

You have two other such one is called int_fast. In fast is implementer’s judgment on what is the

fastest signed type of size N that is available. So, the implementer will type def it appropriately

so, to a particular type. It could be, for example, int_fast8_t could be typedef to char, because it

is one but and could be the fastest. Similarly, there is an int_least it say what is the smallest

integer type. I mean, it maps to it typedefs 2 the smallest integer type having at least N bits.

Please note that between int<N> and int_fast<N> or int_least<N> the difference is int<N> needs

exactly N number of bits, whereas these two need at least N number of bits. So, even bigger size

will also work. So, this is the, these are the fixed type.



(Refer Slide Time: 16:39)

So, what is the difference between them, what is the difference between int_t, int_least_t,

int_fast8_t and so on. So, suppose you have a compiler some hypothetical machine which is a 36

bit system, do not get shocked with that, because your PCs and servers are not the only

computing systems that exist in the world. There are several other embedded systems and so on

which has arbitrary number of bits available for them. So, suppose you have a 36 bit system

where the char is 9 bits, short is 18 bits, double of that, and int is 36 bits and long is 72 bits.

Now, in this if you try to see what is int8, it is you will see that it does not exist, because it has to

give you an integer type with exactly 8 bits which does not exist. So, with this type the code will



not compile. So which tells you clearly that 8 bits are not, 8 bit integers are not available,

whereas int_least8_t will be a typedef of char because it is a smallest signed integer having at

least 8 bits. So, char has 9 bit, so it is, it satisfies the at least part and between 9, 18, 36, 72 it is

the smallest. So the list int_least8_t will typedef to char in the system. Whereas, int_fast8_t could

be anything depends on what the implementer considers, it the most appropriate type for the

speed is concerned.

You also have in C++11 a new type called a long long for integer which is meant for 64 bit

integer. So here is an example of a long long variable being declared with a literal, but mind you

that you cannot write long long long or you cannot write short long long those things do not

make any sense besides that several extended precision, but the biggest take back for you from

this should be that fixed bit integer types are possible now in C++11. And in terms of 64 bit

computation, you have the long long as new integral time for 64 bits.

(Refer Slide Time: 19:13)



Moving on, union as you know is a collection of mixed types like in structure, but the fact that

only one component can be available in a union at any point of time. So this naturally creates a

problem. Suppose if I define this as a union, I do not know which of these components is being

used. Therefore, to construct the object of this union, which constructor should I use, constructor

of int, maybe which is the pod default constructor or the constructor of complex or the

constructor of string. So, therefore, C++03 does not allow any component of a union to be a user

defined type having constructor destructor assignment and so on. This is simply not allowed.

In C++11, this rule has been somewhat relaxed. So, it says that well you can use such member

variables in the union provided these are rules are followed that is the member you are including

does not have any virtual function or a reference or base class. And if it defines any of the

constructor copy or destructor, then the corresponding function in the union gets automatically

deleted, you cannot, because you cannot then delete. I mean, if you have defined a constructor,

then you cannot have a constructor for the union. So, this kind of may look a little weird to you.



(Refer Slide Time: 20:59)

But if we see an example, you can easily make out. So, this U1 has int and complex. So, it is

okay. In U2 you have int string. So, if you try to, this is an error because the moment you have

U2, then the string destructor will cause that U2’s destructor is deleted. So, there is no destructor

so U2 cannot be defined. So, you will wonder as to why then have this. The basic point is if you

are making a discriminated union, that is you are making an union where you use a enum class

tag, we have seen this style before in C++03 also, and say three types point, string and int, three

types of variables, then you will be able to still do that.



Only difference is you will have to now define your operators like say if you have to give

assignment to this because assignment per se will not be given it is because string has an

assignment operator, so you have to provide an assignment operator now, no default is to be

provided, where you can specifically decide based on the components and decide on what needs

to be done. Please go through this code. This should be pretty straightforward to understand. And

you will know why this, how this generalized union work.

(Refer Slide Time: 22:28)

There is a some generalization of the plain old data types also which are bitwise copyable by

mem copy or initially visible by memset. Like if I had a struct without any constructor. Now, that

is a plain old data type because there is a bit pattern. In terms of C++03 also, these kinds of

classes or structs are also considered to be a plain old data type, because it, what it is actually

doing is basically assigning a pattern to the data member.

So, again, the plain old data type extends a lot with two basic rules. One is any structure is a

plain old data type provided all members and bases are plain old data type, everything inside is

plain old data type. So that I can bid copy everything, bit initialize everything. And naturally

there is no virtual function, no virtual base, no reference, and no multiple access specifier. All

access specification has to be the same.

So, the crux of the thing is that it becomes in C++11 a data type becomes a plain old data type if

it is, it does not make a difference whether I have a constructor or I do not. In terms of the layout



or in terms of the performance, if it does not make a difference, then it becomes a plain old data

type. I am not going into the details of that just the notions are important, because in terms of

actual programming I would not advise that you use these as plain old data types in general.

These are meant more for the experienced library programmer and you should restrict but you

should know that such kind of codes are expected.

(Refer Slide Time: 24:27)

Now, let us move on to templates. So, there are varied extensions to templates. First, there is an

external template, template alias, variadic template is the most important, local type arguments,

right angle brackets and variable templates. Of these, these two are the most important ones.



(Refer Slide Time: 24:48)

External template is simply, if you have a template after you instantiate it at multiple places, then

naturally it is expanded at every instantiation space, whereas those extent instantiations for the

same template type parameter will be identical. So, it allows, C++11 allows that you can

instantiate, use the instantiation of a template, but tell the compiler that do not instantiate it here.

It will be instantiated somewhere else. So, in some other file, it is instantiated and use. So, it is

basically a performance issue for the compiler, not a great thing for really the programmer

semantics.

(Refer Slide Time: 25:30)



Template alias is nothing but using a different name for a template with one or more of its

parameter types already specified. There is a detailed discussion here, but what I want to really

make you to note is consider this example. Suppose you have defined a class Matrix as a

template, naturally you will have three template parameters, one is the type of the element, and

there are two non-template, non-type parameters like int, Line, number of lines and number of

columns. But specifically, you also want to deal with squares and vectors.

What will happen in the square, the line and column must be same. What will happen in a vector,

in the vector the number of columns should be 1. It is a liner one. So, this is what you can do

using the template alias. For example, take that Matrix template. You are making both of them

same. And defining a new template with T and Line and giving it in name Square, this keyword

using, use of this keyword using here allows you to do that.

So, Square now becomes an alias for this Matrix template where you can just provide the type

and the Line and it will use the Matrix template with the line and the column would be same as a

Line. Similar thing you can do for a Vector as well. So, that makes naturally the expression a lot

more readable, expressible and semantically clear.



(Refer Slide Time: 27:17)





Now, what is a significant contribution of C++11 in terms of templates is what is known as

variadic template. What is a variadic template? A variadic template is one where there is variable

number of type parameters type non-type parameters. So, why is it important, because we have

variadic functions. The most well-known variadic function is printf, where we know that we

have a one parameter, first parameter is must, which is format string, and then we just say

ellipses … to mean that there could be any number of parameters.

And that is real sour for the type checking, because in the code you do not get to see what the

type is corresponding the format definition, like %d, %s with the actual parameter type is user's

responsibility. So, printf is a really, really sour area. Using variadic templates, you can do this,



get rid of this by specifying the printf in a very type safe manner. What you do first is you write a

template just for the, write a template function just for the format string.

So, you have the format string s and you will have % or %%, if you have, if you do not have any

of that then naturally, then it is not valid. Otherwise, you just print whatever text is given. What

is there in the format string? There is %d, %s like that, there are certain character strings or %%.

So here you take out those and anything in the character you print. So, that is how you get the

format.

Now, you do what is the variadic template here. Note carefully that I said that there has to be a

first type T and then there are … variadic number of template parameters. Similarly, in the

function I have given that first parameter is the string, the format string, second is a value which

is T of type T and then the rest of the parameters. So, what I do is I, taking this, so here I have,

say, three parameters. Here what I am doing is I am taking out one the first of them and

remaining two I keep as a separate pack. So, as if there is a pack of three parameters given I take

out the first one and relieve the other two in the pack itself.

So, the one that I take out, I simply do an std::cout. I do not care about what is the %d, %s

because in C++ we know that how to print, how to stream is known from the type. So, I use that

feature. And then I simply recur and when I recur I use the format string again as the first

parameter here and rest of whatever is remaining. And if I do that, then naturally it will keep on,

you will call this function itself with one less parameter, then again it will call this function itself

with one less template parameter till it has only the format string left in which case it will call

this particular version. So, that is the typical way the recursion works.



(Refer Slide Time: 31:09)

Though you may not strictly call it a recursion, this is called variadic templates. This is not

strictly called a recursion, because in recursion you expect the same function to be called

recursively. But here every time the function is changing, because every time the function has

certain number of parameters, where a bunch of parameters are packed, and when it calls the

next version, it actually has reduced one parameter from the pack. So, that is what the printf

does. So, you can think of, I mean, if you think about lambdas in C++ that this basically is a kind

of a functional programming at the compile time that we are doing.

So, it is, printf is just, so this is a very easy way, very short code. And if you actually look the

printf code in C, it is a very, very huge one. It is a very short code which is a very type-safe way

to print anything that you want to print in that way. In fact, it allows you to also print user

defined types provided you have overloaded the output streaming operator appropriately.



(Refer Slide Time: 32:24)







Now, let us think about doing this for, to build an adder. Suppose I want to build a adder function

to add arbitrary number of values. So, I define an adder function first for one value, single value.

So, I say, if it is a single value to add, it is that value itself, otherwise I use variadic template.

What do I do? I say that I have two things. One is I have the type of the value being added and

the other is I have a pack of parameters.

In the recursive or variadic char, I define adder with the first parameter from the pack. I call it

first. It has to have the type T. And I leave the remaining function parameter within the pack. It

will stay there. And then what do I do, I have the first value. So, what is the addition of the entire

thing, the first value plus whatever is addition of the remaining pack which is a recursive call

with the remaining function parameter pack.

So, if I try to do this on adder 1, 2, 3, 8, 7, it will give me 21 and this is how it actually expands.

So, what I have used here for demonstration I have used a macro from gcc, online gdb compiler

that we are using so that you can try out so that will tell you for every variadic expansion what is

it be expanded on to. So, what happens is when you first try to instantiate call this template, so

what will happen is first parameter is int, T is int so that goes there and the remaining 2, 3, 8, 7 is

packed into four ints. So, you have one plus the remaining has to be added.

So, you go to the recurrence, as you go the recurrence, now you are expanding on 2, 3, 8, 7, so

this was 1. So, this now becomes 2. The first 1 is gone. And what you are left with is just 2, 3, 8,

3 in the pack. So, you have 1 plus 2 plus 3 plus 8 plus goes on in this way. And when you hit



this, you call T with int which is basically the exit function call. All expands, computed, a

beautiful way to actually write very compact complied time, I mean, for any constant values is a

compile time computed functional programming. It can be used for, for example, this adder

could be used for any type which has operator class defined.

(Refer Slide Time: 35:53)

So, this variadic template is very important feature. So, therefore, I have given two practice

examples, one is a peculiar way of squaring and adding that you should try out.

(Refer Slide Time: 36:04)



And another is a simple example to show that how can you write a variadic template to just count

in an instantiation of the variadic template how many template parameters you have actually

given. So, this will give me the count. Try these out at home.

(Refer Slide Time: 36:22)

Some of the less important features of templates use, include local types as template arguments.

For example, in C++03 within a template function you cannot use a type that is local here. With

C++11 you can use that. You can also use types which do not have a name, unnamed types. So,

these are minor features which you have, which you may or may not use. There are other ways of

doing that.



(Refer Slide Time: 36:53)

But this is important that in terms of syntax, C++03 had a major difficulty in terms of nested

template. So, this is a nested template. So, what I am saying is std list int. So, I have a list of

integer and then I have a vector of it. So, naturally, this will be the syntax. Now, the problem is

this one is a write, as you write two consecutive, write bracket then it actually represents right

shift in C++03. So, C++03 gives you an error and you have to write it, remember to write it them

with a gap which is unnatural.

In C++11, this problem has been solved so you can write them as consecutive symbols. But this

certainly means that when you want to write specifically about shifting along with the template

expansion you will get into subsequent errors and you will have to guard them by putting proper

parenthesis which is a very rare case, but this is a big advantage.



(Refer Slide Time: 38:13)

The last but not the least is an extension that is not in C++11 but in C++14 is that you have so far

known templates are for classes, templates are for functions. So you do not have, you cannot

have a variable as a template. So, if you want to have that, then you have to define a class, define

it as static within that and so on so forth. But in C++11, you can simply have a variable as a

template. So, here n is a simple variable. So, you say n is of type T. You can also specify a

default value for that and use it simply in this way.

This is something which was earlier restricted only to classes and functions, but in C++14 you

can have variables also which are templatize. There is a bigger example below here which

illustrates same thing. It could be just a variable or it could be a constant variable and so on, but

its instantiation will actually create that variable in your code.



(Refer Slide Time: 39:28)

So, that brings us to the end of this module where we have introduced several features of C++11

for non-class types and templates with examples and I remind you again that is very important

that you learn the non-class type features like enum class and fixed width integer and among

templates the variadic templates will be very, very important to work on. Thank you very much

for your attention. See you in the next week.


