
Programming in Modern C++

Professor. Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 52

C++11 and beyond: General Features: Part 7

Lambda in C++/1

Welcome to Programming in Modern C++ we are in week 11. And I am going to discuss module

52.

(Refer Slide Time: 00:36)

In the last module, we have concluded the discussions on rvalue references as universal

reference, we have talked about the perfect forwarding solution to the forwarding problem using

std::forward and discussed certain points about move as an optimization of copy.

(Refer Slide Time: 00:59)

In the current module we will introduce another very very important general feature of C++11

that is to understand Lambda expressions in C++ that is in C++11 and specifically what are

closure objects, what are the consequences in terms of parameters and capture.

(Refer Slide Time: 01:22)

This is the outline which will be available on your left panel all the time as you know.

(Refer Slide Time: 01:29)

So, we will talk about this lambdas are nothing but unnamed functions, which sounds shocking

to start with because so far whether it is in our training in C or in terms of all that we have done

with C++ macros functions, member functions, static, non static, virtual, non virtual, operator

overloading, functors everywhere the characteristic of the function was that it had a name.

But now, we are going to talk about functions which do not have a name and that is what is been

introduced in C++11 and I have listed all the remaining all the other versions dialects of C++

also later dialects because each dialect is kind of adding something smaller big to this domain of

lambdas in C++.

(Refer Slide Time: 02:33)

So, lambdas are typically short form of lambda expression it is considered as an expression

which specifies a function object or a functor you would recall that we had discussed about

function objects, these are classes which has the function call operator overloaded this was

discussed in module 40. If you are not very clear about functors please go back and revise

module 40 because, this entire module and the next will rely heavily on the understanding of

functors per se.

Now, the primary use of a lambda is to specify a simple action to be performed by some

function. So, let us say we want to find out the remainder of a value of a number by another

number that is if you divide how much will be the remainder the modular operation which is

from int to int.

So, in terms of C++ this rem operation can be written in 2 forms, I can write a function m rem

which takes m as a parameter and uses the divisor n as a global variable from the context or I can

define a functor say remainder this I put a data member modulus mod, which is the value by

which the module operation will be done. So, the constructor sets the value of this mod which I

take from the global again I can pass it directly as well. And then I overload the function call

operator with the actual.

(Refer Slide Time: 04:55)

So, here this is the actual function computation here this is the actual function computation, so, I

overload the function call operator with this. So, if it is a function I directly call it as a function,

if it is a functor then I create an instance of the functor given the value of n to go here that is to

be set as mod. And then I call the functor which actually calls the function call operator recap off

this is what we have.

Now, with this I can write something which is known as a lambda expression. Its syntax is

somewhat very similar to function but little bit different. Let us say this is my parameter. The

way to tell the compiler that I am writing a lambda is this introducer which is a pair of square

brackets, there may be something inside, this some captured maybe inside this, some captured

may not be inside this, but this introduce that tells that lambda is going to start. Since, we do not

have a function in function, what do we have, we have the name, we have the return type, and

then we have the parameters, list of parameters and the function body for components.

(Refer Slide Time: 06:35)

So, now if you look at this name part is not there, it is an unnamed function. The parameters

come after the introducer. The introducer tells that well, I am going to create a lambda. The

return type changes position it was prefixed in the function now it (is) comes as a suffix. So, it is

a suffix return type, which you have already seen. So, the return type comes here.

And then the function body is directly here, this is what is called the lambda. And to be able to

use this I can directly invoke a function or invoke it on a value that is I can put (23) on this and I

will get a value 2, because this functor will be evaluated on 23 that is m will go as 23. Or if I

want to define it somewhere and use it later, then I can give it a name for my convenience it is

not a name of the function for the simple reason that if it is the name of the function here like

rem here, you cannot copy the name. Once, you have given a name of the function that is the

function, but here it is not so. This is like a variable which has the function object like more like

here, so, by that I can refer it.

(Refer Slide Time: 09:26)

Naturally, the variable needs say type which is something like int to int complicated. So, I do not

want to talk about that I leave it to the auto feature of C++11 to take care of it. So, this is

basically my lambda expression.

One more thing to note is in this lambda expression, there are two types of variables. One are

parameters like m, these are in the lambda language these are called bound variables whereas one

is this n which does not come as a parameter n does not come as a parameter it comes from the

context.

But to be able to evaluate the function, I need to know the value of n. So, n is not bound in the

function as parameter. So, I call it a free variable. These are terms in the lambda calculus from

where the Lambda expressions are coming, you do not have to bother about that calculus, but

just the terms.

So, if I have a free variable, then I have to specify how and where it is coming from. And that is

what is called capture that it has to capture a value to be able to use it here it is coming from the

global here what I do is in the introducer I can specify what I want to capture. Now, unless if I

just keep the specifier introducer as empty, then this lambda is not well defined, because I do not

know what is this n, I know what is this m, it is a bound variable, it is a parameter, but I do not

know what is this n. So, n needs to be captured. That is the whole idea of the lambda.

(Refer Slide Time: 10:00)

So, let us see with this introduction, let us see what all it can lead to. So, C++11 has given this

lambdas to actually define very lightweight functions which are heavily useful in variety of

contexts. So, right now, therefore, in C++11, we have 3 kinds of main callable entities one are

plain functions C and C++ all of functors C++03 Onwards and lambdas from C++11 I have just

defined again 3 versions of the same computation as a function as a functor and as a lambda and

shown that they can be used in the identical ways for the same result.

(Refer Slide Time: 10:47)

Coming to specific syntax much of it I have already discussed I have a parameter list. First, I

have a capture list with the introducer capture list may or may not be there, then I have a

parameter list I have a suffix return type and the function body this is the main structure of a

lambda expression parameter capture list is optional.

So, I may not have anything parameters are optional, so, it may not have anything, return type is

optional in the way that if it is possible, if the function body has only one return statement, which

is typical for a lambda expression, though not mandatory, but it is typically a lambda expression

will have one return statement.

So, that return expression will have a type. So, from that the compiler may be able to deduce the

type. If I want that deduced type to be the return type, then I may not provide the return type.

And if there is no return statement in the function body, then the return type is taken to be void.

So, this is the basic structure.

So, you can see that here I have a lambda expression which has no capture because there is no

free variable there is no parameter there is no bound variable, and there is no return statement.

So, it actually returns a void. So, I can directly take this entire lambda and apply it, invoke it as a

functor. And if I invoke it as a functor, it will print this message.

But since, of course, this particular lambda does not return anything, I cannot use it as a part of

another expression, because that will, there will be an error which is the same for any other

function call as well.

(Refer Slide Time: 12:45)

Here are some more examples of lambdas. I am checking a condition Boolean condition here, the

condition I am checking for 2 parameters i and j, whether j is double of i. Therefore, the return

type of this is can be inferred to be bool. So, I do not write it, there is nothing to capture because

there is no free variable. And I take this entire functor. And I just apply it on a pair of values i

and j. So, i becomes 12, j becomes 24 and this is evaluated.

You can see that this is this is actually pretty nice to do that, because if I had to do it in a in a

different way, then possibly I would have said compare 12 for 24 whereas, actually, the compare

code is very simple. So, being able to write it in situ gives me a lot of understandability easy

understandability also, besides efficiency to know exactly what is being checked what is being

compared.

Similar thing another is here, where I am trying to as a part of C out I am trying to write a

lambda where I have given the return type just as an illustration, and then I have some code to

compute return, I have to give return type here because as I said that in this case, there are

multiple return statements. So, in that case, the compiler does not try one to deduce the return

type, it would prefer the designer to provide the return type.

(Refer Slide Time: 14:34)

And the return type could be different from for example; here I have a pair of double parameters

for this lambda like applying it on 3.14 and 2.7. So, x + y will be deduced as a type double but I

want an integer. So, I put it as an integer. So, here, when this lambda evaluates, then the x will be

added to y and then the double result will be converted to int and passed back.

(Refer Slide Time: 15:03)

Now, coming to capture, there are two ways to capture as we know that there are two ways to

pass parameters to a function: call by value, call by reference, when a call by value a copy of that

value is done from the actual to the formal parameter, and you make changes to that nothing is

reflected to the actual parameters, in a call by reference, you create a reference to the actual

parameters.

So, any changes you make in the formal parameter is reflected to the actual parameter a very

similar concept exists for capture you can do captured by value. So, in the earlier case, when I

just wrote n, I am capturing by value, which says that, when this particular functor the lambda is

constructed, the value of n must be known, it will be copied and kept as a part of this lambda

object, it will be copied from the context and therefore, n must have a valid value before

initialization.

And what is important is, this capture is always taken to be as a constant parameter like if we, if I

have to compare with the with the with the value it is constant in the lambda. So, if I have

captured by value, then I cannot make changes, I cannot write something like within the body of

the lambda function that is not allowed.

(Refer Slide Time: 16:43)

The other is captured by reference. So, I am trying to, there is a variable s, and I am trying to do s

+= parameter m, you can make out from this part of the function body that what I am trying to do

is every time this lambda is called this functor is invoked, the parameter will get added to s.

So, like it says some accumulator that that I am doing. So, I need s to change s is not a parameter

of this functor. So, s is a free variable, therefore, s needs a capture and I need to change s and

want that to get reflected that is why I write it as &s. So, this becomes captured by reference.

And when I do capture by reference, it is not necessary that the particular reference variable must

have a value at that point, it is only before I use it, it must have a value because any, if it is

captured by reference then I can make changes to it, any change I make is reflected to the

variable that I have captured and any change you make to the variable will be reflected to the

lambda. So, this is captured by value and capture by reference and that is the core idea of the

entire thing.

(Refer Slide Time: 18:10)

Now, you will find in the literature that I am talking about lambda expressions all the time, but

you will find in the literature that the term more commonly used in C++ is called a closure

object. So, what is the difference, similarity or connection between a lambda expression and

closure object. It is like this -- this expression that I have written with the parameters return type,

capture variables capture mode everything is a program for the unnamed function that is called a

lambda expression.

Now, this corresponds to as I said is a function object. This corresponds therefore, it has to

correspond to a function object class. So, this actually is as if the definition of that function

object class. Now, when I instantiate it the function object gets created and that function object is

called the closure object.

Why is it called the closure object? Because in a lambda, you often have free variables which

needs to be captured to close the entire meaning of what the lambda expression has only when

you have all the free variables captured only then you have a closed lambda, which can be

evaluated. So, that is the reason this has been given the name closer object.

So, to very clearly whatever you write here is the lambda expression which is only in the

program source code, it does not exist at the runtime that gets translated into a functor class

declaration internally. And at the runtime, an instance of that class that functor object gets

instantiated created, constructed, and that object is called the functor object, that object is called

the closure object.

Now, when I do auto f, this, so this entire thing is an object, it is an object. So, if I do auto f,

initialized with an object, then what am I doing, I am actually copy constructing f that is how you

will do, you have already an object the temporary object created. So, f is actually not the closure

object, but it is a copy of the closure object, the closure object per se, what has got constructed at

this point is a temporary object.

And at the end of the statement, it gets deleted by the execution. It is like a any temporary object,

but in this, I am keeping a copy of that, and I can keep on copying it, it is a it is a, it is a as we

will see, it is a first class object, which can be copied not like a normal C function which cannot

be copied, it is a function cannot be copied, it can just be invoked, but a functor created from a

lambda expression the closure object can be freely copied. So, that copy of the closure, so, this is

something which is which is important to understand in terms of what is a lambda expression and

what is a closure object.

(Refer Slide Time: 21:56)

So, lambda expressions generate closure objects at runtime, they are temporary, they are

unnamed, and they correspond to a functor class where there are data members corresponding to

what you have captured, because you have to remember them, you have to keep referring to

them. So, you will have value members for value capture, you will have reference member for

reference capture, you will have a constructor which will construct these data members in the

appropriate way.

And the most important thing is you need to have the function call operator and this operator has

to be public. So, that it can be freely used it is inline for the purpose of optimization, because it is

already there, you have the entire thing so, it is possible to inline it always. And (it is treated) by

default it is treated like a constant function. And for this closure object type, the copy

constructor, copy assignment, operator, destructor all are defined by default by the compiler, you

do not have to write anything.

(Refer Slide Time: 23:08)

So, it is just an illustration of how the implementation might look like is I have a lambda

expression here with two free variables. So, two capture variables one is captured by value other

by reference and one parameter. So, in the main function, I have two variables, which I captured

in this check and print them.

So, when I get into the corresponding possibly the corresponding function object class, well, this

is not exactly what the compiler will do, but compiler in principle does something. Let us say it I

define a class check_f, which has for each one corresponding data members, mind you, this is

captured by value so, it is a value member, this is captured by reference so this a reference

member, then I have the constructor of it, that is to construct the function object that is to

construct the closure object.

So, it will have a value parameter and a reference parameter to set that two capture values there

could be separate, other local variables now, I do not care. And finally, the parameter of the

lambda expression is set as a parameter of the function call operator, you can see that that is

defined as const that it is constant function it can work only with constant objects and the rest of

the entire body simply comes in here.

So, if you keep this, this kind of, context in mind, then you will find it very, very easy to

understand what is going on with the with the lambda expression and closer objects, here there

are a number of examples, values for which it is done. So, when this closure object was created

ref did not have a value because it is a reference parameter, val has a value and but before

invoking the closure object, I must set a value to ref.

So, I set it to 2, I have done check(5), so, val = 0, ref = 2, param = 5 as expected, I have changed

val to 3, but it is captured by value. So, it is not expected to change it does not, but I change the

reference I can see that change coming on here coming on here.

(Refer Slide Time: 26:01)

So, this is the basic idea of the lambdas they work as first class objects. So, they can be easily

copied and this is just an illustration using a class, we will just show that what happens if in a

context you have the object of a class which you do not capture, or you captured by value, as in

here or you capture by reference as in here.

And by tracing these messages, you will be able to see the difference between captured by value

and the capture by reference if you capture by value, then naturally at the capture time a copy has

to happen when you copy the closure object, in other copy has to happen, these are all happening

for t and naturally the corresponding destroy will also have to happen whereas, if you capture by

reference, no such copies will be required. That is a simple thing.

(Refer Slide Time: 27:04)

This is for details that, formally, how does what does the syntax of the lambdas look like

everything else, we have already explained, the two things that can happen between the

parameter list and the suffix return type is you can write the keyword mutable which has certain

meaning, and you can write the exception specification.

(Refer Slide Time: 27:31)

We will look into. So, here are examples of different kind of way that you can have parameters

and you can if you follow the semantics of call by value and call by reference, you will be able to

understand all of that these very easily. The only one that I would like to mention about is here

you have a constant parameter, constant reference parameter v and you are trying to change that.

So, naturally, you get an error, which is these are all exactly same, like what happens in a normal

function or a functor.

(Refer Slide Time: 28:13)

For capture, you have two generic ones capture all stuff where you can capture a variable by

name that is either that will be value by &name that will be by reference or you can just write &

in the capture or = in the capture. In this case, if I write & in the capture, then it basically means

that all variables that need to be captured in the body of the lambda expression that is all free

variables will be captured by reference here it means that all will be captured by value and then I

can have added exceptions created to them.

So, these are the different capture rules. This is I do not expect you to learn them by heart, these

are just for your reference to see that how regularly from C++11 till C++20 the semantics of

lambda is getting enhanced by every release.

(Refer Slide Time: 29:16)

So, you have a default, all by reference, you have a default all by value, or you can specifically

list different cases of capture.

(Refer Slide Time: 29:32)

Now, here again, is a set of simple examples showing you different types of capture. Try them

out understand meanings are given by the site.

(Refer Slide Time: 29:45)

If you look at one example, say here I have a variable total_elements and I am doing a STL

algorithm we have talked about this earlier, I have a iterated here, another iterated here and the

operation is given as a lambda expression. If you create a closure object where I am doing total

elements *= i so like this is a multiplicative accumulation, that is what will happen.

Now, obviously, here the capture will have to be referenced because I am changing this. So, if I

capture is value, (this is) this will not compile, if the capture is not there also this will not

compile. So, this is these are very simple, this is just rules of basic rules that gets extended.

(Refer Slide Time: 30:37)

Similarly, here, I have a lambda as a part of a functor definition, this lambda has 3 free variables

a, b, c, which are taken from a parameter here and from the local variables of this. Now, mind

you, this will not be permitted. Why you will this not be permitted, this will not be permitted,

because when I create the corresponding class, the values that I get these are all local, so, they

will be available only at that time, they will not be available at a later point of time. So, how do I

use them without proper capture?

So, one option is if the values are either global or static, then I will be able to do this. This is a

simple consequences of the scoping rule, and so on.

(Refer Slide Time: 31:44)

And here again, there are more examples of capture that I would like you to go through and

execute and understand one more. As always, I have given a number of examples here, which

you can try out on your own.

Mutable is a concept for captured by value, suppose you have captured by value, this is default.

So, here, there is no parameters so, h is a only free variable. So, if I try to do this, if I try to

double h within the lambda expression, then certainly I will get an error because h is captured by

value and if I captured by value, I am not allowed to change it, I told earlier. So, an exception to

this can be created if I use the key word mutable, if I say it is mutable, the lambda as a whole is

mutable, then any variable which is captured by value can also be changed.

But, under the mutable condition, the changes being made in this h, and changes and this h are

different. This is not the same case as reference where they are same variable but here, because it

is captured by value, a copy of this global h has been done here. And by doing mutable, I am

allowing that to be modified, the concept is very similar to the mutable members of constant

objects.

(Refer Slide Time: 33:22)

So, here are examples of what will happen if you capture all captured default by value and make

mutable what will be the effect and if you capture by reference, what will be the effect as you

can see, in both cases, you can change h, in the first case, the original h does not change. In the

second case, the original h also has changed.

(Refer Slide Time: 33:49)

This is another nested example of mutable which I will leave for you to read, execute and

understand.

(Refer Slide Time: 33:59)

One more of this, the interesting thing about this example is this is a structure and this is a

member function and I am changing within this member function the value i, the question is, do I

need mutable here? I am changing a value which is captured by a variable which is captured by

value. The answer is no, I do not need a mutable here.

Because if I capture by default, then in the context of a class, that this pointer gets captured by

default. So, when I write i, it actually means this->i and a member function using this pointer i

can always change the data members of the class. So, here though it looks like a case of mutable

this does not get mutable, it works according to the class rules.

(Refer Slide Time: 35:05)

Here are some restrictions on capture, like, you cannot have the same variable captured twice or

you cannot capture this directly, well, these are these are changing with the as a language dialects

are moving, but these are the basic rules of exception that exist in terms of capturing in lambdas.

(Refer Slide Time: 35:37)

And finally, there are a couple of mixed examples. So, here is a capture by default by value and a

specific variable by reference and see what happens in that case.

(Refer Slide Time: 35:54)

There are a couple of different examples of default capture, nested capture, mutable capture, with

mutable and so on. So, in each case, you will study understand what is happening try to execute

in the compiler and understand the total semantics.

(Refer Slide Time: 36:14)

So, this brings us to the end of this module. In summary, we have understood the Lambda

Expressions in C++11, the basic foundation of that the closure object the parameters and the

capture. In the next module we will continue to discuss about some more features of lambdas in

C++11. Thank you for your attention and see you in the next module.

