Programming in Modern C++
Professor. Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 54
C++11 and beyond: Class Features

(Refer Slide Time: 00:32)

Programming in Modern C++

Module M54: C++11 and beyond: Class Features

Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

Al url's in this module have been accessed in September, 2021 and found to be functional

Programemiag ln Modern C 4+ Partha Pratie Dy ML

Welcome to Programming in Modern C++. We are in Week 11 and we are going to discuss M54,
Module 54.

(Refer Slide Time: 00:36)

pPRe AN

Eﬁi} Module Recap

o Learnt different techniques without or with std: :function to write and use
non-recursive and recursive \ expressions in C++11 / C++14

o Several practice examples to be tried and tested

Programming In Modern 4+ Partha Pratis Do M543

In the last module we have talked about different techniques using or without using std::function
to write and use non-recursive as well as recursive lambda expressions in C++11 and 14, we
have learnt about generic lambdas, we have learnt about generic capture and we have left with
the several practice examples that you should try and test out.

(Refer Slide Time: 01:05)

pPRsend te . LD

[ﬁ] Module Objectives

o Introducing class features in C++11:

o =default and =delete

o Control of default move and copy
o Delegating constructors

o In-class member initializers

o Inherited constructors

o Override controls: override & final
o Explicit conversion operators

o These features enhance OOP, generic programming, readability, type-safety, and
performance in C+-+11
—

¢4 ¢ @] S

With that, actually, the general features of C++11 we have now completed discussing and in the
current module we will discuss a set of features which are related to the class. Class we learnt
about, different things about the class, data members, member functions, constructor, destructor,

all of that, inheritance all those.

So, the whole on those whole bunch of things that apply to classes, these features are extensions
on those, modifications on those and unlike say rvalue semantics, rvalue reference and move
semantics or like lambda which are big single feature of enhancement in C++11 these features
are small features which kind of are standalone, but helps to enhance the object orientation in

several ways. It specifically takes better generic programming. It improves readability.

Some features are just given to improve the readability. Some features improved the type safety,
some improve the performance and mix of those. So, you will not see a very coherent discussion
on examples of all of these features being used in the same place, but once you get comfortable
with them in the subsequent module, you will see different of these being used at different

places.

(Refer Slide Time: 02:45)

L

[ﬁ] Module Outline

Programming in Modern C4-+ Partha Pratis Dos Ms44

PPRB ANl Lo

Eﬁj default / delete Functions

. f lete, isocpp.org

0 d Preventing Object Copy, ariya.io, 2015

o 5, github.com o
0
0 (fine
0 (

® An O

default / delete Functions

Programming in Modern C +-+ Partha Pratio Do ("

L - 2 B A A BURUA VRN

=default and =delete

o The idiom of prohibiting copying (for C+-+03 recall Module 25) can now be expressed directly:
class X {
X& operator=(const Xk) = delete;
X(const Xt) = delete;

|8
o Conversely, we can also say explicitly that we want default copy behavior:
class Y {
Y& operator=(const Y&) = default; // defaul
cong * default;
|5
o Explicitly writing out the default by hand is good for readability, but it has two drawbacks:

o it sometimes generates ess efficient code than the compiler-generated default would, and
0 it prevents types from being considered PODs

o The =default mechanism can be used for any function that has a default

o The =delete mechanism can be used for any function like to eliminate an undesired conversion:

struct Z {
Z(long long); an initialize with a long long
2(long) = delete; // but not anything 3=

b
e . 1 Loy

L S

=default and =delete

|
o The idiom of prohibiting copying (for C++03 recall Module 25) can now be expressed directly:

class X {
Xk operator=(const X&) = delete;
X(const X&) = delete;

b
o Conversely, we can also say explicitly that we want default copy behavior:
cla
Y& operator=(const Y&) = default;
Y(const Yk) = default;
b >
o Explicitly writing out the default by hand is good for readability, but it has two drawbacks:
o it sometimes generates less efficient code than the compiler-generated default would, and
0 it prevents types from being conside

¢ The =default mechanism can be used for any function that has a default
o The =delete mechanism can be used for any function like to eliminate an undesired conversion:

struct Z {
Z(long long); an initialize with a long long
Z(long) = delete; // but not anything smaller

b
LNl ¢+ B - | S Tl

L S /720 . 0N

=default and =delete

o The idiom of prohibiting copying (for C++03 recall Module 25) can now be expressed directly:
class X {
X& operator=(const X&) = delete;
X(const Xk) = delete;

b
o Conversely, we can also say explicitly that we want default copy behavior:
class Y {
Y& operatot'(spdﬁt Y&) = default;
Y(const Y&) ="default;
}i
o Explicitly writing out the default by hand is good for readability, but it has two drawbacks:
o it sometimes generates ess efficient code than the compiler-generated default would, and
0 it prevents types from being considered PODs

¢ The =default mechanism can be used for any function that has a default
o The =delete mechanism can be used for any function like to eliminate an undesired conversion:

struct Z {
Z(long long); an initialize with a long long
Z(long) = delete; it not anything smaller

b
L . S - 1 SR

L S]

=default and =delete

o The idiom of prohibiting copying (for C++03 recall Module 25) can now be expressed directly:
class X {
Xk operator=(const X&) = delete;
X(const X&) = delete;

}i
o Conversely, we can also say explicitly that we want default copy behavior:
class Y {
Y& operator=(const Y&) = default;
Y(const Y&) = default;
}i
o Explicitly writing out the default by hand is good for readability, but it has two drawbacks:

0 it sometimes generates /ess ent code than the compiler-generated default would, and

o it prevents types from b

ng considered PODs
o The =default mechanism can be used for any function that has a default A
o The =delete mechanism can be used for any function like to eliminate an undesired conversion:

struct Z {
Z(long long); an initialize with a long long
Z(long) = delete; but not anything smaller

L
LNl ec+¢ B —] 0 i

| 3 - R
=default and =delete

o The idiom of prohibiting copying (for C++03 recall Module 25) can now be expressed directly:

class X {
Xk operator=(const Xk) = delete;
X(const Xk) = delete;

}i
o Conversely, we can also say explicitly that we want default copy behavior:
class Y {
Y& operator=(const Y&) = default;
Y(const Y&) = default;
i
o Explicitly writing out the default by hand is good for readability, but it has two drawbacks:
o it sometimes generates ess efficient code than the compiler-generated default would, and
0 it prevents types from being considered PODs
o The =default mechanism can be used for any function that has a default
o The =delete mechanism can be used for any function like to eliminate an undesired conversion:
struct 2 {

Z{long long); n initialize with a long long
Z(long) = delete; t not anything X

b

| B B

=default and =delete

o The idiom of prohibiting copying (for C++03 recall Module 25) can now be expressed directly:
class X {
Xk operator=(const X&) = delete;
X(const X&) = delete;
b
o Conversely, we can also say explicitly that we want default copy behavior:
class Y {
Y& operator=(const Y&) = default;
Y(const Yk) = default;

}i

o Explicitly writing out the default by hand is good for readability, but it has two drawbacks:
o it sometimes generates less efficient code than the compiler-generated default would, and
o it prevents types from being considered PODs

¢ The =default mechanism can be used for any function that has a default
o The =delete mechanism can be used for any function like to eliminate an undesired conversion:

struct Z {
Z(long long); n inft ze with a long long
Z(long) = delete; t anything or

)
il - e¢cwe B = PRL e

So, here is a module outline and let us get started with the first which is default and deleted
functions. In C++03, in Module 25, if you recall, we had discussed a problem that if | want to
create a class where copy is not allowed, copy will not be allowed, we saw the solution was to
put the copy constructor and copy assignment operator as private or to have a base class
something like uncopyable, non-copyable where these are private and then you privately inherit

from those and so on you should recap on those slides before you proceed further here.

In C++11 delete feature equal to delete function feature all that you can do is you can simply
write the signature of the function and put equal to delete, which means this function will be

known to the compiler, but the function will not be provided by the compiler. This function

cannot be used as simple. delete says this function is prohibited to be used. This function is a
member of the class. This function will be used to resolve overloading and all that. It is, as if it

exists in every possible way, but it is not, it cannot be used.

Similar or kind of not similar, but maybe the other end of the spectrum is you can say that,
explicitly say that some function is default. So, what we know that if copies are done for the
objects of a class and no copy constructor is provided, the compiler provides one. Now, copy
constructor can be provided with constant reference, with non-constant reference or other kinds

of things.

But, what you want to say here is you are saying that this is the signature. The copy constructor
must be their point number one. This is the signature and the compiler should provide a default
copy semantics. It is not necessary that if you provide copy constructor as default, you will have
to make copy assignment also as default, but whatever you make default the compiler will
provide that, and everybody.

So, the advantage here is it improves the readability also, it improves the resolvability also,
because for example, you might wanted that you want a default copy constructor which does not
use a constant reference, because of some reason whatever. So, if you want to do that, you can
provide it here and say default. The compiler will still provide it, but the signature would be as

you have provided.

So, any, actually this default mechanism or delete mechanism is not limited to just constructors
or copy operations, this default mechanism it can be used for any function that has a default. It
can be used for move as well. And delete is possible for any function to eliminate something that
you do not want. For example, say you have a structure Z, class Z and you have a constructor for

long long.

Now, naturally, if you pass a long value to it, this object will get constructed. But suppose you
would specifically want that you will not allow long values, you necessarily want a long long
value, then what you can do, you can simply say that, Z(long) is equal to delete, which says that
the constructor taking long as a parameter is a valid member function of this class, but you are

not allowed to use it. So, this is the basic idea of the default and delete.

(Refer Slide Time: 07:01)

FPRLand te

EE default Member Functions

¢ The special member functions are implicitly generated if used:

o Default constructor
& Only if no user-declared constructors
o Destructor
o Copy operations (copy constructor, copy operator=)
& Only if move operations not user-declared
o Move operations (move constructor, move operator=)
& Only if copy operations and destructor not user-declared
o Generated versions are:
o Public
o Inline
o Non-explicit
» defaulted member functions have:

o User-specified declarations with the usval compiler-generated implementations

(] - e¢c4cm ! B s

So, we know all the different functions which are available for default, default constructor,
destructor, copy constructor, move, copy operations, move operations, and there are restrictions
for them. But when you get the default from the compiler, you get them in this kind of form, that
the default version is always public, it is always inline and it is always non-explicit. By using the

default option now you can change those as well as we will see.

(Refer Slide Time: 07:35)

pPRsand te .

[ﬁi default Member Functions

o Typical use: unsuppress implicitly-generated functions:
class Widget { public:
Widget(const Widgetk);

Widget() = default; jeclar

Vidget (Widgetk&) noexcept = default;
f—————————

}i
o Or change normal accessibility, explicitness, virtualness:
class Widget { public:
virtual “Widget() = default; eclare as virtual
explicit Widget(const Widgetk) = default; feclar explicit
private:
Widgetk operator=(Widgetkk) noexcept = default; laclare as private

1B
] - ec¢cewe B - 1 Sl

pPRs ANt

[ﬁ% default Member Functions

o Typical use: unsuppress implicitly-generated functions:
class Widget { public:
Widget(const Widgetd);

Widget() = default; declar fault
Widget(Widgetkt) noexcept = default;

b

o Or change normal accessibility, explicitness, virtualness:

class Widget { public:
virtual “Widget() = default; / re as virtual

explicit Widget(const Widgetk) = default; declar explicit
privateT 7 oo
Widgetk operator=(Widgetkk) noexcept = default; eclare as private
}i
¢4 ¢ B | N

So, here are examples of default member functions. We actually are saying this is the copy
constructor that, if we provide that, then the default constructor will not be provided, move
operations will not be provided and then you say that there is a declare, this is your default
constructor which should use a default implementation of the, provided by the compiler.
Similarly, this is a move constructor, which for which default should be given. But most
importantly, what you can do, you can change the behavior of the default.

For example, as | said, the default is public. What we are doing here you are declaring a move
assignment operator in private and calling it default. So, the compiler will still provide the
default but it will not make it public, it will make it private. Similarly, here compiler gives
constructors, copy constructors, which are all non explicit, but we are saying that explicit this is
default.

So, the compiler will still provide that, but it will be an explicit constructor, which means that
implicit conversions cannot be done with it. So, this is similarly you have made the destructor

virtual and so on. So, these are the advantages of default.

(Refer Slide Time: 08:58)

L

Eﬁj delete Functions

o deleted functions are defined, but cannot be used

o Most common application: prevent object copying:

class Widget {
Widget(const Widgetk) = delete;
Widgetk operator=(const Widgetk) = delete;

b

o Note that Widget is not movable, either
o Declaring copy operations suppresses implicit move operations!
o It works both ways:

class Gadget {
Gadget (Cadgetkk) = delete;
Gadgetk operator=(Gadgetkk) = delete;

):4.

Programming In Modern 4+ Partha Pratio Doy M50

And in delete you can similarly do all this delete for preventing copying or suppressing implicit

move operations and so on.

(Refer Slide Time: 09:14)

pPRsAnd te . D

[ﬁi delete Functions

o Not limited to member functions
o Another common application: control argument conversions
b deleted functions are declared, hence participate in overload resolution:

void f(voide); { { le ¥ ANy ptr type
void f(const chars) = delete; f uncallable with [const) chare
auto pf’ = new std::list<int>; pl f type std::list<int>e
extern char #p2;

1(p1); fine, 1(voids)

£(p2); error: f(const chare) una
£("Modern C++"); error

f(u"Modern C++"); fine (charib.te != chare

o el] 1 = R

poReandste .

delete Functions

o Not limited to member functions
o Another common application: control argument conversions
b deleted functions are declared, hence participate in overload resolution:

void f(voide); { le with any ptr type
o0id f(const chars) = delete; f uncallable with [const] chare
uto pl = new std::list<int>; pl f type std::list<int>e
extern char #p2;

1(p1); fine, 1(voids)
£(p2); error: f(const chars) una
1("Modern C++"); error 7~

£(TWodern C++1); fine (chari6.te != chars
Sl X

o Not limited to member functions
o Another common application: control argument conversions
> deleted functions are declared, hence participate in overload resolution:

void f(voids); H lo vi I pe
void f(const chars) = delete; f uncallable with [const] chare
auto pi = new std::list<int>; pt f type std::list<intd>e

extern char #p2;

1(p1); fine {(voide)

£(p2); error: f(const chars) unavailable

£("Modern C++"); error

1(u"Modern C++"); fine (chari6.te |= chare

2 — —
lotwea - N

You can see these examples. So, here is an example of delete. So, here | have this void*, f() takes
void* and it takes f() takes const char* which | have deleted. Now, with this, it does not mean
that this function does not exist. It says that the function is defined, but deleted, which means that

you cannot use it, but it will play a role in overload resolution.

So, there are actually two overloaded functions here. And | have here two variables p1 and p2 of
two different pointer types. You call this by p1. It binds with f(), first overload, so it is fine. But
if you call it by p2, then it tries to bind with the second one. And since it tries to bind with

second one and f(const char*) is unavailable, this becomes an error.

Similarly, if you pass it as a const char* pointer directly, it tries to bind here and will be an error.
But if you give it like this, this u here says that it is a unsigned, it is a 16 Unicode character
string, 16 bit character string. So, it is, so this is not same as char*. So, this will not bind here,
rather this will bind here and it will be allowed to use this. So, this is, these are the different ways

that the delete can play a significant role in this.

(Refer Slide Time: 11:06)

Sources.

® Control of default move and copy, isocpp.org

U f oro, cppreference.com

o f s, Eds. Bjarne Stroustrup and Herb Sutter, 2022
0« dof default ")
0 (defir
o (

® An O (C4411/14) , Scott Meyers Training Courses

Control of default move and copy

Programming In Moder C 4+ Partha Pratim Dan M1

So, having seen this delete and default feature, let us see how do we really control the default,

move and copy that the compiler provides us with.

(Refer Slide Time: 11:20)

pPYPRLANI L

&l‘?‘ Control of default move and copy

o We learnt in Module 51 that Move is an Optimization of Copy. This is specifically true for

asses h (I:ke pomter / vector) that needs to be moved or copied
o This needs Move and Copy s to be appropriately defined
o Wealso n rin such cases for the release of the resources (like pointer)
o Further, \he mpiler provide these functions as /It (if not provided and / or deleted by the

user) so that the users do not need to write !hem for every class
o So there can be one of the following options for each of the five functions in a class:
——————

(1] [Un-declared) Do not mention the function in the class - imp/iciTy derault
[2] [=default] Mention the function as =default - explicitly default
[3] (Declared) Declare the function but not define it - prohibit use
[4] (=deleted) Mention the function as =deleted - prohibit st
5] Defined) Provide a user-defined implementation of the function -
o For [1] & [2) compiler provides default impler n and for [5]

o In total, we have 5 x 5 = 25 5 but only a few of them are semanuca/ly consistent
o So for a proper semantics, we / Move) str
o Compiler follows a set of rules
o User needs to follow a set of guidelines
. 9Ctewe B | R

PP anste .
[ﬁi} Control of default move and copy

o We learnt in Module 51 that Move is an Optimization of Copy. This is specifically true for
having (kae pomter vector) that needs to be moved or copied
. Thls needs ind Copy s to be appropriately defined
o We also need torin such cases for the release of the resources (like pointer)
o Further, the mpiler provide these functions /It (if not provided and / or deleted by the
user) so that the users do not need to write them fov every class
o So there can be one of the following options for each of the five functions in a class:

[1] [Un-declared] Do not mention the function in the class - implicitly default

[2] [=default] Mention the function as =default - explicitly default

[3] (Declared) Declare the function but not define it -

[4] (=deleted) Mention the function as =deleted - us

[5] [Defined) Provide a user-defined mplementanon of the functlon
. For [1) & [2) compiler provides default impler n and for [5] 3
o In total, we have 5 x 5 ; but only a few of them are 5emanuc.z!ly consisienr
o So for a proper semantics, we need to control move festruction:

o Compiler follows a set of rules
o User needs to follow a set of guidelines

L o, A | "] R anild

EPR2sQans te .

E’%}} Control of default move and copy

o We learnt in Module 51 that Move is an Optimization of Copy. This is specifically true for

classes hi es (like pomter vector) that needs to be moved or copied
o This needs Move and Copy ¢ s to be appropriately defined
o Wealso 1 rin such cases for the release of the resources (like pointer)

o Further, \he mpiler provide these functions as default (if not provided and / or deleted by the
user) so that the users do not need to write !hem for every class
o So there can be one of the following options for each of the five functions in a class:
(1] [Un-declared] Do not mention the function in the class - implicitly default v~
[2] [=default] Mention the function as =default - explicit/ |
[3] [Declared] Declare the function but not define it - pr:
[
[

[4] [=deleted) Mention the function as =deleted - prohibit us:

5] [Defined) Provide a user-defined implementalion of the function -
o For [1) & [2) compiler provides default implem n and for [5] Y
o In total, we have 5 x 5 = 25 5 but only a few of them are semannca!ly consistent
o So for a proper semantics, we need to control mov stri

o Compiler follows a set of rules
o User needs to follow a set of guidelines

L] ¢ @ '] - R

Recall in Module 51, we have had a discussion on move is an optimization of copy, which means
that it needs the move and copy operations and the destructor because move and copy are for
resources. So, if there are resources destruction is incorrect. So, two move operations
construction and assignment, two copy operations construction and assignment, and the delete
operation these five have to be defined in a consistent semantics. Therefore, the compiler has to

decide what it should provide and you have to decide how you should ask for them.

So, then let us consider that for each one of these five functions that I mentioned two move
operations, two copy operations and the destructor, and the destruction, there are five

possibilities each. One is nothing is said about a function. It is undeclared. One is the function

signature is given and defaulted. One is it is declared that you have written this but not defaulted,
just ended with semicolon. One is you have given the signature and said deleted. And one is you

have given the signature as well as you have defined it.

So, naturally, if you undeclared, then it is implicitly default. If it is equal to default, then it is
explicitly default if signature is given and that the compiler has to provide. If it is declared but
not defined then the use is prohibited, but you will have a linker error, because it is defined,
declared, but not defined. If it is deleted, then you will not have a linker error because you will

not be able to combine it. So, the prohibition appeals have two different semantics.

And if it is defined, then it is a proper use. So, this brings us to 5 times the 5, 25 possibilities, 25
possible semantic scenarios could be there. Each one of the five functions, for each one of the
five functions | can do any one of the five options. But these 25 scenarios are not meaningful
because they are not consistent semantically. So, to keep them consistent semantically the
compilers have to follow a set of rules and as a user, as a programmer, you have to follow a set

of guidelines.

(Refer Slide Time: 14:00)

pPRs ANl Lo, 0D

Eﬁé} Control of default move and copy: Compiler Rules

o Move Rules
o |f any move, copy, or destructor is explicitly specified (declared, defined, =default,
or =delete) by the user:

> no move is generated by default

> any declared but un-defined move is a linker error
> any =default move is compiler default

> any =delete move is compilation error
b any un-declared move defaults to corresponding copy

o Comment / =default / =delete different functions below to understand the rules of
move as well as copy. Note that a default function will not stream any string
class X { public: int main() {
X0 { std::cout << "Ctor *; } X x1;
X(const X&) { std::cout << *C-Ctor *; } xx2{xt});
Xk operator=(const Xk) { std::cout << "C= "; return sthis; } X1 = x2;
X(xer) { std::cout << "Meor *; } X x3 { std::move(xt) };
Xk operator=(Xkk) { std::cout << "Me "; return sthis; } x2 = std::move(x3);
%0 {} }
Y Ctor C-Ctor Ce Mtor Me

R el | 1 L

So, the rules compiler follow are into two groups one is called the move rules. Move rules say
that if any move copy or destructor is explicitly specified, then no move is generated by default.
If any one of these is explicitly defined, specified, then nothing is, so explicitly specified means

that it is either declared or it is defined or it is defaulted or it is deleted any one of these. So, no

move is. If it is declared but undefined, it is a linker error. If it is defaulted, then it is a move
error compiler default. If it is deleted, there is a compilation error. If it is undeclared, then it
defaults to the corresponding copy operation. If you have not said anything about the move, it
will take it to the corresponding move copy operation. Here is an example which you can study

for yourself.

(Refer Slide Time: 15:01)

pPRsand e LN

Eiéj Control of default move and copy: Compiler Rules

o Copy Rules
o |f any copy or destructor is explicitly specified (declared, defined, =default, or
=delete) by the user;
> any undeclared copy operations are generated by default
b this is deprecated in C++11
o If any move is explicitly specified (declared, defined, =default, or =delete):
b no copy is generated by default
o Bad problem due to default copy in C++03 persists in C++11 onward
class X { public:

N_,ws&u._)

ks private: int °p/ u Q,,/'%Q

int mam()
X xt; \
X x2(x1) N7

} double delete! of p: run-time error: munmap_chunk

6 I R e | . 1 L

PP anste . 0N

Eﬁi} Control of default move and copy: Compiler Rules

o Copy Rules
o |f any copy or destructor is explicitly specified (declared, defined, =default, or
=delete) by the user;
b any undeclared copy operations are generated by default
b this is deprecated in C++11
o If any move is explicitly specified (declared, defined, =default, or =delete):
b no copy is generated by default
o Bad problem due to default copy in C4+403 persists in C++11 onward
class X { public: pyabl
“XO { delete p; } plicit invariant: p owns sp
private: :‘nt p; gl
b
int maigX) {
0% PR s
X y2(x1); v
——"} double delete! of p: run-time error: munmap_chunk invalid pointer in g
] ¢+ B] DO

Copy rules are somewhat different, because copy rules existed from default. So, in copy rules, it
is selective that out of the two copy operations if you provide one and do not provide the other
but use it, whatever you have not provided will still be provided by the compiler. Move is not

like that. You provide any of the move operation, copy operation, destruction, all other will not
be provided default for. So, any undeclared copy operation is generated by default, so that you

can see the copy rules for the, default copy rules for the compiler is different.

If any move is explicitly specified, then no copy is generated by default. So, usually, I expected
the rules to be symmetric to be similar but that is not the case, because the default copy rules in
C++03 is a legacy which has to exist as C++11 goes forward. So, yes, there could be some,
because of this default copy you could have some very, very nasty problems which are very easy
to create that you have a class X which has a pointer, which you have dynamically created

something, and therefore, your destructor has a delete. It is very logical.

Now, you have not provided a constructor, you have not provided a copy constructor, you have
not said anything, which is a C++03 scenario so what will happen. If I write X x1 a default
construction will happen. And then say you have done operations to set this something to the
speed it is pointing somewhere, then you will do x2 by a copy of x1. So, the default copy
constructor will be invoked. And default copy constructor will do a shallow copy. It will just
copy the pointer, not the pointed object. So, two pointers from x1 and from x2 will point to the

same object.

Now, what will happen? As you come to the end of the scope, both of these are automatic
objects. So, according to lifetime rules on both of them the destructor will be invoked. So, first
you will have the destruction on x2. So, that will delete p. That object is 1. Pointed object is
gone. But then, you will have the destruction for x1. So, it will again try to delete on the same

point that because the pointer has been copied and you will get a double deletion error.

For example, if you try on that online gdb compiler this is the error that you will get. So, these
are problems which exist in C++03 and C++11 has not been able to address this. But so far as the

mix of move and copy is concerned, it is tried to do a decent job.

(Refer Slide Time: 18:05)

pPYPRL ANt RN

[@E Control of default move and copy: User Guidelines

o C++ Core Guidelines, 2022 (Bjarne Stroustrup & Herb Sutter) provides 3 guidelines:

o [Rule of zero]: C.20: If you can avoid defining default operations, do
b Classes with custom Dtors, copy/move Ctors or assignment needs exclusive ownership
b Other classes should not have these custom functions
o [Rule of five): C.21: If you define or =delete any copy, move, or destructor function,
define or =delete them all
i As the presence of a user-defined (or = default or = delete declared) Dtor, copy Ctor or
assignment prevents implicit definition of the move Ctor and assignment, any class for
which move semantics are desirable, has to declare all five special member functions
> [Rule of three]: If a class requires a user-defined Dtor, a user-defined copy Ctor, or a
user-defined copy assignment, it almost certainly requires all three
o C.22: Make default operations consistent
b Default operations have a matched set and interrelated semantics. It is a surprise
— if copy/move construction and assignment do logically different things
— if constructors and destructors do not provide a consistent view of resource mgmt.
~ if copy and move do not reflect the way constructors and destructors work

Programming In Moder 4+ Partha Pratim Das MSA 18

Now, given all this, it also is, if there are set of guidelines that have been provided as to how you
use this default at functions. So, three guidelines; one is called the Rule of zero that try to avoid
defining default operations if you can. That is the best thing. You take responsibility of
everything or the Rule of five which says that if you define any in terms of declaration, delete,

any copy, move or destructor function then do that for all.

So, Rule of zero and Rule of five are the basic thumb rules for using and there are some more
details which you can see. These are drafted by none other than Bjarne Stroustrup and Herb
Sutter. So, you have, you should follow that to make sure that you have a consistent default
move and copy semantics. Out of the 25 possibilities only a few will be meaningful and you
should stick to them, otherwise you will have the kind of surprise that I just showed you.

(Refer Slide Time: 19:15)

EE Delegating

Delegating Constructors

Sources:

& Dele isocpp.org

® An Ove v (C4411/14), Scott Meyers Training Courses

Programming in Modern €4+ Partha Pratim Dias M 16

Moving on, we will take a number of small features. Delegating constructor is something very

interesting.

(Refer Slide Time: 19:23)

class Base { public:
explicit Base(int);

class Widget: public Base { public:
Widget();
oxplicit Widget(double £1);
explicit ot
Widget (const Widgetk v);
private:
static int cale();
static constexpr double defaultFlex = 1.5;
const int size;
long double flex;

Widget::Widget(const Widgetk w): Base(v),
size(v.aize), flex(v.flex) { regObj(

Refactored for better reuse with delegated constructors

class Widget: public Base { public: v !
Widget(): Widget(defaultFlex) {} #l: 2

explicit Widget(double £1): Widget(0 #2: calls #5
explicit Widget(int s2): Vidget(f X #3: calls 05
Widget(const Widgetk v): Base(v), size(v.size), flex(vw.flex) { regObj(this); } 8

private: Widget(int sz, double f1): Base(calc()), si lex(f1) { reglbj(this); } (3

priv

privat
—

L2 S]

bﬁ Delegating Constructors

Multiple constructors with code copies
class Base { public:

explicit Base(int);

class Widget: public Base { public:

Vidget();
oxplicit Widget(double £1);
explicit Widget(int sz);
dget(const Widgetk v);
LN
static int calc(); t
static mﬁoublo defaultFlex = 1.5;
const int size;
long double flex;

Refactored for better reuse with delegated constructors
class Widget: public Base { public: t

YEFrE

"W

Widget::Widget(): // m1
Base(calc()), size(0),
———

flex(defaultFlex) {

Widget: :Widget(double £1): // 92
E\'Mc\‘ru\. size(0), flex(11) {

rog0b) (this
ﬁ

LK)
flex(defaultFlex) {

Widget::Widget(int s2):
, size(sz),

Widget::Widget (const Widgetk v): Base(vw), // %4
size(v.size), flex(v.flex) { regObj(this); }

Widget(): Widget(defaultFlex) {} #1: ca
explicit Widget(double f1): Widget(0, 11) {}] L]
explicit Widget(int s2): Widget(sz, degaultFlex) {} "3 [
Widget (const Widgdtk v):)‘u(u). ')?{: size), flgt(v flo;)/f reg0bj(this); } £

idget(double £1): Basd(calc()), si2e(sz), £1¥x(f1) { reglbj s); } (13
o el] i il |

i@ Dele

L O]

gating Constructors

class Base { public:

explicit Base(int);

class Widget: public Base { public:

Widget();

explicit Widget(double £1);
explicit Widget(int s2);
Widget(const Widgetk v);

private:

static int calc(); 1

static constexpr double defaultFlex = 1. 5
const int size;

long double flex;

Refactored for better reuse with delegated constructors

class Widget: publxc Base { public:

Widget(): Widget(defaultFlex) {}
xplicit ‘ixdge:(deuh:e 11): Widget(0, 11) {} #2: calls #5
explicit Widget(int s2): Vidget(sz .‘rlchu"-lcv} {} #3: calle #5
Widget(const Widgetk v): Base(vw), size(w.size), flex(vw.flex) { regObj(this); } 8
private: Widget(int sz, double f1): Base(calc()), s2), flex(f1) { regObj(this); } L3
b
Nl ec+vec B : - wtmi

PEPE

Multiple constructors with code coples

DO VR

Widget::Widget():
Base(calc()

L}
, 8420(0), flex(defaultFlex) {

regObj(this);

Widget (doudle 11):
(cad m), size(0),

"2
1lex(1) {

LK)
flox(defaultFlex) {

Widget::Widget(int s2):
Base(calc()), size(sz),
reglbj(this);

Widget::
size(v.size),

Widget(const Widgetk v): Base(w), // #4
flex(v.flex) { regObj(this); }

L S O |

{éj Delegating Constructors

class Base { public:
explicit Base(int);

class Widget: public Base { public:
Widget();
explicit ot (double £1);
explicit Widget(int sz);
Widget (const Widgetk v);
private:
static dnt cale(); L
static constexpr double defaultFlex = 1.5;
const int size;
long double flex;

class Widget: public Base { public:
Widget(): Widgot(defaultFl
explicit Widget(double f1
explicit Widget(in! s

A0 A RS

Multiple constructors with code copies

N

L}
, 8120(0), flex(defaultFl

Widget: :Widget(double f1): // 92
Base(calc()), size(0), flex(f1) {

regObj(this);

:Nidget(int s2): // 13
ase(calc()), size(sz), flex(defaultF

(this);

Widget: :Widget (const Widgetk v): Base(v),

size(v.size), flex(v.flex) { regObj(this
Refactored for better reuse with delegated constructors

flox(v.flex) { regObj(this); }
y

2), flex(fl) { regld

ox) {

lex) {

o calls 92
#2: callo 96
#3; calls 85
8
s

. iy

L]

class Base { public:
explicit Base(int);

class Widget: public Base { public:
Widget();
explicit | (double £1);
explicit Widget(int sz);
Widget (const Widgetk v);
private:
static int calc();]
static constexpr double defaultFlex = 1.5;
const int size;
long double flex;

Multiple constructors with code copies

/";o.\\\

iWidget(): // m1
(calc()), size(0), flex(defaultFl
gObj (this);

Widget(doudle f1): // #2
Base(cale()), size(0), flex(fl) {
regObj(this);

Ba.

Widget::Nidget(int s2): // #3

regObj(this);

Widget::Widget (const Widgetk v): Base(v),

size(v.oize), flex(v.flex) { regObj(this); }

Refactored for better reuse with delegated constructors

class Widget: public Base { public:
Vidget(): Widget(defaultFlex) {}
explicit Widget(double dget (0,
explicit Widget(int s2):

Widget (const Widgetk v): Base(v), size(v.size
int sz, double f1): Base(calc()
—

private: Widge

"

ks
P R O e

1) {}
dgetTaz, defaultrlex) {}

lox(v.fex) { reglbj(this); }
s2), flex(fl) { reg0bj(this);

(calc()), size(sz), flex(defaultFlex) {

ox) {

L]

#2; call

#3: calls 0§
8

8%
St

L S

ﬁ Delegating Constructors

class Base { public:
explicit Base(int);

fclass Widget: public Base { public:
Vidget();
explicit Widge

t(double £1);
explicit Widget(int sz);
Widget (const Widgetk v);
private:
static int calc();

const int size;
long double flex;

3 Uget: public Base { public:
Widget():

Widget (defaultFlex) {}
explicit Widget(double £1): ger(0, 11) {} #2: calle #5
explicit Widget(int sz): VWidget(sz, defaultFlex) {} #3: calle 06
Widget(const Widgetk w): Base(v), size(v.size), flex(v f‘ax) { regObj(this);) 4
ivate: Widget(int sz, double f1): Base(calc()), size(sz), flex(fl) { regObj(this); } 19
—_——
R el l LI

static constexpr double defaultFlex = 1.5;

487 20

Multiple constructors with code copies

Widget::W
Bas 0

Widget
Bas

Widget: :Widget (const Widgetk v): Base(v),
sjze(v.size),

Refactored for better reuse with delegated constructors

idget (double £1):
), size(0), flex(fl) {

dget(int 82):
(), size(sz),

LM
5i20(0),

flex(defaultFlom\ {

”

LE]
flox(defaultFlex) {

L1}

flex(v.flex) { regObj(this);

115 92

class Base { public:
explicit Base(int);

S ! }

Ch',"‘:::ﬁ;' public:Buay:{; public: adgen: idgen (double £1): // 2
widg: i Bas 0 1
explicit, Vidget (double 11); 'm\[m » 8120(0), flex(11) {

oxphc Widget(int s2);
dget(const Widgetk v);
priviter”
static int cale();

static constexpr double defaultFlex = 1.5;

Multiple constructors with code copies

L ﬁgu Widget():

lc()), size(0), flex(defaultFlex) {

te2): // M3

size(sz), flex(defaultFlex) {

const int size;
long double flex;

Widget::Widget(const Widgetk w): Base(v), "
size(v.aize), flex(v.flex) { regObj(this); }

Refactored for better reuse with delegated constructors

class Widget: publlc Base { public: do 1
L2 \ 8

Widget(): Widget(defaultFlex) {
explicit Widget(double f1): L ls #6
explicit Widget(int s2): Vid {} #3: calls 05
Widget (const Widgetk w): Bas '101(& tlu) { regObj(this); t 8
private: Widget(int sz, double f1) T TIOX(IL) { regudbj(this); } (3
b
LNl ec+c B 1 - -t

This is something, if you have a class with multiple constructors, it is often that there is code
copies. So, there is a Widget class and there are four constructors. A default one a copy one and
two parameterized one and these four are written here. And the red codes you can see are
basically repeated code. The whole idea is to show that multiple constructors often share the
same initializing code. So, for that in C++03 what we do we write different unit functions and try

to call the init function because of that and cumbersome handover techniques.

Here, in C++11 you have a very nice feature, from one constructor you can call another
constructor. So, by that you can make things much simpler. For example, what we notice is that

here there is a string object is something which looks to be pretty repetitive, constructing the

base class with certain call to certain functions is repetitive. So, you define a constructor which
as it is not amongst these four, a constructor with int and double. There is none such in this list.
And to make sure that this constructor is not directly used, we make it private, where we do this

base(calc()), setting the size, setting the size that is int, setting the floating value and these things.

Then what we do for using say this explicit constructor, we set a default value to int and let that.
See this carefully. This is the constructor and it is calling this constructor. This is the constructor
it is calling this construct, a feature which we have not seen before, because it did not exist. So,
what it is doing is one constructor is delegating its responsibility to another. So, here for the
default constructor, it does something interesting it delegates to a constructor which has a default
double value calls 2. 2 intern delegates it to the private constructor here. So, double delegation.

So, delegate T can also delegate further.

And you can see that with that in contrast to all that you had here, you have a small code, very
readable, very manageable, and it cannot, for example, in writing this someone could miss out
this, but here you cannot do that. But there may be exceptions to that as well. For example, the
copy constructor did not fit into that model, because it does something different. So, we do not

touch it. We not doing any delegation in that at all.

(Refer Slide Time: 23:02)

L S O I

{é;j Delegating Constructors

o Delegation is independent of constructor characteristics

o Delegator and delegatee may each be inline, explicit, public / protected /
private, etc.

o Delegatees can themselves delegate

o Delegators' code bodies execute when delegatees return:

class Data { int {;
public:
Data(): Data(0) { cout << "Data()" << endl; } #1: calls delogated #2
Data(int 4): 1(1) { cout << "Data(int)" << endl; } // #2

IH

int main() {
Data d;

}

Data(int)
Data()

Programming In Modern C 4+ Partha Pratim Das M4 18

So, this is the notion of delegating constructors and delegating, delegator and delegatee may each
be in line, explicit, public, protected, private, all of those. And if you delegate naturally the

delegated construction is done first and then the delegator will be done.

(Refer Slide Time: 23:24)

L O B R

@3 In-class Member Initializers

In-class Member Initializers

Sources:

® [n-clasd 15, SOCPP.OFE

® An Ove C4411/14), Scott Meyers Training Courses

Programming in Modern 4+ Partha Pratim Das i 10

Second feature very important in terms of ease of use is in-class member initializer.

(Refer Slide Time: 23:34)

L S O

Eﬁi} [n-class Member Initializers

o In C++03, only static const members of integral types can be initialized in-class only
with a constant expréssion so that the initialization can be done at compile-time:
S it
int var = 7;
class X {
static const int ml = 7;
const int m2 = 7; orror: not static
static int m3 = 7; error: not const
static const int m4 = var; error: initializer not constant expression
static const string m5 = "odd"; orror: not integral type
b
o In C++11 a non-static data member may be initialized where it is declared in its class,
A constructor can then use the initializer when run-time initialization is needed:
class A { public: C++03 class A { public: C++11
int a; inta=T7;
A0 s am {} r
J;
Ot ee B - B maie

L O

In-class Member Initializers

o In C++03, only static const members of integral types can be initialized in-class only
with a constant expression so that the initialization can be done at compile-time:

int var » 7;
class X {
static const int ml = 7;

const int m2 = 7; // error: not static
static int m3 = 7; / error: not const
static const int m4 = var; error: initializer not constant expression
static const string m5 = "odd"; // error: not integral type
—
b
o In C++11 a non-static data member may be initialized where it is declared in its class,

A constructor can then use the initializer when run-time initialization is needed:

class A { public: C++03 class A { public: C++11
int a; inta=T;
AQ) :a(n) {}) b

pPRsAnd te .

In-class Member Initializers

o In C++03, only static const members of integral types can be initialized in-class only
with a constant expression so that the initialization can be done at compile-time:
int var = 7;
class X {
static const int ml = 7;
const int m2 = 7; orror: not static
static int m3 = 7; error: not const
static const int m4 = var; error: initializer not constant expression
static const string m5 = "odd"; // error: not integral type
b
o In C++11 a non-static data member may be initialized where it is declared in its class.
A constructor can then use the initializer when run-time initialization is needed:
class A { public: C++03 class A { public: C++11
int a; inta=7;
20 :am {} b 228
b —
b
[9¢ e 0B I]

In C++03 we have, we had static members, non-static members. Static members could be
initialized within the class provided it is a constant member, it is of integral type and you are
using a constant expression to initialize it, otherwise you have to write the static member there
and outside the class, you have to again write and put the initialization define, declare that
variable and define its initializing value which often you have questioned really as to how useful

it is or how convenient it is.

So, if you look at C++03 this is what is permitted. All of these are errors, because this is not
static, this is not a constant, this is not using a constant expression and this is not an integral type.

In C++11 all these have been relaxed. And further actually non-static members can also be

initialized in the class. So, in C++03 if you have a variable non-static data member a and in the

construct, you will put this initialization. Here you can just, with int a you can say initialize at 7.

(Refer Slide Time: 25:11)

: qud te . U

L v
Egé} In-class Member Initializers

o This is useful for classes with multiple constructors. Often, all constructors use a common
initializer for a member:

class A { public: int a, b; C++03 class A { public: fat a, b; (
AQ: a(7), b(6), AQ: a(T), b(s)
h.algo("MDE*)

A(int a_val): a(a_val), b(5)
L)
A(D d): a(7), b(g(d)
{}
private: HashingFunction h_algo{*MDS*};
std::string s; r std::string s{"Ctor run"};
b
initializer and a constructor, only the constructor's

b
o [f a member is initialized by both an in-class
initialization is done (it “overrides” the default). So we can simplify further:

class A { public: inta =7, b= 5;
A0 {}
Alint a_val): alaval) { }
A(D d): b(g(d) { }
private: HashingFunction h_algo("Mi%'};
stdiistring s{"Ctor run"};
}

N] ec+cm] 0

PP angs e 0N

Eﬁj In-class Member Initializers

o This is useful for classes with multiple constructors. Often, all constructors use a common
initializer for a member:

class A { public: int a, b; C++03 class A { public: {nt a, b; (
AQ): a(?7), b(8), AQ): a(?), b(s)
h.algo(*MDE*), e("Ctor rua") { }
A(int a_val): a(a_val), b(5), A(int a_val): a(a_val), b(5)
b.algo(*MDE"), s("Ctor rua®) { } {}
A(D d): a(7), blg(d), A(D 4): a(7), b(g(d))
h.algo("MD5*), s("Ctor run*) { } {
private: HashingFunction h_algo; § private: HashingFunction h_algo{*MDE*};
std::string &; er std::string s{"Ctor run"};
b b

o If a member is initialized by both an in-class initializer and a constructor, only the constructor's
initialization is done (it “overrides” the default). So we can simplify further:
class A { public: inta =7, b=5;
AO { }
KIAE aval): alaval) { }
AD d): blgld) { } t
privatef HashingFunction h_algo{"MDE*};
std::string s{"Ctor run"};
b

[el | | —

F%Si [n-class Member Initializers
12X

initializer for a member:

class A { pudlic: int a, b; C4+403
AQ): a(7), b(8),

A(int a_val): a(a_val), b(5),
halget Frtscrorrun”) { }
AD 4): a(T), b(g(d)),
healgelipbil,slitrar run') { }
private: HashingFunction h_algo;
stdiistring o;
).

class A { public: int a =7, b= 5;
A {}
Alint a_val): alaval) { }
@) {}

b

AD d): b

std::string s{"Ctor run'};
b
Ce ¢ 08

PP ens e X

o This is useful for classes with multiple constructors. Often, all constructors use a common

o If a member is initialized by both an in-class initializer and a constructor, only the constructor's
initialization is done (it “overrides” the default). So we can simplify further:

private:)(umr-zg unction h_algo{"MD5*};

N

private: Huhmg?u.ncuon h_algo{"MD5*};
std::string s{"Ctor run"};
b

PR anste . U

r%’%’ In-class Member Initializers
1Y

o This is useful for classes with multiple constructors. Often, all constructors use a common
initializer for a member:

class A { pudblic: int a, b; C++403
AQ): al?), b(6),
h.algo(*MD5*), s("Ctor run*) { }
A(int a_val): a(a_val), b(6),
h.algo("MD5"), s("Ctor rua") { }
A(D d): a(7), blg(d)),
b.algo("MDS*), s(*Ctor rua") { }
private: HashingFunction h.algo;
std::string s;

b

o |f a member is initialized by both an in-class initializer and a constructor, only the constructor’s
initialization is done (it “overrides” the default). So we can simplify further:

class A { public: inta=7, b= 5;
A0 {}
Alint a_val): alaval) { }
A(D d): bg(d) { } t
private: HashingFunction h_algo{*MD5*};
std::string s{"Ctor run"};
}

Nl ec+¢ B

class A { public: fnt a, b; C++11
AQ): a(?), b(s)

A(xnt(a‘nl): a(a_val),|b(5)
AD d): al?)
private: HashingFunction h_algo{*MDE*};

std: :string s{"Ctor run"};

bi

| o el

LA O

[n-class Member Initializers

o This is useful for classes with multiple constructors. Often, all constructors use a common
initializer for a member:

class A { pudblic: int a, b; C++03 class A { public: int a, b; (
AQ): a(7), b(8), AQ: a(?), b(s)
h.algo(*MD5*), s("Ctor rua*) { }
A(int a_val) . b(5), A(int a_val): a(a_val), b(5)
h_algo(* , 8("Ctor rua") { } {}
AD d): a(7), blgd), AD 4): a(7), blg(d)
h.algo(*MD5*), s("Ctor rua") { } {}
private: HashingFunction h_alge; . private: HashingFunction h_algo{*MDS*};
std::string 8; Acer std::string s{"Ctor run"};
b }i

o If a member is initialized by both an in-class initializer and a constructor, only the constructor’s
initialization is done (it “overrides” the default). So we can simplify further:
class A { public: inta =7, b=5;

A0 {
A(xfi’_ul): alavad) { }

A(D d): b(g(d) {) t
private: HashingFunction h_algo{*MDE*};
std::string s{"Ctor run'};
b

C4¢ o I =2 wt

pPRs ANl te .

{é}} In-class Member Initializers

o This is useful for classes with multiple constructors. Often, all constructors use a common
initializer for a member:

class A { public: int a, b;
AQ: a(7), b(6),

class A { public: fnt a, b;
AQ: a(n), b(s)

A(int a_val): a(a_val), b)s)

A(D d): al7), blg(d))

h.algo("MD5*), s or run*) { }
private: HashingFunction h_alge; private: HashingFunction h_algo{"MDE*};
std::string 8; std::string o{"Ctor run"};
b }i

o [f a member is initialized by both an in-class initializer and a constructor, only the constructor's
initialization is done (it “overrides” the default). So we can simplify further:

% |class A { public: int a =
A0 {}
Alint a_val): alaval) { }
AD @) b(gT T T 1

private: HashingFunction h_algo{"MDS");

std::string s{"Ctor run"};

. 9Cwe B i S

So, this is a great advantage because you may have multiple constructors, as we have just seen in
the delegating constructor, which initialize you can have multiple constructors, as you have just
seen in the delegating constructor case, that initialize the same data member with the same value.
So, here is an example of a class where each of these three constructors initialized with the same
value. It is difficult to write it repeatedly without making mistake and a lot of code messes.

Instead, what you can now do is you can write it simply along with the data member declaration
that h_algo has an initial value which is within quotes MD5 and so on. So, what will happen in

the constructor, once you write this in the constructor, if you are not initializing that variable or

that data member, that data member will get the initialization from this in-class member
initializer.

Now, here, so this, these were taken care of. So, all that I am left with is a and b. And then again
| see thatais 7, b is 5 in two cases. But there are cases where they are different. These are cases
where they are different. Not, everywhere they are same unlike h_algo. So, what | do, | put a
default initialization of 7 and 5, because they are more frequently occurring. So, with that, |
would not need to specify anything here. But while I define this constructor I would not need to

specify this. But | will still need to specify what is the value of a.

So, now, there are two initializations available one which is in-class member initial value, which
is 7, and one is a_val which the constructor is saying. The rule is whatever the constructor says
will prevail. And with that, you can see this whole mess of code that you have here now becomes
so simple, so readable, so maintainable and so on. So, in-member initialization is a great feature

to use.

(Refer Slide Time: 27:46)

R EEE B

Eﬁ} Inheriting Constructors

Inheriting Constructors

Sources.

@ |nherited constructors, isocpp.org
® An Overview of the New C C4411/14), Scott Meyers Training Courses

Programming in Madern C+4-+ Partha Pratim Das M2

The next is about inheriting constructors.

(Refer Slide Time: 27:53)

pPRs ANl te .

[ﬁi Inheriting Constructors

struct B { yoid f(doyble); }:

A member of a base class is not in the same

scope as a member of a derived class:

fror S€ into i "‘1’ ‘.4. i
struct B { void f(double); };
str B

struct D : B {
using B::f; B
void f(int); void f(4nt];) v £()
i S }i
Bb; b.1(4.5); Bb; b.1(4.5);
£(int) v ! D: :f(double) « B::f(double)
Dd; d.1(4.5); Dd; d.2(4.5);

o Stroustrup has said that “Little more than a historical accident prevents using this to
work for a constructor as well as for an ordinary member function”

. provides that facility to life a base class constructor into the derived class

o We present an illustrative example for various svenarios

You know about inheriting member functions and you know that a base, a derived class will
inherit the member functions of the base class. But the moment you declare a member functions
in the derived class by the same name, the base class member function will get delete. So, here
you have a f() here double and the moment you define it in the derived class you have f() of int
then f() of double is also hidden.

We know that by using B::f, we can make the member function of the base available here as well
that is inheriting explicitly from the base without being hidden. So, now, D has two f() functions.

But this entire thing applies only to ordinary member functions not to the constructor.

(Refer Slide Time: 28:57)

r:‘" L B |

L“ Inheriting Constructors

#include <iostrean>
finclude <string>

class B { public:
B({ std::cout <« "B::B() *; }

B({nt) { std::cout << "B::B(int) *; }
void (int) { std::cout << "B::f(int) *; }
b
class D : public B { public: L
using B::f; 111t B::f into D’a scope == works in and
void f(string) { std::cout << "D::f(string) *; } T ¢ ou over t

void {(int)

using B::B; 111t) == nev in C+ =~ Inberiting uctors
causes implicit declaration of D::D() (or D::D(int)), which, if used, calls B::B() (or B::B(int))
D(conspstringk) { std::cout << "D::D(string) *; } L v over A truct
D()m(o) { std::cout << "D::D(int) *; } refer thi ‘ tructor to B::B(fat)
b
int sain() {
B b(6); std::cout << std:iendl; // B

D d; std::cout << std:iendl; // B t D::D()
T2 std::cout << std::endl; // B::
D d2("ppd"); std::cout << std:iendl; // B
b.1(3); std::cout << std::endl; // B::
d1.2(1); std:icout << std::endl; D
d2,1(%cd"); std::cout << std::endl; // D ing)
Cee] |

L

Eﬁé} Inheriting Constructors

#include <iostrean>
finclude <string>

class B { public:

B() { std::cout << "B::B() *; }
B(int) { std::cout << "B::B(int) *; }
void f(int) { std:icout << "B::f(int)

class D : public B { public:
using B:if;
void f(string)
void {(int)
using B::B;

cnu:c£
D(const Str

H
f to B::f(int)

alls B::B() (or B::B(int))

ingk) { std: " ey
"} rofer thi od tructor to B::B(int)

{ std::cout
1nt sain() {
B b(6); std::cout << std:iendl;
Dd; std: cout << std::endl; D::D()
D d1(2); std::cout << std:iendl;
D d2("ppd*); std:icout << std:iendl;
b.1(3); std::cout << std::endl;

1icout << std::endl;
ticout << std::endl;

(/] . 1 ot

po2ea4n

[ﬂi} Inheriting Constructors

#include <iostrean>
finclude <string>

cjass B { public:
B() { std::cout << "B::B() *; }

B(int) { std::cout << "B::B(int) *; }
void (int) { std::cout << "B::f(int) *; }

class D : public B { public:
using B::f; 1if¢ B::f into D’a scop
void f(string) { std;:cout <« *
void f(int) { st << "Dl
using B::B;
Causes 1o cit declar

[D(con:t stringk) { std::cout << "D::Di

de £ to Bi:f(int)
ors
B::B() (or B::B(int))

D(int): B(0) { std::cout << "D::D(int) *; } for L tructor to B::B(int)
LY
{nt sain() {

B b(6); std::cout << std::endl;

Dd; std::cout << std::endl; D::D()

D d1(2); std::cout << std:iendl;

D d2("ppd*); std::cout << std::endl;

b.1(3); std::cout << std::endl;

d1.4(1); std::cout << std:iendl;

d2.1("cd"); std::cout << std::endl;] ring)
R] m .

What C++11 has done, it has simply allowed that to be also be present. So, if this has two
constructors and if 1 have not given any constructor here, then if | do say D d that is | want to do
a default construction what will happen. It will do the construction by the default constructor of
the base. This is fine. Now, suppose | have provided, | have not provided this, but I provided
this, so what will it do? It will hide the default constructor of D. It will hide the default
constructor of D and we will say that there is no constructor and because there is only one

constructor given. So, this problem was not directly solvable in C++03.

So, now what you can do is you can say using B::f, so which means that these two that is a
default constructor of D and a default construct, and a parameterized constructor of D with int is
available at this point, then it depends on what you, how you override it, how you overload it,

and that will take the effect. So, that is the inheriting of constructors.

(Refer Slide Time: 30:37)

[ﬁi Inheriting Constructors

L N O |

“dte

class B:
class D:
ng | using B::B; using B::B;
Calls D(const stringk); D(const smny); Dlconst stringk);
DUIne): B(0); D(int): B(0);
Pohleon bshdhid
B b(5) B::B(1int)
D d; :B B::B(0)
D d1(2); rror D(1in error; D::DlInt) B::B(int B::B(int) D::D(int)
Faﬂ'ppd'): ervor: D::D(const char(4)) B::B() D::D(string) | B::B() D::D(string)
B::B(int) hidden B::B(int) hidden D exposes B::B's Overloads
fng B::f using B::f; using B::f;
Calls void f(string); void f(string); void f(string);
4 £(int d £({nt void f(int);
b.£(3); B::t B::
da1.1(1); error: D::f(int) B::f]
d2.2("cd"); | error: D::f(const chare) D::f ing) D::t(s g)
D inherits B::f(int) B::f(int) hidden D exposes B::f(int) Overload + Override
4-¢ 0B 1 W

class B:

L B T

Inheriting Constructors

¢2e .

class D:
gk using B::B* using B::8;
Calls D(const stringk); D(const stringt); D(const stringk);
T D(int): B(0); D(int): B(0);
—_———
B b(8); B::B(int) B::B(int
J error: D::D() B::B() B::B()
arror: D::D B::B(4at) D::D(int)
B::B() Di:D(atring) | B::B() D::D(string)
B::B(int) hidden D exposes B::B's Overloads

using B::f;

using B::f;

Calls void (lﬂ'.nngj; void f(string); void f(string);
4 ¢(4nt 4 {({nt void f(int);
b.£(3); B::1(1at) B::f(int)
41.1(1); error: D::f(int) B::f(int D::f(int)
d2.1("cd"); | error: D::f(const chare) D::f(string) D::f(string)
D inherits B::f(int) B::f(int) hidden D exposes B::f(int) Overload + Override
€e+ec oo I e

Here | have made, again, that principle of single slide take back. Here | have made a single slide
where | show that with or without using and with different combinations of which function is
available or which constructor is made available, what will be the basic effect try to go through

each one entry for this and get comfortable with the inheriting constructors.

For example, if you are using this, that is if you inherit, you have defined a constructor with
string, but you are trying to do a default construction. Then it will not give you a compilation
error like C++03 without this is a compilation error, because there is no default constructor, but

here the default constructor of B will be used.

But if you have provided similarly for this say for D, here it is a parameterized construction. So,
look at this, a parameterized construction. So, if you have provided something some constructor
then you will not be able to compile this because there is no constructor. If you inherit from B,
then the constructor, parameterized constructor of B taking int will be used. If you overload that,
override that in a way by providing a constructor in D of taking a parameter int and then use the
base class constructor you can see that that constructor will be used. So, this is what you gain by

providing int, the inheriting the construction, which is what was not available in C++03.

(Refer Slide Time: 32:49)

PP ANt BN

Eé} Inheriting Constructors: Member Titialization in Derive

o Inheriting constructors into classes with data members risky. Consider a base class B:

class B { public:
explicit B(int);
}i

o Derive a class D with data members:

Default Initialization In-class Initialization
class D: public B { class D: public B {
public: public:
using B::B; nherits B::B(int) using B::B; nherits B::B(int)
private: private:
std::ul6string name; std::ulbstring name = "Uninitialized";
int X, ¥; int x=0,y=0;
; b
D d(10); iles, but D d(10); // d.name
d.name fefault-initialized, and d.x ==d.y
d.x and d.y are

o Use in-class member initialization when inheriting constructor/s

Programming In Modern C 4+ Partha Pratim Das M2

So, inherited constructors are something which is very, very important, but you have to be
careful if it has, if the derived class has data members, then you may be in for surprise because
your inherited constructor obviously will not construct the data members of derived class
because inherited constructor is of the base class. So, you have to use proper in-class member

initialization to make sure that your derived class data members are properly initialized.

(Refer Slide Time: 33:24)

pPPRS AN Lo N

[ﬁi Override Controls: override & f%nal

de, isocpp.org
al, isocpp.org
v (C4411/14), Scott Meyers Training Courses

s In C+ v, goeksforgeeks org
f 2020
Andrzej's C++ blog, 2012
| use final In virtual method declaration?, stackexchange.com

Override Controls: override & final

Programming In Modern C+4-+ Partha Pratim Doy M 27

PP and e U @

{ﬁj Override Controls: override

struct B {
virtual void £();
virtual void g() const; or j const
virtual void h(char);
void k(); t virtual
),

A function in a derived class overrides a function ~ May be confusing and problematic if a compiler
in a base class by scoping (without annotation): does not warn against suspicious code:

struct D ¢ B\V struct D : B

void £(); rriden Bi:f() void £() override;

void g(); v/o const void g() override! // error

virtual void h(char); des B::h() virtual void h(char);

void k(); B::k() t virtual) void k() override; // error: B::k() is not virtual
b b

¢ Did the user mean to override B: :g()? (almost certainly yes)

¢ Did the user mean to override B: :h(char)? (probably not because of the redundant explicit virtual)
o Did the user mean to override B::k()7 (probably, but that's not possible)

¢ Note

0 A declaration marked override is only valid if the 1 function to override. The problem with h()
may not be caught (because it is correct by the language definition) but it is easily diagnosed
0 override is only a contextual keyword, so you can still use it as an identifier (not recommended)

o il] ety

PP anste .

[ﬂ@ Override Controls: override

struct B {
virtual void £();

yirtual v nst; I L const ne

virtual void h(char);
void k(); t virtual

b
A function in a derived class overrides a function May be confusing and problematic if a compiler
in a base class by scoping (without annotation). does not warn against suspicious code:

struct D : B { struct D : B {

void £(); rrides B::1() void £() override; rides B::2()
void g(); v/o const void g() override; // error: wrong type
vITrual void h(char); B::h() Tirtual void Blchar); t B:*h()

void k(); B::k() virtual) void k() override; // error: B::k() is not virtual
b b
¢ Did the user mean to override B::g()? (almost certainly yes)
o Did the user mean to override B: :h(chaxr)? (probably not because of the redundant explicit virtual)
o Did the user mean to override B::k()7 (probably, but that's not possible)
o Note:
0 A declaration marked override is only valid if there is a funct e, The problem with h()
may not be caught (because it is correct by the language definition) but it is easily diagnosed
0 override is only a contextual keyword, so you can still use it as an identifier (not recommended)

¢ e O | O e |

Overrides are also given some more controls. This is this is something which does not add
anything specific but it is more for clarity. For example, as you inherit functions for override like
you have a function f() in the base class which is virtual and if you write it again here, you
override, here in the override feature what you say is you explicitly say that you override. It does
not do anything else. It does not give you any other functionality, but it just makes it easier to

understand.

For example, here just the difference in meaning you can see that here you have a function g(),
here you have written this. Now, in the g virtual so first you will tend to think that this override,
because it is g() function is there, but it is actually not because what you inherit is not g() but g()
which is constant. But what you are writing here is a g() which is non-cont. Therefore, there is a

overload. This is a different, this is without the const.

So, if you write override, now the complier will be able to help you on the small slip. The
complier will be able to tell you look this is not a override, because g() is not constant, whereas
your parent class member g ()is a const function. So, it will refuse to combine because of the
wrong type. So, these are the kind of advantages you can get by using override. But override as
such is, this is a keyword which is new concept being added that is the contextual keyword in the
sense that you can still, unlike other keywords, you can still keep on using override as a variable
which is not advisable to do that. But only when it is used at this place, it is, it behaves like a

keywords.

(Refer Slide Time: 35:32)

pPRs ANt

[ﬁ% Override Controls: final

o Sometimes, a programmer wants to prevent a virtual function from being overridden. This can be
achieved by adding the specifier £inal. For example

struct B {
virtual void £() const final;
virtual void g();
b
struct D : B
void £() const; // error: D::f attempta to override {inal B::f
void g();
b
¢ Why should we use final in C++7?
0 If it is performance (inlining) we want or we simply never want to override, it is typically better not
to define a function to be virtual
0 This is in contrast to Java where all functions are virtual and final provides better performance
o |t should be used sparingly with care because in a way it contradicts the polymorphic design and in
C4-+ there are other ways to circumvent the required issues in a hierarchy
¢ Note
0 The final keyword applies to member f
class X final { /* UBH
I ven? the type X to be inherited from
0 final is only a contextual keyword, so you can still use it as an identifier (not recommended)

L o, S |

.

The other override control that has been added is feature called final which is similar to what
Java has but very different from what Java has. So, if you have a virtual function then you can
say it is final. If you do that, then any specialization of that class will not be able to override this
particular virtual function. Similarly, a class can be said to be final. You can say that a class is

final then you will not be able to derive from that class.

Now, it is still a lot of debate as to whether this feature has any specific value in C++, because in
Java final has a different requirement, because in Java all functions are virtual and therefore there
is a overhead of calling those functions. In C++ first of all the overhead of calling a virtual

function is extremely minimal. But more importantly C++ does have non-virtual functions.

So, in java you need to use final for those reasons. In C++11 or in C++ do you really need that.
The debate is still going on. And after a lot of study of the recent material also | failed to produce
here a meaningful example of where final really adds value in terms of programming or

semantics, so we know that it is there, but use it only if you are convinced.

(Refer Slide Time: 37:06)

LR B BN N

EE explicit Conversion Operators

explicit Conversion Operators

Sources.

® Explicit 15, Isocpp.org

® An Ove C++11/14), Scott Meyers Training Courses

Programming in Moder C+-+ Farths Pratim Do M %

LA O

{ﬁi} explicit Conversion Operators

RAnE RN R ’

#include <fostrean>
#include <string>

using namespace std;
struct ¥ { explicit Y(const stringk) { cout << "Y(string)* <«< ' '; } };

stryct.
plicd) X(int §) { cout << *X(int)" << ' '; }
exptreft operator int() const { cout << "X::operator int()" << ' '; return 0; }

explicit operator Y() const { cout << "X::operator Y()" <<’ '; return Y("ppd*); }

void fx(const X&) { cout << *fx()* <«< ' '; } or 1 for ’ X

void f1(int) { cout <« *f1()* << ' ; } or function for ‘ int
void fy(const Y&) { cout << *fy()* << ' ; } r ersion to Y

fnt madn() {dnt 4 {6 }; Xx {1} // X(int)
.%;); X(int) fx(): error with explicit X::X(iat)
xt8tatic_cast<X>(1)); X(int) fx(
Pﬁ. .

fi(static cast<int>(x));
1y(x);
ty(atatic_cast<>(x));

fy(): error with explicit X::operator Y()

explicit constructors have been available in
explicit conversion operators are now available in ¢
This makes conversion more type safe in

For casting between unrelated types recap Module 26 & Module 33
g 4F) | R e

PPRL AN L0

[ﬁ] explicit Conversion Operators

#include <iostrean>
#include <string>
using namespace std;
struct ¥ { explicit Y(comst stringk) { cout <¢ "Y(string)* << ' '; } };
struct X {
explicit X(int 1) { cout << *X(int)" <« ' ';)
explicit operator int() const { cout << "X::operator int()" << ' '; return 0; }
explITIT Sperator Y() const { cout << "X::operator Y()" << * '; return Y("ppd*); }

b

void fx(const X&) { cout << "fx()* <« ' '; } f for L X
void f1(int) { cout <« *t1()* «< ' ; } function { ‘ int
vold fy(const Y&) { cout << *fy()" << ' '; } f r ersion to Y

int madn() {dnt 4 {6 }i Xx {1} // X(int)

1x(1); X(int) fx(): error with explicit X::X(int)

{x(static_cast<X>(1)); X(int) fx(

Qg_)_; X (): error vith explicit X::operator iat()
f2(static cast<int>(x)); // X

Y& X): error with explicit X::operator Y()
fy(static_cast<Y>(x)); X

}

o explicit constructors have been available in
o explicit conversion operators are now available in
o This makes conversion more type safe in

o For casting between unrelated types recap Module 26 & Module 33
¢ e 08 i RSt

Finally, in terms of type casting, we have seen a lot of that in Module 26 and Module 33, in
terms of type casting we have seen that type can be cast by having a constructor or having a type
cast operator. In terms of the constructor we can make the constructor explicit to say that implicit
conversion is not allowed. But in terms of the type cast operator no such feature was there which

is convert by type cast operator, it will be implicitly, explicitly always it will be permitted.

So, this is a basic difference between, if you have a fx() we expect the reference to a constant
reference to an X object and X as a constructor like this, this is the implicit instantiation this is
the explicit instantiation. If this is explicit then this will not compile. But the similar thing you
cannot do in terms of the cast operator. So, if you expect an int and pass an X either way then in

C++03 both of them will always compile. You cannot control that it has to be explicit.

So, what you get in C++11 is you get to use the explicit keyword if you want in terms of the cast
operator so that you can invalidate this use. You can say that only casting will have to be only
explicit. So, that is a semantics that it supports, very simple in that way to use and a nice

addition.

(Refer Slide Time: 38:47)

pPRs QN te . RN

[ﬂi} explicit Conversion Operators: bool

o explicit operator bool functions treated specially
o Implicit use okay when safe (that is, in contextual conversions):

#include <iostrean>
using namespace std;

class X { int eptr; public:
explicit X(int eptr = nullptr): ptriptr) { }
explicit operator bool() const { cout << “X::operator bool()* << ' '; return nullptr == ptr; }

int main() { X x1; X x2(nev int(5));

it (x1) cout << "NULL" << endl; X::operator bool() NULL
cout << (x27 "NULL": "not-NULL') << endl; X::operator bool() not-NULL
n textua t { explicit
cout << (x1 == x27 "Equal": "not-Equal®) << endl;
explicit: x1 X2 are tl L bool u bool: ioperatorss
X::operator bool() X::operator bool() not-Equal
th explicit t fx1 X2 to bool v 1 he operator=s f
error: no match for operatorss (operand types are X and X
}
Programming In Modern C 4.+ Partha Pratim Das M2

And here are some examples of how to use that particularly in the context of bool where it

behaves with a different use.

(Refer Slide Time: 38:57)

L

[ﬁi Module Summary

o Introducing several class features in C++11 with examples

o Explained how these features enhance OOP, generic programming, readability,
type-safety, and performance in C++11

Programming In Modern C 4+ Partha Pratien Doy M4 3y

So, in this module we have discussed several class features of C++11 with examples that
enhance the object oriented generic programming features, readability, type safety and
performance of the language. Thank you very much for the attention and we will meet in the next
module.

