Programming in Modern C++
Professor. Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 55
C++11 and beyond: Non-class Types and Template Features

(Refer Slide Time: 00:32)

Programming in Modern C++4

Module M55: C++411 and beyond: Non-c d Templat

Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

All url's in this module have been accessed in September, 2021 and found to be functional

Programming in Moder €4+ Partha Pratim Das MEs1

Welcome to Programming in Modern C++. We are in Week 11 and we are going to discuss

Module 55.

(Refer Slide Time: 00:37)

AR TR

&E Module Recap

¢ Introduced several class features in C++11 with examples

o Explained how these features enhance OOP, generic programming, readability,
type-safety, and performance in C+++11

Programming in Mader C+4-+ Parth Pratim Doy Mas 2

In the last module, we concluded discussions on several features of C++ which relate to classes
and explained how these features enhance the object orientation, generic programming,

readability, type safety and performance in C++11.

(Refer Slide Time: 00:59)

LB B O =

EE Module Objectives

¢ To introduce several features in C++11 for non-class types and templates
o To familiarize with enum class and fixed width integer

¢ To familiarize with variadic templates

Programming in Moder C+4-+ Partha Pratim Do a5 3

In the current module, we in a way continue that discussion for several features of C++11 that
apply to non-class types, we typically call them other types, and to templates and the objective
remains the same is to enhance the OOP, generic programming, readability, performance, type
safety and so on. In specific, we familiarize with very important features like enum class fixed

width integer, and most importantly, the variadic templates.

(Refer Slide Time: 01:31)

FPTEAN

E:ﬁﬁ Module Qutline

n.“.m g In Moder C++ Partha Pratis Das Mas 4

So, here is the outline which as always will be available on the left panel.

(Refer Slide Time: 01:38)

L BN R

{E}E Other (non-class) Types

Sources:

® snum class
O enum
oA rs Training Courses
0 (m Types

. ¥
© enum to string | 14 /¢ 17 and future C+-+20, stackoverflow,com

® [nteger Types

nteger, iSocpp.org
1 types, isocpp.org

® Generalized unions

© Generalized unions, Isecpp.org
® Generalized PODs

QO Generalized PODs, Isocpp.org

Other (non-class) Types

Programeming in Madern C++ Partha Prati Das MaLS

So, first, we will discuss about non-types or non-class types so to say, I mean, other types or

non-class types.

(Refer Slide Time: 01:52)

AR

Other (non-class) Types

¢ There have been several additions to non-class types in C++11. They include:
o enum class: These solve several problems for enum in C+4+03
o Integer Types: These include:
& Fixed width integer types (as enhancements to integer types with size that is
standard-defined). This comes from C99 feature
© long long - a longer integer of 64 bits
&> Extended precision in integer types
o Generalized unions: That allows rules for using union members with ctor / dtor /
copy ops as enhancement over C4+03
o Generalized PODs: That defines rules for enhanced PODs in C4+411
|mportant features to learn
o enun class
o Fixed width integer, and
o long long

Programming in Maoder C+-+ Partha Pratim Das Mas 6

So, there are quite a few of them. So, the additions, the primary addition is enum class which
solves three significant problems that enum had in C++03. Then we have integer types to discuss
particularly the fixed width integer. Then we will say how unions have been generalized in
C++11 and also the plain old data types have been somewhat generalized in C++11. And in
particular, in between the sea of features that we will introduce here particularly focus on

learning enum class fixed width integer and long long, very well.

(Refer Slide Time: 02:32)

LA R-R RN A A RN R

Eﬁj‘ enum class

¢ enum classes (also called: new enums, strong enums, scoped enums) address 3 problems with

C4++03 enumerations:

o C++03 enums implicitly convert to an integer, causing errors when someone does not want

an enumeration to act as an integer
o C++03 enums export their enumerators urrounding scope, causing name clashes
o The underlying type of an enum cannot be specified in C++03, causing confusian,
compatibility problems, and makes forward declaration impossible
¢ enun classes (strong enun) are strongly typed and scoped:
v i o v/

enum Alert { green, yellow, orange, red }; enus

= class Color { red, blue }; pad trongly typed enom

un class Traffielight { red, yellow, Ere‘en H v
Mert a=T; error (as ever in C++03)
Color c = T; arror: no imt-3>Celor comversion
int a2 = red; Alert-»int
int a3 = Alert::red; &CTor in
int ad = blue; arror: blue mot in scope
int a5 = Color::blue; error: not Color->int conversion
Color a6 = Color: :blue;

Nl 9C v+ B T

enum class

-

enum classes (also called: new enums, strong enums, scoped enums) address 3 problems with

C++403 enumerations:

o C++03 enums implicitly convert to an integer, causing errors when someone does not want
an enumeration to act as an integer

o C++03 enums export th ng scope, causing name clashes

o The u ng type of an enum car specified in C++03, causing confusion,

compatibility problems, and makes forward declaration impossible

enumerat

¢ enun classes (strong enun) are strongly typed and scoped:
enum Alert { green, yellowh orange, red }; enus
class Color { blue }; ped a trongly typed enum
. .y
nus class TrafficLight yellow, Ere.en H
Metta=7?] —— ror (a8 ever im C++03)
Colercm T} errer: no imt->Celor conversicn
int a2 = red; Alert->int
int a3 = Alertiired; erTor in
int ad = blus; arror: blue mot im sco
int a5 = Color::blue; error: not Color-»int
Color a6 = Color::blue;
ARl ec+c B T

LU O B

[] enum class

¢ enum classes (also called: new enums, strong enums, scoped enums) address 3 problems with
C++03 enumerations:

o C+403 enums implicitly convert to an integer, causing errors when someone does not want
an enumeration to act as an integer

o C++03 enums export their enumerators to the surrounding scope, causing name clashes
o The underlying type of an enum cannot be specified in C++03, causing confusion,
compatibility problems, and makes forward declaration impossible
¢ enun classes (strong enun) are strongly typed and scoped:

enun Alert { green, yellow, orange, red }; anum
Color { red, blue }; ped and str

m class TrafficLight { red, yellow, gre‘en h

Alsrt a=T; Y {as aver in)]
Colere=T; error: ne int->Color comversien
int ad= red; Alert->int

int a3 = Alert::red; error in

int ad = blue; error: blue mot im sco

int a5 = Color::blue; arror: not Color-*int converaion

Color a8 = Color: :blue;

- 9C-+€ B - T

LB O R

e

“w U D

{:ﬁ} enum class

¢ onun classes (also called: ne

W anums, strong

enums, scoped enums) address 3 problems with

C4++03 enumerations:

© (4403 enums i y convert to an integer,
an enumeration to act as an integer
C++03 enums export their enumerators to th i , causing name clashes

o The ur 7 type of an enum ¢ specified in (-——03 causing confusion,
cnmpatlbdlty prablems and mal-tes T'Dm'ard declaration impossible

causing errors when someone does not want

¢ enum classes (strong enun) are strongly typed and scoped:

a Alert { green, yellow, orange, red]
= class Color { red, blus | k: I

—_—

enun
1 snum

TrafficLight { red, yellow, green };
error (as ever in 4
arror: no int-3>Color comversion

Alert->int /

&rTor in

arror: blue not in scope

error: net Color->int conversion
——

m class
Merta=T;
Colorcn Ty
int a2 = red; v/,
int a3 = Alert::
int a4 = Bluw; 7 \/
int a5 = Color::blue;

a6 = Color::blue;

_OQ.dt'.'l

AT

So, first, talk about enum class. enum is available in C++03. Actually, it was available in C as
well. So, by enum we can define a set of tags which in C and C++03 take equivalent integer
values or we can provide specific tag values as well. Now, the problem is that it deals, I mean, it
encounters is that it is implicitly convertible to integer even in C++03. So, even when you do not

want such conversion to happen, you cannot, you have no way to stop them.

Also, the enum in C++03 export the enumerators to the surrounding scope that is it kind of
makes them global. So if you have an enumerated tag having certain name, then you cannot have
another enum or another kind of global variable which has that name. So that is a shortcoming.
And finally there is no underlying type specifiable in C++03 enum. It is always integer. It is

always implemented in terms of integer.

So, in C++11 this is enhanced to, enums are enhanced to enum classes. The good old enum is
also available, but we will prefer to use enum classes, which is also called a new enum, strong
enum, scoped enum, and so on. And they are strongly typed and scoped. So, let us start with
examples. So, here is a C++03 enum. As you can see, | am defining an enum having different

enumerator, four different enumerators. And I am defining a enum class in C++11.

So, what is new is after the keyword enum and before the name of the enumeration you write this
keyword class and rest of it is written in the same way. Now, the moment you write it as a class,
it kind of imposes a namespace on to the set of enumerated values. So there is another enum

class here and you can see that if you see the enum class color and enum class traffic light, you

will see that I am using common enumeration of red which in C++03 would not have been

possible.

Now, let us see what happens if you do try to define a, declare a with initialization 7. This is
error in C++03 because you have only four enumerations. In color if you want to do the same
thing you will also have an error, because if you want to do this first of all the first error that you
get is because 7 is an integer and color is now a defined class, an enum class, so there is no
conversion available between them. Now, old ones like assigning red to a2 is possible because a

lot can be converted to int as you know in C++03.

Now, if you take Alert::red specifically then it is an error in C++03 because in C++03 the names
were global. Now, we are writing it in a scoped manner. So, this is okay only in C++11. If I try to
set blue, it is obviously an error because it is not in the scope. But if I say Color::blue, then it is
fine. But I cannot define a variable of type int and initialized with Color::blue, because
Color::blue has a different type than int and there is no conversion. I can only have a variable of

type color to be able to do this. I can only have this. So, that is the basic thing.

(Refer Slide Time: 06:49)

L - BN T RS

Fi P
L-" enum class: dcopes

¢ Consider anum in C++03:

m Bullion :
Metal { BilyarSLold (Platinus };
= CreditCard (FITveR goldyPlacizs i

Silver and Gold clash in names between Color, Bullion, Metal and CreditCard. In
C++11, we can use scoped enum:

Color { Broaze, Silver, Gold };
= class Bullion { Silver, Gold };
Metal { Silver, Cold, Platimam };
lass CreditCard { Silver, Gold, Platimus }:

No clash of names as enumerators of a scoped enum use a qua\iiied name with enclosing scope:

Color coll = Bronze; errer, Bronze not in scope

Color col2 = Color::Bronze;
if ({col2 == Color::Silver) || (col2 == Color::Gold))

- e+ceoD e

PRIV IEI SO L, UQ

7 B
L-" enum class: dcopes

¢ Consider enum in C++03:

wus Color { Bronze, Silver, Gold };
= Bullien { Silver, Gold };
Metal { Silver, Gold, Platinua };
= CreditCard { Silver, Gold, Platimus };

Silver and Gold clash in names between Color, Bullion, Metal and CreditCard. In

C++11, we can usescopedy/’\ ()‘\J””
o Color { B Silver, Cold] / %;\\Jv"
anuE Bulli n'\ {(5ilvey, Gold };
i Metal { 81 [laclrus }.
enis CreditCard { Sll ver, Go. latinus }; w
No clash of names as enumerators of a scoped enum use a quahiled name with enclosing scope:

Color coll = Bronze; errer, Bronze mot in scope

Color col2 = Color::Bronze;
if ({col2 == Color::Silver) || (col2 == Color::Gold))

:’ L] "ct B o

So, let us look at these three aspects one by one. Let us talk about scope. So, here I have defined
four enums in C++03 and they will have severe problems because Silver is a, is common
between them, Gold is common between them and so on. But if you look at semantically then
these are not synthetic examples. So, in terms of color, you will certainly consider bronze, silver,
gold as color in terms of bullion that is the coins, currency coins. You will certainly have silver

and gold in terms of metal. You will talk about silver, gold, platinum as metal.

In terms of credit card you will talk about silver, gold, platinum. In terms of memberships, you
will talk about that. So, it is the same kind of tag name is applicable in multiple contexts, which
is not expressible in C++03. In C++11, by using this enum class you can easily do that. These
names are all now scoped to within the particular enum class. So, Silver here is actually
Color::Silver, and Silver here is Bullion::Silver. So the names do not clash anymore. So with this

scoping, we can enhance the expressive ability of enums to a significant extent.

(Refer Slide Time: 08:24)

LR RS RN A S R N

enum class: Underlying Type

Specification of underlying type (optional) now permitted provided every value fits the type:

red, green, blus };
uintf t | sunny, rainy, cloudy, fogg

Color: unsigned int
iz WeatherT atd

enum Su'.us’:_;_;d,;.'arﬂ_l { pending, ready, unknown .
e

Color { red, greea, blue };

error! unknovn does not fit size

& Strongly typed anums:
& No implicit conversion to int
& No comparing scoped anuns values with ints
&+ No comparing scoped enums objects of different types.
> Explicit cast to int (or types convertible from int) okay
@ Values scoped to enum type
© Underlying type defaults to int

lass Elevation: char { low, high }; anderlying t char
Veltage { low, high }; derlying t int
Elevation e = low; error! no lov in scope
Elevation o = Elevation::low;
intx= ‘fn]t:\so::}.}sh; srror! no coms

it o) ... error! no
if (& == Voltage::high) ... eITor! no cons

(-l 9+CC B o owed

i from Elevation to Voltage

LA RS NN R

enum class: Underlying Type

Specification of underlying type (optional) now permitted provided every value fits the type:
um Color: unsigned int [red, green, blue b
enum Weather: std::uint8_t { summy, rainy, cloudy, foggy };

1um Status: std::uintB_t | Fuadlug, ready, unknown = 9999 }; srror! unknovn does not fit size

Color { red, greea, blue };
& Strongly typed anums:
& No implicit conversion to int

B No comparing scoped anuns values with ints
&+ No comparing scoped enums objects of different types.
b Explicit cast to int (or types convertible from int) okay

¢ Values scoped to enun type
0 Underlying type defaults to int ./
lass Elevation: char { ‘.n'n\}fgh 1] anderlying t char
L Veltage { low, high }; erlying t int
Elevation & = low; error! no lov in scope
Elevation e = Elevation: lDU‘\/
intx= ‘fth:\En::Msh; arror! no coms
it (e . srror! no
if (e == Voltage::high) ... #ITor! no cons

Al d+ceoB o owpeal |

i from Elevation to Voltage

If we look at the underlying type, then we know that in C++03, the underlying type was always
int. It is enum is converted to int, but now you can specify what is the underlying type. So what
you do is the syntax for that is after the enum name and before the list starts, you put a colon and
then write the underlying type name. So, this is kind of similar to the way you write derived
classes you can say so this is the underlying type. And when you do that, the enum enumerator

definitions follow that underline.

For example, if I, for status if I have written std::uint8 t which means it is an unsigned integer of

8 bits is that I will use as my underlying type then this becomes an error. But if you had not

written this, if you had not specified this, then the underlying type by default is int and therefore
9999 is a valid value in int and this will be accepted. So this gives kind of strong typing to enums
and you cannot compare scoped enum values with ints, you cannot compare scope enum objects
of different types, you cannot, I mean, it is not, int is not, cannot be explicitly cast into enum or

otherwise, you have to, implicitly cast in that, you have to do that explicitly and so on.

So, here are a couple of examples of, here is an Elevation and a Voltage, both of them could be
low and high. And for example, if I try to define e with low I will get an error because it is not
scoped. I have to write it whether, I have to specifically say that it is Elevation::low, similarly
Voltage::high. I cannot compare e with Voltage::high because e is of type Elevation and Voltage
is of, Voltage::high is of type Voltage. So, you can see that basic difference that is kind of the
notion that we have, strong typing in terms of classes come in here with the convenience of

having the tags of the enums.

(Refer Slide Time: 10:51)

L - BN R

@ enum class: Forward-Declaration

enums of known size may be forward-declared:

enun Coler; «/ s in C++03, error!: size unknown
onun Weather: std::winth t;
lags Elevation; int

double atmosphericPressure(Elevation e);

?, L] ’.‘c"|’ RS,

Finally, with these, another big advantage that you get, you can now forward-declared enums.
So, if you try to just say that, well, I want to say that I have an enumeration, but I am not, right
now, I am not sure about the enumerators and I do not want to list them out, you cannot do that
in C++03. So, if you just write enum this then it will give you an error saying that the size is

unknown, because unless you give the list the compiler does not know the size.

But if you write it like this saying that the underlying type is such and such, then the compiler
immediately understands that you are talking about, not talking about enum in C++03, but you
are talking about an enum class even though you have not written the keyword class, but from
the syntax of the underlying type the compiler figures out that you are talking about an enum

class and it will allow you to specify this without the enumerators being specified.

Similar thing can be done here and then it can be used in terms of passing to, passing as function
parameters and so on. Of course, before the actual execution, you will have to specify what the
enumerations are and the, only then the code can be generated. So, this gives enum class really a
much stronger and much well tight behavior in C++03, C++11 compared to what you had in

C++03 and you must start using them extensively.

(Refer Slide Time: 12:30)

LR RS RN A A RN N

Eﬂ Fixed Width Integer Types

¢ Size of integral types in C++03 are implementation-defined:

o sizeof (unsigned char) =1 byte: This is standard defined
o sizeof (char), sizeof (short), sizeof (int), etc.: unspecified
o The following order is only guaranteed:
sizeof (unsigned char) <= sizeof (char) <= sizeof (short) C-f
sizeof (int) <= sizeof (long)
o C4+411 pn:wides fixed width integer types in <cstdint> for N = [8, 16, 32, 64 }:
int<N>_t (uint<i>_t): For example, int8_t (uint8.t)
b signed (unsigned) integer type with width of exactly N bits with no padding bits
b signed integer type to use 2's complement for negative values
int_fast<N>.t (uint_fast<N>.t): For example, int_fast8_t (uint_fast8.t)
&> fastest signed (unsigned) integer type with width of at least N bits
int_least<N>.t (uint_.least<N>_t): For example, int_least8_t (uint_least8.t)

o

o

o

b smallest signed (unsigned) integer type with width of at least N bits
intmax.t (uintmax_t):

o

&> maximum-width signed (unsigned) integer type
9+ B - wi

P

()

LB RS RN S N

Fixed Width Integer Types

¢ Size of integral types in C++03 are implementation-defined:
o sizeof (unsigned char) =1 byte: This is standard defined
o sizeof (char), sizeof (short), sizeof (int), etc.: unspecified
o The following order is only guaranteed:
sizeof (unsigned char) <= sizeof(char) <= sizeof (short) <=
sizeof (int) <= sizeof (long)
® C++11 provides fixed width integer types in <cstdint> for N = { 8, 16, 32, 64 }:
© int<i>.t (uint.t): For example, int8.t (uint8.t)
b signed (unsigned) integer type with width of exactly N bits with no padding bits
b signed integer type to use 2's complement for negative values
o int_fast<N>_t (uint.fast<l>_t): For example, int_fast8_t (uint_fast8_t)
1> fastest signed (unsigned) integer type with width of at least N bits
o int.least<N>_t (uint.least<N>_t): For example, int_least8.t (uint least8.t)
b smallest signed (unsigned) integer type with width of at least N bits
© intmax.t (uintmax_t):
&> maximum-width signed (unsigned) integer type
2P ge - SR

LI R R R

Fixed Width Integer Types

o Size of integral types in C++03 are implementation-defined:
o sizeof (unsigned char) =1 byte: This is standard defined
o sizeof (char), sizeof (short), sizeof (int), etc.: unspecified <N>
o The following order is only guaranteed:
sizeof (unsigned char) <= sizeof(char) <= sizeof (short) <=
sizeof (int) <= sizeof (long)
® C4-+11 provides fixed width integer types in <cstdint> for N = { 8, 16, 32, 64 |
o Jint<N>.t |(uint<N>_t): For example, intB.t (uint8.t) T
b signed (unsigned) integer type with width of exactlg;{ bits with no padding bits
b signed integer type to use 2's complement for negative values
o int_fast<N>.t (uint_fast<N>.t): For example, int_fast8.t (uint_fast8.t)
&> fastest signed (unsigned) integer type with width of at least N bits
o int least<N>t (uint least<N>_t): For example, int_least8_t (uint_leastd t)
b smallest signed (unsigned) integer type with width of at least N bits
o intmax.t (uintmax_t):
& maximum-width signed (unsigned) integer type
R = o = el o W

LR RS BN A R

Fixed Width Integer Types

¢ Size of integral types in C++03 are implementation-defined:
o sizeof (unsigned char) =1 byte: This is standard defined
o sizeof (char), sizeof (short), sizeof (int), etc.: unspecified
o The following order is only guaranteed:
sizeof (unsigned char) <= sizeof(char) <= sizeof (short) <=
sizeof (int) <= sizeof (long)
o C++11 provides fixed width integer types in <catdint> for N = { 8, 16, 32, 64 }:
int<l>_t (uint_t): For example, int8.t (uint8.t)
b signed (unsigned) integer type with widthm N bits with no padding bits
b signed integer type to use 2's complement for negative values
int_fast<N>.t (uint_fast<N>.t): For example, int_fast8_t (uint_fast8.t)
&> fastest signed (unsigned) integer type with width of at least N bits
int_least<N>.t (uint_.least<N>_t): For example, int_least8_t (uint_least8.t)
b smallest signed (unsigned) integer type with width of at least N bits

o

o

o

o

intmax.t (uintmax_t):
&> maximum-width signed (unsigned) integer type
(- 9+Cce B . - Wi

L - B

Fixed Width Integer Types

o Size of integral types in C++03 are implementation-defined:
o sizeof (unsigned char) =1 byte: This is standard defined
o sizeof (char), sizeof (short), sizeof (int), etc.: unspecified
o The following order is only guaranteed:
sizeof (unsigned char) <= sizeof (char) <= sizeof (short) <=
sizeof (int) <= sizeof (long)
o C4+411 provides fixed width integer types in <cstdint> for N = { 8, 16, 32, 64 }:
int<l>_t (uint<N>_t): For example, int8.t (uint8.t

o

b signed (unsigned) integer type with width of|exactly i bits with no padding bits
b signed integer type to use 2's complement for negative values

int_fast<N>_t (uint_fast<N>_t): For example, int_fast8.t (uint fast8_t)

b Tastest signed (unsigned) integer type with width of|at least] N bits
int_least<N>_t (uint_least<N>_t): For example, int_least8_t (uint_least8. t)
—_

b smallest signed (unsigned) integer type with width offat least]l bits

intmax_t (uintmax_t):

o

o

o

& maximum-width signed (unsigned) integer type
'l 9+ C ¢ B o

The next feature is about the types, integer types. Now, as you know that we have different
integral types in C++03, there is unsigned char, there is char, there is short, there is int, there is
long and so on so forth. Now, if I asked you what is the size of say int or what is the size of char
or what is the size of long, you will say that it depends on the implementation. The standard has

not defined what the size will be.

So, it depends on the compiler and the actual implementation which defines the size of every
type in C++03 with the exception of unsigned char which has been defined to be 1 byte that is 8

bits in the standard, otherwise this size is an unspecified. Only thing that the standard specify is

there is an ordering between their size that is unsigned char cannot be larger than the size of char

that cannot be larger than the size of short and so on so forth.

In contrast, in C++11 you have a number of types which are either directly implemented or given
us typedefs, that is type alias in this particular component called cstdint. So, you can see that it is
actually being borrowed from the C standard library because this also is a part of the C99 feature.
So, you can, you have things like say int<N> t, let us just look at one and the rest will become.
So, here by this what I mean, I mean one of these numbers. That is it could be 8, it could be 16, it
could be 32, it could be 64. So, for example, if N is 8, then the name of that type in the cstdint is
int8 t. So, this tells you that this is an integer type which is signed and must be of 8 bits

specifically so fixed one.

So, the implementer has to give you kind of, I mean, a way to do that. So it has to be exactly or
this type will not be available. If it is, then if it is not if available then you will get a compilation
error. So, you know that you cannot do this on the particular implementation you are using. But
if it is available, if it compiles, then you are guaranteed that you will have an 8 bit signed integer.
Similar thing you have for unsigned integer as well and the signed integer represented in n bits

with no padding bits and sign it is represented also as 2°s complement for negative values.

You have two other such one is called int fast. In fast is implementer’s judgment on what is the
fastest signed type of size N that is available. So, the implementer will type def it appropriately
s0, to a particular type. It could be, for example, int fast8 t could be typedef to char, because it
is one but and could be the fastest. Similarly, there is an int_least it say what is the smallest
integer type. I mean, it maps to it typedefs 2 the smallest integer type having at least N bits.
Please note that between int<N> and int_fast<N> or int_least<N> the difference is int<N> needs
exactly N number of bits, whereas these two need at least N number of bits. So, even bigger size

will also work. So, this is the, these are the fixed type.

(Refer Slide Time: 16:39)

L - N B I BT

4 Extended Size & Precision of integers

o What is the difference between the int types: int8.t, int least8_t, and int_fastB.t7?
© Suppose we have a C compiler for a 36-bit system, with sizeof (char) =19 bits,
sizeof (short) = 18 bits, sizeof (int) = 36 bits, and sizeof (long) = 72 bits. Then
&> int8_t does not exist, because there is no way to satisfy the constraint of having
axactly 8 v‘yfre bits with no paddihg
b intleast8.t is a typedef of char. NOT of short or int, because the standard
g——— o EE—— .
fequires the smallest type with at least 8 bits
b int_fast8.t can be anything. It is likely to be a typedef of int if the native size is
considered to be fast
o C++11 provides support for long long - a longer integer
o An integer that's at least 64 bits long. For example:
long long x = 9223372036854775807LL;

o No, there are no long long longs nor can long be spelled short long long
o C++11 provides support for extended integer (precision) types with a set of rules

. d+Ce B - - wimET

(R R A RS

® What is the difference between the int types: int8.t, int least8_t, and int_fastB.t?

© Suppose we have a C compiler for a 36-bit system, with sizeof (char) = 9 bits,

sizeof (short) = 18 bits, sizeof (int) = 36 bits, and sizeof (long) = 72 bits. Then

> int8.t does not exist, because there is no way to satisfy the constraint of having
exactly 8 value bits with no padding
int least8.t is a typedef of char. NOT of short or int, because the standard
requires the smallest type with at least 8 bits
int_fastB.t can be anything. It is likely to be a typedef of int if the native size is
considered to be fast
o C++11 provides support for long long - a longer integer

o An integer that's at least 64 bits long. For example:

long long x = 9223372036854775807LL;

o No, there are no long Tong Tongs nor can Tong be spelled short long long

o C++11 provides support for extended integer (precision) types with a set of rules

w

-

i v o B s : I

So, what is the difference between them, what is the difference between int t, int least t,
int_fast8 t and so on. So, suppose you have a compiler some hypothetical machine which is a 36
bit system, do not get shocked with that, because your PCs and servers are not the only
computing systems that exist in the world. There are several other embedded systems and so on
which has arbitrary number of bits available for them. So, suppose you have a 36 bit system

where the char is 9 bits, short is 18 bits, double of that, and int is 36 bits and long is 72 bits.

Now, in this if you try to see what is int8, it is you will see that it does not exist, because it has to

give you an integer type with exactly 8 bits which does not exist. So, with this type the code will

not compile. So which tells you clearly that 8 bits are not, 8 bit integers are not available,
whereas int_least8 t will be a typedef of char because it is a smallest signed integer having at
least 8 bits. So, char has 9 bit, so it is, it satisfies the at least part and between 9, 18, 36, 72 it is
the smallest. So the list int_least8 t will typedef to char in the system. Whereas, int fast8 t could
be anything depends on what the implementer considers, it the most appropriate type for the

speed is concerned.

You also have in C++11 a new type called a long long for integer which is meant for 64 bit
integer. So here is an example of a long long variable being declared with a literal, but mind you
that you cannot write long long long or you cannot write short long long those things do not
make any sense besides that several extended precision, but the biggest take back for you from
this should be that fixed bit integer types are possible now in C++11. And in terms of 64 bit

computation, you have the long long as new integral time for 64 bits.

(Refer Slide Time: 19:13)

L - BN R

Eg?] Generalized unions

® In C4++403, a2 member with a user-defined ctor, dtor, or assignment cannot be a member of 2 union:
unjen U {
int m1;
complex<double> m2; error (silly): complex has constructor
string 83; error (not silly): string bas an invariant maintained by ctor, copy, & dter
I
& Obviously, it is illegal to write one member and then read another
U " tructor, if an
u.al = 1 naeign int menbar
string & = u.m3; disaster: read from string member

® C++11 allows 3 member of types with ctor and dtor, It also adds a restriction to make the more
flexible unions less error-prone by encouraging the building of discriminated unions
#® Uniton member types are restricted:
@ No virtual functions, No references. and No bases (as ever)
o If nember with r-defined ctor r dtor then that special function is deleted
hat is nnot | of the union type. This is new. For example:
unien U1 { union U2 {

int i} int al;
complex<double> a2; 1 string od;
. b

& This may look error-prone, but the new restriction helps

Nl e+Ccc B S whml

L - N B I BT)

Eﬁj Generalized unions

® In C4403, 2 member with a user-defined ctor, dter, or assignment cannot be a member of 2 union:
union U {
int ml;
complex<double> m2; eITor (8
string =3; error (not s

complex has comstructor
string has an invariant maintained by ctor, copy, & dter

& Obviously, it is illegal to write one member and then read another

Uu;
Ul sl uBE LT 8t meaber
string s = u.n3; disaster: read from string member

® C++11 allows a member of types with ctor and dtor, It also adds a restriction to make the more
flexible unions less error-prone by encouraging the building of discriminated unions

Union member types are restricted:
6 No virtual functions, No references, and No bases (as ever) /
0 If a union has a member with a user-defined ctor, ¢ r dior then that special function is deleted,

for an object of t} ‘-_'_Tﬁm new. For example:

union U1 { union U2 {
int ml; int al;
cn:Pln(doubln) 82; i string gl

b b

© This may look error-prone, but the new restriction helps

. P+ C¢ceB -

Moving on, union as you know is a collection of mixed types like in structure, but the fact that
only one component can be available in a union at any point of time. So this naturally creates a
problem. Suppose if I define this as a union, I do not know which of these components is being
used. Therefore, to construct the object of this union, which constructor should I use, constructor
of int, maybe which is the pod default constructor or the constructor of complex or the
constructor of string. So, therefore, C++03 does not allow any component of a union to be a user

defined type having constructor destructor assignment and so on. This is simply not allowed.

In C++11, this rule has been somewhat relaxed. So, it says that well you can use such member
variables in the union provided these are rules are followed that is the member you are including
does not have any virtual function or a reference or base class. And if it defines any of the
constructor copy or destructor, then the corresponding function in the union gets automatically
deleted, you cannot, because you cannot then delete. I mean, if you have defined a constructor,

then you cannot have a constructor for the union. So, this kind of may look a little weird to you.

(Refer Slide Time: 20:59)

LB RS RN & N

{é%} Generalized unions

& Consider:
i} u
. } 1,2k 3 complex
U: ud; \/ﬁ error: the string destructo the U2 destructor to be deleted
2w - u2; error: the string cop or caused the U2 copy constructor to be deleted

Basically, U2 is useless unless it is in a discriminated unions, such as:

class Widget { private: // Tt
enum class Tag { peint, number, :elt I y;a,

union { point p; /+ poimt nat it 1;
string s; string h { t Py ope
w:dgltk opqralnrl{cnn: H;dsqtl w) { [beca f the string variant
if (type==Tag::text kk w.type==Tag::text) [8= V.8 ial string

return *this;
}
it (type==Tag::teat) s “string();
switch (v.typs) {
case Tag::FainE: pevp break;
case Tag::nuaber: i = w.i; break;
case Tag::lut: neviks)(v.8); break; P',au:e:u: nav
}
type = W.type; return sthis;

}
e
v O F RN SN | pe s

PPV IEI SO L, UQ

Generalized unions

& Consider:
Ui u; kay
wa2={1,2); k T complex r
U2 ul; error: the string destructor ped the U2 destructor to be deleted
U2 ud = u2; error: the string copy ctor caused the U2 copy constructer to be deleted

Basically, U2 is useless unless it is in a discriminated unions, such as:
—_—
class Widget { private:

snum clasy Tag { point, musber, :elt } type; “‘(
UETon Wpoint p; /¢ PoIBt 5
\y{irp; 8 string ha

u:dgltk opqrutnrl{:n“ H;dsqtl w) { [becau f the string
if (type==Tag::text kk w.type==Tag::text) [[EREH string
return *this;
)

i1 (type==Tag::text) s.“string();
svitch (v.typs) {
case Tag::FainE: pevp break;
case Tag::nusber: { = w.i; break;
case Tag::text: new(ks)(v.s); break; placement nev

type * v.type; return sthis;

}i
Al d+Cce B o whi

But if we see an example, you can easily make out. So, this Ul has int and complex. So, it is
okay. In U2 you have int string. So, if you try to, this is an error because the moment you have
U2, then the string destructor will cause that U2’s destructor is deleted. So, there is no destructor
so U2 cannot be defined. So, you will wonder as to why then have this. The basic point is if you
are making a discriminated union, that is you are making an union where you use a enum class
tag, we have seen this style before in C++03 also, and say three types point, string and int, three

types of variables, then you will be able to still do that.

Only difference is you will have to now define your operators like say if you have to give
assignment to this because assignment per se will not be given it is because string has an
assignment operator, so you have to provide an assignment operator now, no default is to be
provided, where you can specifically decide based on the components and decide on what needs
to be done. Please go through this code. This should be pretty straightforward to understand. And

you will know why this, how this generalized union work.

(Refer Slide Time: 22:28)

L B RN

E}E Generalized PODs

* A POD (Plain Old Data) is something that can be manipulated like a C struct, for example, bitwise
pyable with memcpy (), bitwise initializable with memsat(), etc
In C4403 a POD is decided by a set of restrictions on the features used in the definition of a struct

struct § { iat a; };‘/
struct 35 { int a; S5(int aa): alaba(an)) { asssrc(s>s0); } }; // Not a POD in
struct 333 { virtual void £(); /+ o L Definitely not POD

In C+-+11, 8 and 38 are standard layout types (a superset of POD types) where the ctor does not affect
the layout (so memcpy() would be fine), only the initialization rules do (memset () would be bad)
However, 855 will still have the vptr and will not be anything like plain ofd data. C++11 defines:

o POD Types: Check by is_pod<T>::value of type bool (deprecated in C+-420)

¢ Trivially Copyable Types: Check by is_triviallycopyable<T>::value of type bool

0 Trivial Types: Check by is.trivial<T>::value of type bool, and

o Standard-Layout Types: Check by is_standard_layout<T>::value of type bool

to deal with various technical aspects of what used to be PODs. POD is defined recursively:

o Ifa Y
o Naturally

are PODs. then it is 3 POD

No virtual functions, Ne virtual bases, No references, and No multiple access specifiers
In C4+411, PODs is that adding or subtracting construcfors do nat affect layout or performance

.9+ e B L s

There is a some generalization of the plain old data types also which are bitwise copyable by
mem copy or initially visible by memset. Like if I had a struct without any constructor. Now, that
is a plain old data type because there is a bit pattern. In terms of C++03 also, these kinds of
classes or structs are also considered to be a plain old data type, because it, what it is actually

doing is basically assigning a pattern to the data member.

So, again, the plain old data type extends a lot with two basic rules. One is any structure is a
plain old data type provided all members and bases are plain old data type, everything inside is
plain old data type. So that I can bid copy everything, bit initialize everything. And naturally
there is no virtual function, no virtual base, no reference, and no multiple access specifier. All

access specification has to be the same.

So, the crux of the thing is that it becomes in C++11 a data type becomes a plain old data type if

it is, it does not make a difference whether I have a constructor or I do not. In terms of the layout

or in terms of the performance, if it does not make a difference, then it becomes a plain old data
type. I am not going into the details of that just the notions are important, because in terms of
actual programming I would not advise that you use these as plain old data types in general.
These are meant more for the experienced library programmer and you should restrict but you

should know that such kind of codes are expected.

(Refer Slide Time: 24:27)

EE Templates

Sources:

Extern templates
@ Extern templates, isocpp.org

*® Template aliases
© Template aliases; Type alias, alias template (since C 11 ,isocpporg
9 Type alias, alias
O Allas Templates

® Variadic templates

ariadic templates, Bocpp.org
0 Varia plates in C++, Eli Bendersky, 2014

® Local types as template arguments
© Local types as template arguments, isocpp.org
® Right-angle brackets (Nested Template Closer)
O Right-angle brackets, isocpp ofg
® Variable templates (C4+414)
© Variable templates, lsocpp.org

Templates

Programeming in Modern C++ Partha Pratim Das MiS 18

E{E Templates

¢ There have been several additions to templates in C+-+11. They include:
o Extern templates: Used to suppress multiple instantiations
o Template aliases: Used to make a template just like another template
o Variadic templates: These are templates with variable number of parameters that
are useful in various contexts like writing a type-safe printf or defining a tuple
o Local types as template arguments: Uses for local as well as unnamed types as
template arguments
o Right-angle brackets (Nested Template Closer): Fixes ">>" issue of C++03 for
nested templates
o Variable templates (C+ +14): Variables can now be directly templatized
* Important features to learn:

o Variadic templates, and
o Nested template closer

Programming in Modem C4-+ Partha Pratio Das Mi517

Now, let us move on to templates. So, there are varied extensions to templates. First, there is an
external template, template alias, variadic template is the most important, local type arguments,

right angle brackets and variable templates. Of these, these two are the most important ones.

(Refer Slide Time: 24:48)

[B BN R R

EE Extern Templates

¢ A template specialization can be explicitly declared as a way to suppress multiple
instantiations. For example:

#include "MyVector.h"

‘1_,‘|'actor<mt>
axtern template (]\'H My.'mtmmnn
—_—

void foo(MyVector<int>k v) {
s~

}

The aelsewhere might look something like this:

finclude "MyVector.h"
template class MyVector<ints; Hake MyVector ava

Thisis basically a way of avoiding significant redundant work by the tljmp”er and linker

- e+vce o8 . O ek

External template is simply, if you have a template after you instantiate it at multiple places, then
naturally it is expanded at every instantiation space, whereas those extent instantiations for the
same template type parameter will be identical. So, it allows, C++11 allows that you can
instantiate, use the instantiation of a template, but tell the compiler that do not instantiate it here.
It will be instantiated somewhere else. So, in some other file, it is instantiated and use. So, it is
basically a performance issue for the compiler, not a great thing for really the programmer

semantics.

(Refer Slide Time: 25:30)

LB O

E}E Template aliases

* We can make a template like anather template with a few of template arguments bound:

templatedclass T>

using Vac = std: :vector<T, My_alloc<T»;
Vectint> fib= { 1, 2, 3, 6, 8, 13 };
vector<int, My_alloc<int>> verbose = fib;

uslng is u&ed to get a linear notation where name is followed by what it refers to. Also

int_exact_trait<N>::ty ith exactly N bits
template<int> struct int_exact_ traits { typedef int type; };
template<> struct int_exact_traits { typedef char type; };
tamplata:) struct int_exact_traita<i6> { t]rpadaf char(2] type; };

:empla:e<1n\'. h> using int exact = Upaname int, _exact_traits<N>::type;
int_exact<8> a = T; i

Type aliases can also be used as a dlﬂerent $yntax for ordmary type aliases:
typedef void (+PFD)(doubla);

using PF = void (#)(double);

using P = auto (*)(double) -> void;

Programming in Moder C4-+ Partha Pratim Das Mi5.19

L RSN RN T R R

EE Template aliases: Example: Matrix

o Consider template class Matrix:
template <typename T, int Line, int Cul)/
clags Matriz { ... };

Matrix has 3 parameters. The type parameter T, and the non-type parameters Line, and Col

For readability, we want to have two special matrices: a Square and a Vector. A Square's
number of lines and cplumns syould be?ual. A Vector's line size should be one.

eaplate <typename I, int Li}i’f’
@ quare = Matrix<T, Lirde, Line>; #1
b ke’ ik g8

template <typename T, int Line>
using Vector = Matrix<T, Line, 1>; | ¥

using declares a type alias {ﬂl & 8'2}. While the primary template Matrix can be
parametrized in the three dimensions T, Line, and Col, the type aliases Square and Vector
reduce the parametrization to the two dimensions T and Line

o Template alias creates napes for partially bound templates. Using Square and Vector is easy:
Matrix<int, 5, 3> ma;
Square<double, 4> sq;‘/ Matrix<double, 4, 4>
Vector<char, 5> vec; \/{ Matrix<char, 5, 1>

v o B R sl - RO

Template alias is nothing but using a different name for a template with one or more of its
parameter types already specified. There is a detailed discussion here, but what I want to really
make you to note is consider this example. Suppose you have defined a class Matrix as a
template, naturally you will have three template parameters, one is the type of the element, and
there are two non-template, non-type parameters like int, Line, number of lines and number of

columns. But specifically, you also want to deal with squares and vectors.

What will happen in the square, the line and column must be same. What will happen in a vector,
in the vector the number of columns should be 1. It is a liner one. So, this is what you can do
using the template alias. For example, take that Matrix template. You are making both of them
same. And defining a new template with T and Line and giving it in name Square, this keyword

using, use of this keyword using here allows you to do that.

So, Square now becomes an alias for this Matrix template where you can just provide the type
and the Line and it will use the Matrix template with the line and the column would be same as a
Line. Similar thing you can do for a Vector as well. So, that makes naturally the expression a lot

more readable, expressible and semantically clear.

(Refer Slide Time: 27:17)

LR RS RN A A RS R

ﬁi‘ Variadic templates: printf

Let us start by implementing printf = the most welkknown varadic function. Consider:
const chare pi = "pi";
const chars @ = "The value of %s i3 about Yg (unless)M:m in Ys)\
printi(m, pd, 3.14159, "Indiana®); int pr:nt'tconu char -Ior:u.]
® The simplest case of printf () is when there are s
void printf{const chars s} {
while (2 &k #g8) {
if (egme'y bk essglutll) ke t vas mot meant to be W for X
threw atd: :runtime_error("invalid 'or. aing argumenta®); opt
atdiicout <C #ges;
}
}
¢ That done, we must handle printf () with more algum:nts [rccurmc)
template<typename T, typename... Args>
void printf(comat chars s, T vllul hrge... args) { recursive function. r
while (s bk vs) {
i (wpmm'f! Bk wesgletfr) {
avd: jcout << value; gume
return printf(++s, args...); {f* first argusent: recursive call
std:icout €< eges;
}
throv std::runtime_error("extra arguments provided to printf");
1
Ll 9+Ce B - LN

L - N R BT)

4 Variadic templates: printf

Let us start by implementing printf = the most welkknown varadic function. Consider:
const chare pi = "pi";
const chars m = "The value of s is about Yg (unless you live in Ys)\n";
printi(m, pd, 3.14159, "Indiana®); int p':nt'[conu char *format, ...)

¢ The slmpleﬂ case of printI(} is when there are no arguments except the format

TicoUt €C wges;
}

¢ That done, we must handle printf () with more algumants [rcrurmc)
tezplate<typename T, typename... Args>
void printf(comat chars s, T vllud hrge... args) { recursive functicn. n
while (s bk vs) {
it (sgmel? Bk sseplnt}?) {
avd: icout << value; g
retarn ?rlul![o-n, args...); peel off rat argusent: recursive call

std:icont €< eges;

throu std::runtime_error("extra arguments provided to printf");

1
Nl 9+cCcc B . L W

UL - R A A

Variadic templates: printf

Let us start by implementing printf = the most welkknown varadic function. Consider:
const chare pi = "pi";
const chars m = "The value of s is about Yg (unless you live in Ys)\n";
printi(m, pd, 3.14159, "Indiana®); int printf(const char *format, ...)
The simplest case of printf() is when there are no argur
void printf{const chars s} {
vhile (2 &k #8) {
if (agmn'0 bk eesgint]r) ake sure that
threw std::runtime_srror("invalid fermat
Btdiicout <¢ #ges;

}

}
¢ That done, we V(w

0, Args... args) { recursive functicn. n

aing argumenta®);

ith more arguments (recursive):

vhile (s bk vs) {
i (wpmm'f! Bk wesgletfr) |
aud: jcout << value; g
retarn ?rlul![o-:, args. 2 peel off" first argusent: recursive call

std:icont €< eges;

throw std::runtime_error("extra arguments provided to printf*);

. weeod

S-S RN

Variadic templates: printf

® Let us start by implementing printf - the most well-known variadic function. Consider:
const chare pie 'pi'-,
const char+ = = "The value of ¥s is about Yg (unless you live in Ys)\a";
printi(e, pi, 3.14159, "Indiana®); // int printf(const char sformat, ...)
¢ The simplest case of printf() is when there are no arguments except the forn
vold printf(const chars s) {
vhile (s kk #2) {
if (wgme'l Bk sssgletir) ure that t
throw std: :runtime_srror(*invalid format
std:icout << eges;

}

3ing arguments®);

}
¢ That done, we must handle printf () with more arguments (recursive):
tenplate<typename T, typename,.. Args> te the
woid printf(const chare s, T value, Args... args) recursive function. &
uElll (a7 kk *5 '_'_'_.-'J“__i_ :
if (sgme'l) Bk sssgle'l)) {
std: 1cout << value; g
retarn ?rlulff"n. arsu.‘.}; @l off" first argusent: recursive call

std:icout << ages;

throw atd::runtime_srror{"extra arguments prn'.'ld:d to prinlf');

_elweece

S,

FPILIEI SO L, UR

Variadic templates: printf

Let us start by implementing printf = the most welkknown varadic function. Consider:
const chare pi = "pi";
const chars m = "The value of Ys is about Yg (unless you live in Ys)\n";
printi(m, pi, 3.14159, "Indiana®); int printf(const char *format, ...)
The simplest case of printf() is when there are no arguments except the format string:
void printf{const chars s} {
while (2 &k #g8) {
if (egmaill bk sesgintll) ak re that there was not meant t re args (X4 for ¥
threw std::runtime_error("invalid format: missing arguments"); opt
Btdiicout <¢ #ges;
}
}

¢ That done, we musghandle print gith maore arguments (recursive)
template<typenane 1 typename,.. Args® te the
void print!f({const chi wﬂ { recursive function. r
.

while (s bk vs) {
i (wgmm'i! Bk wesgle'fr) |
avd: jcout << value; £
return ?rlul![o-:, args...); 1 off ret argusent: recursive call

std:icont €< eges;

}

throv std::runtime_error("extra arguments provided to printf");

1
-9+ CCE B L Wt

FRlegus e

Variadic templates: printf

® Let us start by implementing printf - the most well-known variadic function. Consider:
const chare pi= 'pi'-,
const char* @ = "The value of ¥s is about Yg (unless you live in Ys)\a";
printi(m, pi, 3.14159, *Indiama®); // int printf(const char sformat, ...)
The simplest case of printf() is when there are no arguments except the format string:
void printf(const chars 8} |
WHile (a bk es) [
it (spmm'f! kK weeglnt]?) bat there was not meant t go (Xk for X
throw std: iruntime_error(*invalid format: missing arguments®); apt
atd:icout << eges;
}
}
& That done, we must handle printf () with more arguments (recursive)
tenplate<typename T, typename,.. Args> te the
void printf{const chare s, T value, Args... args) { recursive function. &
while (s°EE 78] { e
if (egme'f' Bk eseg)
atd: rcout << yi
return priotf it: recuraive call
atdiicout << ages;
throv std::runtime_srror("extra arguments prn'.'lded to prlnlf');
i
‘] -_’.‘.e‘-..-’ Coowhms i

Now, what is a significant contribution of C++11 in terms of templates is what is known as
variadic template. What is a variadic template? A variadic template is one where there is variable
number of type parameters type non-type parameters. So, why is it important, because we have
variadic functions. The most well-known variadic function is printf, where we know that we
have a one parameter, first parameter is must, which is format string, and then we just say

ellipses ... to mean that there could be any number of parameters.

And that is real sour for the type checking, because in the code you do not get to see what the
type is corresponding the format definition, like %d, %s with the actual parameter type is user's

responsibility. So, printf is a really, really sour area. Using variadic templates, you can do this,

get rid of this by specifying the printf in a very type safe manner. What you do first is you write a

template just for the, write a template function just for the format string.

So, you have the format string s and you will have % or %%, if you have, if you do not have any
of that then naturally, then it is not valid. Otherwise, you just print whatever text is given. What
is there in the format string? There is %d, %s like that, there are certain character strings or %%.
So here you take out those and anything in the character you print. So, that is how you get the

format.

Now, you do what is the variadic template here. Note carefully that I said that there has to be a
first type T and then there are ... variadic number of template parameters. Similarly, in the
function I have given that first parameter is the string, the format string, second is a value which
is T of type T and then the rest of the parameters. So, what I do is I, taking this, so here I have,
say, three parameters. Here what I am doing is I am taking out one the first of them and
remaining two I keep as a separate pack. So, as if there is a pack of three parameters given I take

out the first one and relieve the other two in the pack itself.

So, the one that I take out, I simply do an std::cout. I do not care about what is the %d, %s
because in C++ we know that how to print, how to stream is known from the type. So, I use that
feature. And then I simply recur and when I recur I use the format string again as the first
parameter here and rest of whatever is remaining. And if I do that, then naturally it will keep on,
you will call this function itself with one less parameter, then again it will call this function itself
with one less template parameter till it has only the format string left in which case it will call

this particular version. So, that is the typical way the recursion works.

(Refer Slide Time: 31:09)

L - R I RSN

Variadic templates: printf

¢ The code peels off the first non-format arg. and then calls itself recursively. When there is no
more non-format arg., it calls the first printf () = functional programming at compile time
o The Args. .. defines what is called a parameter pack - a sequence of (type/value) pairs to
peel off arguments starting with the first:
o When printf () is called with one argument, the first printf(const char*) is chosen
o When print{ () is called with two or more arguments, the second printf (const chars
s, T value, Args... args) is chosen, with the first argument as s, the second as
value, and the rest (if any) bundled into the parameter pack args for later use
o |n the call printf(++s, args...) the parameter pai;k angs is expanded 50 that the next
argument can now be selected as valua
o This carries on until args is empty so that the first printf() is called
o For generic functional programming, we declare and use a simple variadic template function:

tezplate<class ... Types>
void f(Types ... args);

1(1); K: args cont rgument: int
£(2, 1.0); g ntains two arguments: int and deubls

Programming in Mader C+4-+ Partha Pratim Doy MEs 2

Though you may not strictly call it a recursion, this is called variadic templates. This is not
strictly called a recursion, because in recursion you expect the same function to be called
recursively. But here every time the function is changing, because every time the function has
certain number of parameters, where a bunch of parameters are packed, and when it calls the
next version, it actually has reduced one parameter from the pack. So, that is what the printf
does. So, you can think of, I mean, if you think about lambdas in C++ that this basically is a kind

of a functional programming at the compile time that we are doing.

So, it is, printf is just, so this is a very easy way, very short code. And if you actually look the
printf code in C, it is a very, very huge one. It is a very short code which is a very type-safe way
to print anything that you want to print in that way. In fact, it allows you to also print user

defined types provided you have overloaded the output streaming operator appropriately.

(Refer Slide Time: 32:24)

L - B BT RS)

ré‘s“ Variadic templates: adder
P8y

Sl S o el] - “H S

Let us implement a function that adds all of its arguments together:
tenplatectypenaze T> T adder(T v) { cout < __PRETTY.FUNCTION.. << endl; return v; }
— —_

tezplatectypename T, typename... Arge> template parameter pack: typename... Args
T adder(T first, I.rga... ar;a] function parameter pack: Args... args

{ cout << __PRETTY_FUNCTION,. << endl; return first + adder(args...); }

And we could call and trace it as: long sum = adder(1, 2, 3, 8, 7); // 21

T adder(T, Args ...} [vith T = int; Args = imt, int, imt, int] // __PRETTY_FUNCTION__
T addex(T, Arge ...) [uith T = int; Arge = iat, iat, ot) : B B4CTO in g
T adder(T, Args ...) [vith T = int; Args = int, int]

T adder(T, Args ...} [uith T = iat; Args = iat]

T adder(T) [with T = int]

We could also call as:

std::string 81 = "x*, 82 = "ma", 33 = "Bb", #d =)‘y H
std::string ssum = adder(sl, 82, 83, 8d); t bt

adder will accept any number of arguments, and wjll compile properly as long as it can apply the
oparator+ to them following template and overload resolution rules

Variadic templates are like recursive code with a base case (adder (T v)) and a general case which
recurses as in adder (args...)

In addar - the first argument is peeled off the template parameter pack into type T (argument first). So
with each call, the parameter pack shortens by one parameter to hit the base case

U RS R I

ﬁ Variadic templates: adder

Let us implement a function that adds all of its arguments together:
tenplatectypenaze T> T adder(T v) { cout < __PRETTY.FUNCTION.. << endl; return v; }

nane. .. Arge>

template parameter pack: typename... Args
n addur(first, Ar function parameter pack: Args... args

. arg 8)
{ Tout W EI‘T\‘ FLI!lE’TI:U‘! R << endl; return first + adder(args...); }

& And we COLI'd call and trace it as: long sum = adder(1, 2, 3, 8, 7); 1
T adder(T, Args ...} [vith T = int; Args = imt, int, imt, int] // __PRETTY_FUNCTION__
T addex(T, Arge ...) [uith T = fnt; Arge = iat, iat, dot) expansion Eacro in g
T adder(T, Args ...) [vith T = int; Args = int, int]

T adder(T, Args ...) [vith T = iat; Args = iat]
T adder(T) [with T = int]

We could also call as:

std::string 81 = "x*, 82 = "ma", 33 = "Bb", #d = vy
std::string ssum = adder(sl, 82, 23, 8d); !

adder will accept any number of arguments, and will complle properly as 1nns as it can apply the
oparator+ to them following template and overload resolution rules

Variadic templates are like recursive code with a base case (adder (T v)) and a general case which
recurses as in adder (args...)

In addar - the first argument is peeled off the template parameter pack into type T (argument first). So
with each call, the parameter pack shortens by one parameter to hit the base case

S pwee B - 2. whemi

U - B B

4 Variadic templates: adder

Let us implement a function that adds all of its arguments together:
tenplatectypenaze T> T adder(T v) { cout < _ PRETTY.FUNCTION.. << endl; return v; }
templatectypename T, typename... Arge> template parameter pack: typename... Args

T adder(T first, Args... args) function parameter pack: Args... args
{ cout << __PRETTY_FUNCTION_. << endl; return first + adder(args...); }

¢ And we could call and trace it as: long sum = adder(1, 2, 3, 8, 7); // 21
T adder(T, Args ...) [vith T = int; Args = int, int, inmt, int) // __PRETTY_FUNCTION__
T adder(T, Arge ...) [uith T = fnt; Arge = iat, iat, dat) pansien Bacro i g
T adder(T, Args ...) [vith T = int; Args = int, int]

T adder(T, Args ...) [vith T = iat; Args = iat]
T adder(T) (with T = int]

We could also call as:

std::string 81 = "x*, 82 = "ma", 33 = "Bb", #d =)‘y
std::string ssum = adder(sl, 82, 83, 8d); !

adder will accept any number of arguments, and will complle properly as Itans as it can apply the
oparator+ to them following template and overload resolution rules

Variadic templates are like recursive code with a base case (adder (T v)) and a general case which
recurses as in adder (args...)

In addar - the first argument is peeled off the template parameter pack into type T (argument first). So
with each call, the parameter pack shortens by one parameter to hit the base case

(Nl e+CC B - -l wiSEA

EPIeeEs e

g?ﬁ Variadic templates: adder

o Let us implement a function that adds all of its arguments together:
tezplate<typenaze T> T adder(T v) { cout << __PRETTY_FUNCTION_, << endl; return v; }

teaplate<typename T, typename... Args> tesplate parameter pack: typemame... Args
T adder(T first, Args... args) fumction parameter pack: Args... args
{ cout << __PRETTY_FUNCTION.. << sndl; return first + adder(args...); }
And we could call and trace it as: long sum = adder(1, 2, 3, 8, 7);
=
T adder(T, Args ...) [vith T = dnt; rgs = int, fot, int, int) HlE‘TY
T adder(T, Args ...) [vith T = int; Args = int, int, int) 1
T adder(T, Args ...) [vith T = int; Args = iat, int)
T adder(T, Args .-J [uith T = int; Args = int]
T adder(T) [vith T = int]
. could also call as:
std::string 81 = "x", 32 = "ma", 23 = "bb", 84 =)'y
std::string ssus = adder{sl, 2, 3, 84);
 adder will accept any number of arguments, and will compile properly 35 long as it can apply the
oparator+ to them following template and overload resolution rules
¢ Variadic templates are like recursive code with a base case (adder (T v}) and a general case which
recurses as in adder (args...)
In adder - the first argument is peeled off the template parameter pack into type T (argument first). So
with each call, the parameter pack shortens by one parameter to hit the base case

ARl e+ce o - = ot

U B R B

Variadic templates: adder

Let us implement a function that adds all of its arguments together:
tenplatectypenaze T> T adder(T v) { cout << __PRETTY.FUNCTION.. << endl; return v; }
templatectypename T, typename... Args> template parameter pack: typename... Args

T adder(T first, Args... args) function parameter pack: Args... args
{ cout << __PRETTY_FUNCTION__ << endl; return first + sder(args...); }

& And we could call and trace it a ong sum =_adde /1
T adder (T, Arga ... (vith T ~(an3 ugu- __PRETTY FUNCTION.._
T adder(T, Args . J [uith T = fat; Args = imt, Iat, iat expansion BACro in
T adder(T, Args ..J [uith T = int; Args = int, int]

T adder(T, Args ...} [uith T = iat; Args = iat]
T adder(T) (vith T = int]

We could also call as:

std::string 81 = "x*, 82 = "ma", 33 = "Bb", #d =)‘y
std::string ssum = adder(sl, 82, 83, 8d);

adder will accept any number of arguments, and will complle properly as Inns as it can apply the
oparator+ to them following template and overload resolution rules

Variadic templates are like recursive code with a base case (adder (T v)) and a general case which
recurses as in adder (args...)

In addar - the first argument is peeled off the template parameter pack into type T (argument first). So
with each call, the parameter pack shortens by one parameter to hit the base case

Nl 9+cc B — - ENN

"1 L - O B A R
M «

-

4 Variadic templates: adder

Let us implement a function that adds all of its arguments together:
tgplatectypenaze T> T adder(T v) { cout << __PRETTY_FUNCTION_, << endl; return v; }

teaplate<typename T, typename... Args> tesplate parameter pack: typemame... Args
T adder(T first, Args... args) function parameter pack: Args... args
{ cout << __PRETTY_FUNCTION,. << sndl; return first + adder(args...); }

And we could call and trace it as; long sum = adder(1, 2.' 1 \
T adder(T, Args ...) [vith T = iht; Args = int, int, int, int FRE‘TY PU‘u':‘IC" :}\
T adder(T, Args ...) [vith T wdnt; Args = int, int, int]

T adder(T, Args ...) [uith T « nt; Args = Ta¥, mi—— ']J.-r

T adder(T, Args ...) [vith T = int; Args = int] 'L'T

T adder(T) (with T » inth———]

We could also call as:

std::string al = "x", 82 = "ma", 23 = "bb", 84 = "yy",;

atd::string ssum = adder(sl, 82, &3, 84);]

adder will accept any number of arguments, and will compile properly a5 1ons as it can apply the
oparator+ to them following template and overload resolution rules

Variadic templates are like recursive code with a base case (adder (T v)) and a general case which
recurses as in adder (args...)

In adder - the first argument is peeled off the template parameter pack into type T (argument first). So
with each call, the parameter pack shortens by one parameter to hit the base case

Al e+Cce B = I il

PPV IEI SO LD

&E Variadic templates: adder

Let us implement a function that adds all of its arguments together:
tezplate<typename T> T adder(T v) { cout << __PRETTY_FUNCTION., << endl; return v; }

tezplatectypename T, typename... Arge> template parameter pack: typename... Args
T adder(T first, Args... args) function parameter pack: Args... args

{ cout << __PRETTY_FUNCTION,. << endl; return first + adder(args...); }

And we could call and trace it as: long sum = adder(1, 2, 3, 8, 7); b3

T adder(T, Args ...} [vith T = int; Args = imt, int, imt, int] // __PRETTY_FUNCTION__
T adder(T, Args ...) [vith T = int; Args = fat, int, int) pangion Bacro ir
T adder(T, Args ...) [vith T = int; Args = int, int]

T adder(T, Args ...) [vith T = fat; Args = iat]

T adder(T) [vith T = int)

We could also call as: /{
std::string 8l = "x®, a2 = *ma", 23 = "bb", 84 = "yy";

std::string ssum = adder(sl, 82, 83, sd);

adder will accept any number of arguments, and will compile properly as long as it can apply the
operator+ to them following template and overload resolution rules

Variadic templates are like recursive code with a base case (adder (T v)) and a general case which
recurses as in adder (args...)

In addar - the first argument is peeled off the template parameter pack into type T (argument first). So
with each call, the parameter pack shortens by one parameter to hit the base case

Al e+cec B R i

-

Now, let us think about doing this for, to build an adder. Suppose I want to build a adder function
to add arbitrary number of values. So, I define an adder function first for one value, single value.
So, I say, if it is a single value to add, it is that value itself, otherwise I use variadic template.
What do I do? I say that I have two things. One is I have the type of the value being added and

the other is I have a pack of parameters.

In the recursive or variadic char, I define adder with the first parameter from the pack. I call it
first. It has to have the type T. And I leave the remaining function parameter within the pack. It
will stay there. And then what do I do, I have the first value. So, what is the addition of the entire
thing, the first value plus whatever is addition of the remaining pack which is a recursive call

with the remaining function parameter pack.

So, if I try to do this on adder 1, 2, 3, 8, 7, it will give me 21 and this is how it actually expands.
So, what I have used here for demonstration I have used a macro from gcc, online gdb compiler
that we are using so that you can try out so that will tell you for every variadic expansion what is
it be expanded on to. So, what happens is when you first try to instantiate call this template, so
what will happen is first parameter is int, T is int so that goes there and the remaining 2, 3, 8, 7 is

packed into four ints. So, you have one plus the remaining has to be added.

So, you go to the recurrence, as you go the recurrence, now you are expanding on 2, 3, 8, 7, so
this was 1. So, this now becomes 2. The first 1 is gone. And what you are left with is just 2, 3, §,

3 in the pack. So, you have 1 plus 2 plus 3 plus 8 plus goes on in this way. And when you hit

this, you call T with int which is basically the exit function call. All expands, computed, a
beautiful way to actually write very compact complied time, I mean, for any constant values is a
compile time computed functional programming. It can be used for, for example, this adder

could be used for any type which has operator class defined.

(Refer Slide Time: 35:53)

LA RS RN A & REUS- N

{ﬁﬁ Variadic templates: Example: power_square

Let us consider another function for practice
#include <iostrean>

tesplate <typenase T>T square(T t) { retura t » t; }

teaplate <typename T» b t returns th 1

double power_sum(T t) { cout << __PRETTY _FUNCTION . << endl; retura t; }

teaplate <typename T, typename... Rest> W I

double power_sum(T t, Rest... rest) { cout << __PRETTY FUNCTION_ _ << endl;
return t + pover_sus(square(rest)...);

int main{) {
fat result = pover_sus(2, 4, 6);

std: rcout << result;

double power_ Rest ...} [with T = iat; Rest = int, int]

double pow Rest ...) [with T = int: Rest = int]
double power [with T = int]
1314
Programming in Moder €4+ Parth Pratis Diss Mes 24

So, this variadic template is very important feature. So, therefore, I have given two practice

examples, one is a peculiar way of squaring and adding that you should try out.

(Refer Slide Time: 36:04)

L B BN RS

E‘}ﬂ Variadic templates: Example: count

& Consider:
#include <iostrean>
template<typename... Typea>
struct Count;

tesplate<> struct Count<> {
const static int value = 0;

b

tenplate<typename T, typename... Rest>
struct Count<T, Rest...> {

const static imt value = 1 + Count<Rest...>::value;

h

int main() {
auto countl = Count<int, double, char>::value; nt 3
aute countd = Count<inty>::value; mt? = 1
auto countd = Count<>::value; t 0

std:tcout << countl << std::endl;
std:icout << countd << std:ieadl;
std: tcout << countd << std::endl;

}
& A simple way to count the number of arguments

Programming in Maoder C+4-+ Parths Pratim D MIS 25

And another is a simple example to show that how can you write a variadic template to just count
in an instantiation of the variadic template how many template parameters you have actually

given. So, this will give me the count. Try these out at home.

(Refer Slide Time: 36:22)

(B B ES R R N SR -]

EE Local types as template arguments

® In C4++403, local and unnamed types could not be used as template arguments, C+-+11 relaxes
void 1(vector<kzk v) {
_ struct Less { bool cperator{)(comst Xk a, comst Xk b) { return a.v<b.v; } };
sort(v.begin(), v.end(), Less()); error: Less is local

il

} =
¢ In C4++11, we also have the alternative of using a lambda expression:

void f{vector<k>k v) {
sort(v.begin(), v.end(), retur Yi

It is worth remembering that naming action can be quite useful for documentation and an
encouragement to good design. Also, nen-local (necessarily named) entities can be reused.
® (4411 also allows values of unnamed types to be used as template arguments:

teaplatestypenane T> void foo(T constk t) { }
emum X {x);
ez {y }:
£191]

foalx); 3

toaly); ATTOr;

emm 2 {z };

foalz); ¢ &FToer;

}
Rl e +cco@ ot

Some of the less important features of templates use, include local types as template arguments.
For example, in C++03 within a template function you cannot use a type that is local here. With
C++11 you can use that. You can also use types which do not have a name, unnamed types. So,
these are minor features which you have, which you may or may not use. There are other ways of

doing that.

(Refer Slide Time: 36:53)

RPIs 4B G UD

“>>" as Nested Template Closer

® >> now closes a nested template when possible:

std: :vector<std: :list<in vil; fine in C++11, error im C++

o The C++03 extra space approach remains valid:

std: :vector<std: : list<int> > vi2;

—_—

¢ For a shift operation, use parentheses:
o Thatis, ">>" now treated like “>" during template parsing:

constexpr int n =
constexpr intm= ... ; 1B natants
constexpr std::list<std::array<int, n »» 2 3> LI; error in C++03: 2 shifts
—T error in C++11: lat ">»"
closes both templates
std::1ist<std::array<int, (n»>2) >» L2; fine in C++

—_— error in C++03 (2 shifts)

'l 9+ Ce B =l o

But this is important that in terms of syntax, C++03 had a major difficulty in terms of nested
template. So, this is a nested template. So, what I am saying is std list int. So, I have a list of
integer and then I have a vector of it. So, naturally, this will be the syntax. Now, the problem is
this one is a write, as you write two consecutive, write bracket then it actually represents right
shift in C++03. So, C++03 gives you an error and you have to write it, remember to write it them

with a gap which is unnatural.

In C++11, this problem has been solved so you can write them as consecutive symbols. But this
certainly means that when you want to write specifically about shifting along with the template
expansion you will get into subsequent errors and you will have to guard them by putting proper

parenthesis which is a very rare case, but this is a big advantage.

(Refer Slide Time: 38:13)

: PP L ANl e 0D
&}E Variable templates (C++14)

o A variable template may be introduced by a template declaration at namespace scope, where
declaration declares a variable
#include <iostream>

thpla'_q(tﬂenazu T

int main() { n<int> = 10; Tatantiating
A .
std: :cout << piimtr << " ¥ f ntiated value: 10
std: icout << nedoubler << " %; default value: B
}
® [t can be constant too:

#include <iostrean>

template<typename T> comstexpr T pd = T(3.14159265358079323846);
auto area_of circle with_radius =

int main() { double rl = 2.0; int r2=12;

atd: :cout << area_of_circlewith radiua(rl) << std::endl; // for double: 12.5664
std: :cout << area_of_circle_with radius(r2) << std::endl; r int: 12
}
Nl 9+CcCc B L wh

The last but not the least is an extension that is not in C++11 but in C++14 is that you have so far
known templates are for classes, templates are for functions. So you do not have, you cannot
have a variable as a template. So, if you want to have that, then you have to define a class, define
it as static within that and so on so forth. But in C++11, you can simply have a variable as a
template. So, here n is a simple variable. So, you say n is of type T. You can also specify a

default value for that and use it simply in this way.

This is something which was earlier restricted only to classes and functions, but in C++14 you
can have variables also which are templatize. There is a bigger example below here which
illustrates same thing. It could be just a variable or it could be a constant variable and so on, but

its instantiation will actually create that variable in your code.

(Refer Slide Time: 39:28)

LA B O

E&E Module Summary

¢ Introduced several features in C++11 for non-class types and templates with examples

o Familiarize with important non-class types like enum class and fixed width integer

¢ Familiarizes with important templates like variadic templates

Programming in Moder C4-+ Partha Pratim Das Mi5.29

So, that brings us to the end of this module where we have introduced several features of C++11
for non-class types and templates with examples and I remind you again that is very important
that you learn the non-class type features like enum class and fixed width integer and among
templates the variadic templates will be very, very important to work on. Thank you very much

for your attention. See you in the next week.

