
Programming in Modern C++

Professor. Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 54

C++11 and beyond: Class Features

(Refer Slide Time: 00:32)

Welcome to Programming in Modern C++. We are in Week 11 and we are going to discuss M54,

Module 54.

(Refer Slide Time: 00:36)

In the last module we have talked about different techniques using or without using std::function

to write and use non-recursive as well as recursive lambda expressions in C++11 and 14, we

have learnt about generic lambdas, we have learnt about generic capture and we have left with

the several practice examples that you should try and test out.

(Refer Slide Time: 01:05)

With that, actually, the general features of C++11 we have now completed discussing and in the

current module we will discuss a set of features which are related to the class. Class we learnt

about, different things about the class, data members, member functions, constructor, destructor,

all of that, inheritance all those.

So, the whole on those whole bunch of things that apply to classes, these features are extensions

on those, modifications on those and unlike say rvalue semantics, rvalue reference and move

semantics or like lambda which are big single feature of enhancement in C++11 these features

are small features which kind of are standalone, but helps to enhance the object orientation in

several ways. It specifically takes better generic programming. It improves readability.

Some features are just given to improve the readability. Some features improved the type safety,

some improve the performance and mix of those. So, you will not see a very coherent discussion

on examples of all of these features being used in the same place, but once you get comfortable

with them in the subsequent module, you will see different of these being used at different

places.

(Refer Slide Time: 02:45)

So, here is a module outline and let us get started with the first which is default and deleted

functions. In C++03, in Module 25, if you recall, we had discussed a problem that if I want to

create a class where copy is not allowed, copy will not be allowed, we saw the solution was to

put the copy constructor and copy assignment operator as private or to have a base class

something like uncopyable, non-copyable where these are private and then you privately inherit

from those and so on you should recap on those slides before you proceed further here.

In C++11 delete feature equal to delete function feature all that you can do is you can simply

write the signature of the function and put equal to delete, which means this function will be

known to the compiler, but the function will not be provided by the compiler. This function

cannot be used as simple. delete says this function is prohibited to be used. This function is a

member of the class. This function will be used to resolve overloading and all that. It is, as if it

exists in every possible way, but it is not, it cannot be used.

Similar or kind of not similar, but maybe the other end of the spectrum is you can say that,

explicitly say that some function is default. So, what we know that if copies are done for the

objects of a class and no copy constructor is provided, the compiler provides one. Now, copy

constructor can be provided with constant reference, with non-constant reference or other kinds

of things.

But, what you want to say here is you are saying that this is the signature. The copy constructor

must be their point number one. This is the signature and the compiler should provide a default

copy semantics. It is not necessary that if you provide copy constructor as default, you will have

to make copy assignment also as default, but whatever you make default the compiler will

provide that, and everybody.

So, the advantage here is it improves the readability also, it improves the resolvability also,

because for example, you might wanted that you want a default copy constructor which does not

use a constant reference, because of some reason whatever. So, if you want to do that, you can

provide it here and say default. The compiler will still provide it, but the signature would be as

you have provided.

So, any, actually this default mechanism or delete mechanism is not limited to just constructors

or copy operations, this default mechanism it can be used for any function that has a default. It

can be used for move as well. And delete is possible for any function to eliminate something that

you do not want. For example, say you have a structure Z, class Z and you have a constructor for

long long.

Now, naturally, if you pass a long value to it, this object will get constructed. But suppose you

would specifically want that you will not allow long values, you necessarily want a long long

value, then what you can do, you can simply say that, Z(long) is equal to delete, which says that

the constructor taking long as a parameter is a valid member function of this class, but you are

not allowed to use it. So, this is the basic idea of the default and delete.

(Refer Slide Time: 07:01)

So, we know all the different functions which are available for default, default constructor,

destructor, copy constructor, move, copy operations, move operations, and there are restrictions

for them. But when you get the default from the compiler, you get them in this kind of form, that

the default version is always public, it is always inline and it is always non-explicit. By using the

default option now you can change those as well as we will see.

(Refer Slide Time: 07:35)

So, here are examples of default member functions. We actually are saying this is the copy

constructor that, if we provide that, then the default constructor will not be provided, move

operations will not be provided and then you say that there is a declare, this is your default

constructor which should use a default implementation of the, provided by the compiler.

Similarly, this is a move constructor, which for which default should be given. But most

importantly, what you can do, you can change the behavior of the default.

For example, as I said, the default is public. What we are doing here you are declaring a move

assignment operator in private and calling it default. So, the compiler will still provide the

default but it will not make it public, it will make it private. Similarly, here compiler gives

constructors, copy constructors, which are all non explicit, but we are saying that explicit this is

default.

So, the compiler will still provide that, but it will be an explicit constructor, which means that

implicit conversions cannot be done with it. So, this is similarly you have made the destructor

virtual and so on. So, these are the advantages of default.

(Refer Slide Time: 08:58)

And in delete you can similarly do all this delete for preventing copying or suppressing implicit

move operations and so on.

(Refer Slide Time: 09:14)

You can see these examples. So, here is an example of delete. So, here I have this void*, f() takes

void* and it takes f() takes const char* which I have deleted. Now, with this, it does not mean

that this function does not exist. It says that the function is defined, but deleted, which means that

you cannot use it, but it will play a role in overload resolution.

So, there are actually two overloaded functions here. And I have here two variables p1 and p2 of

two different pointer types. You call this by p1. It binds with f(), first overload, so it is fine. But

if you call it by p2, then it tries to bind with the second one. And since it tries to bind with

second one and f(const char*) is unavailable, this becomes an error.

Similarly, if you pass it as a const char* pointer directly, it tries to bind here and will be an error.

But if you give it like this, this u here says that it is a unsigned, it is a 16 Unicode character

string, 16 bit character string. So, it is, so this is not same as char*. So, this will not bind here,

rather this will bind here and it will be allowed to use this. So, this is, these are the different ways

that the delete can play a significant role in this.

(Refer Slide Time: 11:06)

So, having seen this delete and default feature, let us see how do we really control the default,

move and copy that the compiler provides us with.

(Refer Slide Time: 11:20)

Recall in Module 51, we have had a discussion on move is an optimization of copy, which means

that it needs the move and copy operations and the destructor because move and copy are for

resources. So, if there are resources destruction is incorrect. So, two move operations

construction and assignment, two copy operations construction and assignment, and the delete

operation these five have to be defined in a consistent semantics. Therefore, the compiler has to

decide what it should provide and you have to decide how you should ask for them.

So, then let us consider that for each one of these five functions that I mentioned two move

operations, two copy operations and the destructor, and the destruction, there are five

possibilities each. One is nothing is said about a function. It is undeclared. One is the function

signature is given and defaulted. One is it is declared that you have written this but not defaulted,

just ended with semicolon. One is you have given the signature and said deleted. And one is you

have given the signature as well as you have defined it.

So, naturally, if you undeclared, then it is implicitly default. If it is equal to default, then it is

explicitly default if signature is given and that the compiler has to provide. If it is declared but

not defined then the use is prohibited, but you will have a linker error, because it is defined,

declared, but not defined. If it is deleted, then you will not have a linker error because you will

not be able to combine it. So, the prohibition appeals have two different semantics.

And if it is defined, then it is a proper use. So, this brings us to 5 times the 5, 25 possibilities, 25

possible semantic scenarios could be there. Each one of the five functions, for each one of the

five functions I can do any one of the five options. But these 25 scenarios are not meaningful

because they are not consistent semantically. So, to keep them consistent semantically the

compilers have to follow a set of rules and as a user, as a programmer, you have to follow a set

of guidelines.

(Refer Slide Time: 14:00)

So, the rules compiler follow are into two groups one is called the move rules. Move rules say

that if any move copy or destructor is explicitly specified, then no move is generated by default.

If any one of these is explicitly defined, specified, then nothing is, so explicitly specified means

that it is either declared or it is defined or it is defaulted or it is deleted any one of these. So, no

move is. If it is declared but undefined, it is a linker error. If it is defaulted, then it is a move

error compiler default. If it is deleted, there is a compilation error. If it is undeclared, then it

defaults to the corresponding copy operation. If you have not said anything about the move, it

will take it to the corresponding move copy operation. Here is an example which you can study

for yourself.

(Refer Slide Time: 15:01)

Copy rules are somewhat different, because copy rules existed from default. So, in copy rules, it

is selective that out of the two copy operations if you provide one and do not provide the other

but use it, whatever you have not provided will still be provided by the compiler. Move is not

like that. You provide any of the move operation, copy operation, destruction, all other will not

be provided default for. So, any undeclared copy operation is generated by default, so that you

can see the copy rules for the, default copy rules for the compiler is different.

If any move is explicitly specified, then no copy is generated by default. So, usually, I expected

the rules to be symmetric to be similar but that is not the case, because the default copy rules in

C++03 is a legacy which has to exist as C++11 goes forward. So, yes, there could be some,

because of this default copy you could have some very, very nasty problems which are very easy

to create that you have a class X which has a pointer, which you have dynamically created

something, and therefore, your destructor has a delete. It is very logical.

Now, you have not provided a constructor, you have not provided a copy constructor, you have

not said anything, which is a C++03 scenario so what will happen. If I write X x1 a default

construction will happen. And then say you have done operations to set this something to the

speed it is pointing somewhere, then you will do x2 by a copy of x1. So, the default copy

constructor will be invoked. And default copy constructor will do a shallow copy. It will just

copy the pointer, not the pointed object. So, two pointers from x1 and from x2 will point to the

same object.

Now, what will happen? As you come to the end of the scope, both of these are automatic

objects. So, according to lifetime rules on both of them the destructor will be invoked. So, first

you will have the destruction on x2. So, that will delete p. That object is 1. Pointed object is

gone. But then, you will have the destruction for x1. So, it will again try to delete on the same

point that because the pointer has been copied and you will get a double deletion error.

For example, if you try on that online gdb compiler this is the error that you will get. So, these

are problems which exist in C++03 and C++11 has not been able to address this. But so far as the

mix of move and copy is concerned, it is tried to do a decent job.

(Refer Slide Time: 18:05)

Now, given all this, it also is, if there are set of guidelines that have been provided as to how you

use this default at functions. So, three guidelines; one is called the Rule of zero that try to avoid

defining default operations if you can. That is the best thing. You take responsibility of

everything or the Rule of five which says that if you define any in terms of declaration, delete,

any copy, move or destructor function then do that for all.

So, Rule of zero and Rule of five are the basic thumb rules for using and there are some more

details which you can see. These are drafted by none other than Bjarne Stroustrup and Herb

Sutter. So, you have, you should follow that to make sure that you have a consistent default

move and copy semantics. Out of the 25 possibilities only a few will be meaningful and you

should stick to them, otherwise you will have the kind of surprise that I just showed you.

(Refer Slide Time: 19:15)

Moving on, we will take a number of small features. Delegating constructor is something very

interesting.

(Refer Slide Time: 19:23)

This is something, if you have a class with multiple constructors, it is often that there is code

copies. So, there is a Widget class and there are four constructors. A default one a copy one and

two parameterized one and these four are written here. And the red codes you can see are

basically repeated code. The whole idea is to show that multiple constructors often share the

same initializing code. So, for that in C++03 what we do we write different unit functions and try

to call the init function because of that and cumbersome handover techniques.

Here, in C++11 you have a very nice feature, from one constructor you can call another

constructor. So, by that you can make things much simpler. For example, what we notice is that

here there is a string object is something which looks to be pretty repetitive, constructing the

base class with certain call to certain functions is repetitive. So, you define a constructor which

as it is not amongst these four, a constructor with int and double. There is none such in this list.

And to make sure that this constructor is not directly used, we make it private, where we do this

base(calc()), setting the size, setting the size that is int, setting the floating value and these things.

Then what we do for using say this explicit constructor, we set a default value to int and let that.

See this carefully. This is the constructor and it is calling this constructor. This is the constructor

it is calling this construct, a feature which we have not seen before, because it did not exist. So,

what it is doing is one constructor is delegating its responsibility to another. So, here for the

default constructor, it does something interesting it delegates to a constructor which has a default

double value calls 2. 2 intern delegates it to the private constructor here. So, double delegation.

So, delegate T can also delegate further.

And you can see that with that in contrast to all that you had here, you have a small code, very

readable, very manageable, and it cannot, for example, in writing this someone could miss out

this, but here you cannot do that. But there may be exceptions to that as well. For example, the

copy constructor did not fit into that model, because it does something different. So, we do not

touch it. We not doing any delegation in that at all.

(Refer Slide Time: 23:02)

So, this is the notion of delegating constructors and delegating, delegator and delegatee may each

be in line, explicit, public, protected, private, all of those. And if you delegate naturally the

delegated construction is done first and then the delegator will be done.

(Refer Slide Time: 23:24)

Second feature very important in terms of ease of use is in-class member initializer.

(Refer Slide Time: 23:34)

In C++03 we have, we had static members, non-static members. Static members could be

initialized within the class provided it is a constant member, it is of integral type and you are

using a constant expression to initialize it, otherwise you have to write the static member there

and outside the class, you have to again write and put the initialization define, declare that

variable and define its initializing value which often you have questioned really as to how useful

it is or how convenient it is.

So, if you look at C++03 this is what is permitted. All of these are errors, because this is not

static, this is not a constant, this is not using a constant expression and this is not an integral type.

In C++11 all these have been relaxed. And further actually non-static members can also be

initialized in the class. So, in C++03 if you have a variable non-static data member a and in the

construct, you will put this initialization. Here you can just, with int a you can say initialize at 7.

(Refer Slide Time: 25:11)

So, this is a great advantage because you may have multiple constructors, as we have just seen in

the delegating constructor, which initialize you can have multiple constructors, as you have just

seen in the delegating constructor case, that initialize the same data member with the same value.

So, here is an example of a class where each of these three constructors initialized with the same

value. It is difficult to write it repeatedly without making mistake and a lot of code messes.

Instead, what you can now do is you can write it simply along with the data member declaration

that h_algo has an initial value which is within quotes MD5 and so on. So, what will happen in

the constructor, once you write this in the constructor, if you are not initializing that variable or

that data member, that data member will get the initialization from this in-class member

initializer.

Now, here, so this, these were taken care of. So, all that I am left with is a and b. And then again

I see that a is 7, b is 5 in two cases. But there are cases where they are different. These are cases

where they are different. Not, everywhere they are same unlike h_algo. So, what I do, I put a

default initialization of 7 and 5, because they are more frequently occurring. So, with that, I

would not need to specify anything here. But while I define this constructor I would not need to

specify this. But I will still need to specify what is the value of a.

So, now, there are two initializations available one which is in-class member initial value, which

is 7, and one is a_val which the constructor is saying. The rule is whatever the constructor says

will prevail. And with that, you can see this whole mess of code that you have here now becomes

so simple, so readable, so maintainable and so on. So, in-member initialization is a great feature

to use.

(Refer Slide Time: 27:46)

The next is about inheriting constructors.

(Refer Slide Time: 27:53)

You know about inheriting member functions and you know that a base, a derived class will

inherit the member functions of the base class. But the moment you declare a member functions

in the derived class by the same name, the base class member function will get delete. So, here

you have a f() here double and the moment you define it in the derived class you have f() of int

then f() of double is also hidden.

We know that by using B::f, we can make the member function of the base available here as well

that is inheriting explicitly from the base without being hidden. So, now, D has two f() functions.

But this entire thing applies only to ordinary member functions not to the constructor.

(Refer Slide Time: 28:57)

What C++11 has done, it has simply allowed that to be also be present. So, if this has two

constructors and if I have not given any constructor here, then if I do say D d that is I want to do

a default construction what will happen. It will do the construction by the default constructor of

the base. This is fine. Now, suppose I have provided, I have not provided this, but I provided

this, so what will it do? It will hide the default constructor of D. It will hide the default

constructor of D and we will say that there is no constructor and because there is only one

constructor given. So, this problem was not directly solvable in C++03.

So, now what you can do is you can say using B::f, so which means that these two that is a

default constructor of D and a default construct, and a parameterized constructor of D with int is

available at this point, then it depends on what you, how you override it, how you overload it,

and that will take the effect. So, that is the inheriting of constructors.

(Refer Slide Time: 30:37)

Here I have made, again, that principle of single slide take back. Here I have made a single slide

where I show that with or without using and with different combinations of which function is

available or which constructor is made available, what will be the basic effect try to go through

each one entry for this and get comfortable with the inheriting constructors.

For example, if you are using this, that is if you inherit, you have defined a constructor with

string, but you are trying to do a default construction. Then it will not give you a compilation

error like C++03 without this is a compilation error, because there is no default constructor, but

here the default constructor of B will be used.

But if you have provided similarly for this say for D, here it is a parameterized construction. So,

look at this, a parameterized construction. So, if you have provided something some constructor

then you will not be able to compile this because there is no constructor. If you inherit from B,

then the constructor, parameterized constructor of B taking int will be used. If you overload that,

override that in a way by providing a constructor in D of taking a parameter int and then use the

base class constructor you can see that that constructor will be used. So, this is what you gain by

providing int, the inheriting the construction, which is what was not available in C++03.

(Refer Slide Time: 32:49)

So, inherited constructors are something which is very, very important, but you have to be

careful if it has, if the derived class has data members, then you may be in for surprise because

your inherited constructor obviously will not construct the data members of derived class

because inherited constructor is of the base class. So, you have to use proper in-class member

initialization to make sure that your derived class data members are properly initialized.

(Refer Slide Time: 33:24)

Overrides are also given some more controls. This is this is something which does not add

anything specific but it is more for clarity. For example, as you inherit functions for override like

you have a function f() in the base class which is virtual and if you write it again here, you

override, here in the override feature what you say is you explicitly say that you override. It does

not do anything else. It does not give you any other functionality, but it just makes it easier to

understand.

For example, here just the difference in meaning you can see that here you have a function g(),

here you have written this. Now, in the g virtual so first you will tend to think that this override,

because it is g() function is there, but it is actually not because what you inherit is not g() but g()

which is constant. But what you are writing here is a g() which is non-cont. Therefore, there is a

overload. This is a different, this is without the const.

So, if you write override, now the complier will be able to help you on the small slip. The

complier will be able to tell you look this is not a override, because g() is not constant, whereas

your parent class member g ()is a const function. So, it will refuse to combine because of the

wrong type. So, these are the kind of advantages you can get by using override. But override as

such is, this is a keyword which is new concept being added that is the contextual keyword in the

sense that you can still, unlike other keywords, you can still keep on using override as a variable

which is not advisable to do that. But only when it is used at this place, it is, it behaves like a

keywords.

(Refer Slide Time: 35:32)

The other override control that has been added is feature called final which is similar to what

Java has but very different from what Java has. So, if you have a virtual function then you can

say it is final. If you do that, then any specialization of that class will not be able to override this

particular virtual function. Similarly, a class can be said to be final. You can say that a class is

final then you will not be able to derive from that class.

Now, it is still a lot of debate as to whether this feature has any specific value in C++, because in

Java final has a different requirement, because in Java all functions are virtual and therefore there

is a overhead of calling those functions. In C++ first of all the overhead of calling a virtual

function is extremely minimal. But more importantly C++ does have non-virtual functions.

So, in java you need to use final for those reasons. In C++11 or in C++ do you really need that.

The debate is still going on. And after a lot of study of the recent material also I failed to produce

here a meaningful example of where final really adds value in terms of programming or

semantics, so we know that it is there, but use it only if you are convinced.

(Refer Slide Time: 37:06)

Finally, in terms of type casting, we have seen a lot of that in Module 26 and Module 33, in

terms of type casting we have seen that type can be cast by having a constructor or having a type

cast operator. In terms of the constructor we can make the constructor explicit to say that implicit

conversion is not allowed. But in terms of the type cast operator no such feature was there which

is convert by type cast operator, it will be implicitly, explicitly always it will be permitted.

So, this is a basic difference between, if you have a fx() we expect the reference to a constant

reference to an X object and X as a constructor like this, this is the implicit instantiation this is

the explicit instantiation. If this is explicit then this will not compile. But the similar thing you

cannot do in terms of the cast operator. So, if you expect an int and pass an X either way then in

C++03 both of them will always compile. You cannot control that it has to be explicit.

So, what you get in C++11 is you get to use the explicit keyword if you want in terms of the cast

operator so that you can invalidate this use. You can say that only casting will have to be only

explicit. So, that is a semantics that it supports, very simple in that way to use and a nice

addition.

(Refer Slide Time: 38:47)

And here are some examples of how to use that particularly in the context of bool where it

behaves with a different use.

(Refer Slide Time: 38:57)

So, in this module we have discussed several class features of C++11 with examples that

enhance the object oriented generic programming features, readability, type safety and

performance of the language. Thank you very much for the attention and we will meet in the next

module.

