Programming in Modern C++
Professor. Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 51
C++11 and beyond: General Features : Part 6:
Rvalue & Perfect Forwarding

Welcome to programming in Modern C++. We are in week 11. And | am going to start

discussing module 51.

(Refer Slide Time: 00:38)

Fal
e Weekly Recap
i

o Introduced several C+411 general features
0 eto | decitype
o suffix return type
o Initializer List
Uniferm Intialization
o Range for Statement
O constexpr
0 noextept
O nulptr
o Inlee namespace
0 Userddefimed Literals
o Raw String Laerals
o Understood the difference betwesn Copying & Moving and Lvalue & Rvalue
o Learnt the advantages of Move in C++11 using Rvakoe Reference, Move Semantics, and Copy
Move Constructor | Assignment
o Learnt to mplement move semantics in UDTs using 2td: :pove and to implement std: :3ove
o Studied a project to code move-enabled UDTs

Vgt r— @ Medvre

In the last week, we have started talking about the modern part of C++ covering C++11

primarily, and there are several general features that we have covered which are listed here.

Then important general feature that we have discussed is the difference between copying and
moving particularly, what is the difference between Lvalue and Rvalue and what is move
semantics and how the move in C++ can take advantage of the move semantics to have better

performance we have seen std::move function also in the standard library.

(Refer Slide Time: 01:25)

o To understand how Rvalue Reference works as a Universal Reference under template
type deduction

¢ To understand the problem of forwarding of parameters under template type deduction

o To learn how Universal Reference and std: : forward can work for perfect forwarding
of parameters under template type deduction

o To understand the implementatico of =td: : forvard

o To understand how Move is an optimization of Copy

We will continue on that. In the current module we will try to understand how Rvalue reference
works as a universal reference under template type deduction and the problem that arises due to
forwarding of parameters known as forwarding problem that happens in the template type
deduction we try to learn how universal reference and std::forward function can work for perfect
forwarding of parameters. We will understand the implementation of std::forward and
understand how move is an optimization of the copy what is a solution that C++11 is actually

giving us.

(Refer Slide Time: 02:13)

Prgrommey = Vdves

. al Feferer t iocpp g, 2042
® A f New (1}, Scont Meyers Traleing Courses

® Urderstandeg Mose Semarocs and Perfect Forwarting: 55
fect Formardng. Drew Carepbell 2004

Universal References

Prgrommy » Modvrs

So, this is the outline which will be available on the left. So, starting with discussion on
Universal Reference, let me quickly specifically recap a few key concepts that we did in the last

module.

(Refer Slide Time: 03:29)

PPl te . v

¢ Collapsing in Templates: Recap (Module 50)

¢ 1 s initially instantiated as
vold f(lask & paras)
o C++03's reference-collapsing rule sy
B W
¢ S0, after reference collapsing, £'s instantiation is actually: void f{inth paras)
o C4++11's rules take rvalue references into account
oTk T
o Tk & Tk
O Tk Ak Té
O Tek &k ok

o Summary

One is of Reference Collapsing, that is, we observed that when we use the template in terms of
C++, often we will have multiple references coming for a for a particular type. So, in C++03,
there there was one reference collapsing rule so that you have T reference and another reference
then this will be collapsed to a single reference. So, reference to reference does not make a sense

its reference to the original.

So, this is what it is not only the in this kind of a template when we try to do an invocation and
binding using this function f then T becomes int& and therefore we have in total we have the

function having a type, T&& which is collapsed to the T&.

(Refer Slide Time: 04:06)

r""‘ brlsanste.
iﬁi Reference Collapsing in Templates:

ve

Recap (Module 50)

o In C4403, given
texplate<typenase T> void £(Tk paras);
12t x;
f<izth>(x}; T iztk
o {5 initially instantiated a5
vold f(lazk & paras)
o C4++03's reference-colapsing rule saps
cTEoNn
So, after reference collapsing, £'s instantiation is actually: void f{inth paras)
C++11's rules take rvalue references into account

e - -

OThR TR + |
oTHE & o Th
LOTh AR =T
O Tek Bk T
o Sumemary
& Tk
0 b = ThE
| o - i |

In C++11 We have Rvalue references. So, there are 4 possibilities 4 possible combinations and
we learned the collapsing rule that reference collapsing involving any Lvalue reference will
always collapse to Lvalue reference and reference collapsing when it involves only Rvalue
reference, it will collapse to Rvalue reference. So, this is the only rule where Rvalue and Rvalue
will collapse to Rvalue otherwise, it will always be Lvalue. So, we need to keep this in mind and

this will be typically used here.

(Refer Slide Time: 04:13)

PPt bAndl te . L\ ©

P - »
-’ﬁi Tik Parameter Deduction in Templates: Recap (Module 50)

o Function temglates with a TRE parameter need not generate functions taking a TRE parameter)

v

tesplate<typenase T> void £(Tht perma);

¢ T's deduced type depends on what Is passed to param

o Lvalue = T is a0 lvalue reference (TR)

o Rualue «» T s 3 non-reference (T)

® In conjunction with reference collapsing

[1at x;

2(x) oale st ' 2t

£(x) el stk m‘:ﬁ jark
(108 val it (13T stkk
— —_— —
Tlec vt; typeda > IV

) Tec creataTV
fivt); 1valuoe TVock> (TVeck &k TVeck
flcraateTVec()) roalow TVec: (TVeckt TVeck

-

¢ € o

Now, if we look at the T&& parameter deduction in templates, particularly if I have an Rvalue

reference parameter in the template, then we know that this is, this will go through the template
type deduction and the in terms of template type deduction, what it does, when it actually a
parameter is passed, whether to this template f, this definition of the template f, if I pass if I call

it with f(x), where x is an Lvalue, then actually an Lvalue will be passed.

So, this is a Lvalue reference and you have the Rvalue reference. So, due to collapsing this will
become an Lvalue reference, the same thing will happen if | pass an Rvalue reference. So, I will
have an Rvalue reference and that will collapse to Rvalue reference only similar thing this is for

plain old data type, the same thing will happen for the user defined type.

So, we get a very specific feature that if the template parameter is an Rvalue reference, then
when Lvalue is passed to that in place of that parameter, then it will become an Lvalue reference
if an Rvalue is passed to that parameter, then it will become a non reference or a Rvalue

reference.

(Refer Slide Time: 05:53)

.’%‘. Universal Ref e
tldd: Universal References
==

L

o TkR really is 3 magical reference type! A
o For value arguments, Th& becomes Tk => lvalues can bind !)
o Fer realue arguments, TRE remains TRR > rvalues can b:m!J
o For const/volatile arguments, const/volatile becomes part of T
o Tk parameters can bind anything
o Two conceptual meanings for Thi syntax
o Rvalue reference. Binds rvalues only

void {{Vidgetk paras);
————m

o Universal reference, Binds lvalies and rvalues
eouuiaa b aanit

tesplate<typasase T>
vosd 1{TRE paran)|

pdeen = gopncs f
Really an rvalues reference i 2 reference-cofapsing context

¢ +€] E e |

So, this is a very nice property of the Rvalue reference template parameter which is kind of
referred to often as a magical reference type so, that for Rvalue arguments, it binds with Rvalues
for Lvalue arguments it binds with Lvalues. So, what we get if we summarize that if | have a
plain function with Rvalue reference, then the calls to this function will bind only with Rvalue

references that is non constant Rvalues.

Whereas, if we have a universal reference, what is universal reference, if we have the Rvalue
reference in the context of a template parameter, then because of this property of reference
collapsing, if | pass an Lvalue for this template, then it will behave like an Lvalue reference. If |
pass an Rvalue, then it will behave like an Rvalue reference. So, it is kind of takes two different
contexts. So, and that is the reason this is called a universal reference that it is adapting itself to
the type of argument whether it is an Lvalue argument or it is an Rvalue argument according to
that, the binding will become appropriately different.

(Refer Slide Time: 07:24)

o auto type deduction = template type deduction, so autokk variables are 3kso universal
references

i ealeVall); I

jated

—

12t

—_—

o Note that decltype() &k does not behave like a universal references as it does not use
template type deduction

C o€ 0 1 |

In this connection, we also note that the auto feature that we had studied earlier that auto we
mentioned that it follows the type deduction which is of templates type deduction. So, if | have
auto&&, that is auto of Rvalue reference type, then those are also those will also behave like the

universal reference.

So, here we have a Lvalue generated a function call which will give a value and here we have a
variable which is an Lvalue. So, if | initialize the auto variable v1 with calcVal, which is an
Rvalue, so, the type deduced by the auto&& going by the template type deduction will be int&&,
that is it will deduce a Rvalue reference type whereas if | initialize it with a Lvalue, then it will
deduce a Lvalue reference due to reference collapsing because auto follows the type deduction of

the templates. So, auto&& also behaves like the universal reference.

(Refer Slide Time: 08:48)

o auto type deduction = template type deduction, so autok variables are 3o universal
references

ot ealeVall);

1at x;
wtekt vi o= caleVall), EL2 1 1
MRk v2 - X; fatd
o Note that decltype(fk!s\ic—:s not behaye like a universal references as it does not use

template type ancm\/‘—’\‘\

N

A

Y \ 'I

decitypelcalc¥al()) ¥3; . int {
——tnd, -
| 3 o = |

But, if we try to do something equivalent using say a decltype, we have seen decltype | can take
different type of each of these and then I in style of the auto if I try to put 2 ampersand, it will not
behave like a universal reference because decltype as you know always extracts the actual type
devoid of the references, it gets the actual type so, whether it is an Lvalue parameter or it is an
whether it is an Rvalue parameter or it is an Lvalue parameter, the type deduced by decltype will

be just the int.

Therefore, if 1 use two ampersand after this, it will both become Rvalue reference it will not
behave like a universal reference. So, this is the key behavior that is important to understand for

the universal references.

(Refer Slide Time: 09:43)

quste .

r""‘ N
tﬁi Rvalue References vs. Universal Refe

o Read code carefully to distinguich them

& syntax: Oceus after 3 POD o UDT for Rvalue References, but after

type variable T for Universal References \
¢ for T for Universal References w}l'.\' | ,‘
o Behayi {ifferent /'-\/ |\:\w'.’?

s bind only rvalues

bind lvaluss and ralues /

~ that is, may become either Tk or Tk, depending on initislizer

o Consider 814 :vectar
tasplatedclaes T, claes Allecatorsallocator<T»>
class vecter { public: ...

vold push back(const Tk x);

void pesh back(Tak x);

tesplatecclans. .. Args?

vold emplace btack{Azgakd, ., args);

-
-
&

=
A
!
L

o Read code carefully to distinguich them
& syntax: Occus after 3 POD or UDT for Rvalue References, but after
type variable T for Universal References
for T for Universal References

s bind only rvalues
bind lvaluss and ralues
~ that is, may become either Tk or TR, depending on initislizer
o Consider 8td: :vector

tasplatedcliaes T, clags Allecatorsallocator<T»>

class vector { public:
4 4
: -~
class.. -2
vold eaplace back{Azgabh, ., args);
B
¢ g o i |

Universal and rvalue references are can be compared very easily both use the same && syntax,
and it works as an Rvalue reference if it occurs after a plain old data type or a user defined type
for Rvalue reference, but for a variable type T in a template && will work as a universal
reference and there Rvalues will bind with Rvalue reference will bind with Rvalues and Lvalue
and universal reference will bind with Lvalues and Rvalues. So, this is for just a plain definition.

And this is for a template type definition.

So, if | write int&& in a function, then this will bind as a Rvalue reference, but when | write

T&& in a template situation, and then the template is invoked, then it will behave like a

universal reference. Some more examples are given here from the standard library like vector if
you do push_back ampersand that is how it is defined. So, this is a lvalue reference, there is a
overload, which is an rvalue reference, whereas, emplace_back is a universal reference because it

is templatized.

(Refer Slide Time: 11:25)

® Az Dpsrview of the New 4], Scott Meyers Tralning Courses

O Porfect | 3. moderrescpo com. Y18
® lrderstandieg Mose Semaetics and Perfect Fornarting: 75
fect For Drew Carepbeil. 2004

Perfect Forwarding

Prgromy = Modvrs Fa®i e L

So, let us with this knowledge, let us move on to the next big problem that rvalue reference
solves the first problem that it solved is that of move semantics and we have learned about it

pretty well.

(Refer Slide Time: 11:39)

T
L + Perfect Forwarding
==

o Goal: one functice that does the right thing
o Copies lvalue args
o Moves rvalue args
o Solution i a perfect forwarding function
o Templatized function forwarding Tk params to members
o What is Perfect Forwarding?
s Perfect forwarding allows 3 template function that accepts a set of arguments to
forward these arguments to another function whilst retaining the halue or rvalue
nature of the ceiginal function arguments

o Let us check an example

[S SR | L e |

The next problem, as it is known, it is called the Perfect Forwarding problem. The perfect
forwarding problem is arises when in a template function, | want to call another function and
pass the parameters | have a template function and | want to call another function from that
template function passing the parameters that the template function has received. So, this is what
is called the parameter forwarding. So, you will receive parameters and you are forwarding it to

another function.

Now, when you do this forwarding process, what you want is that the Ivalue arguments should be
should work as copies and rvalue arguments should work as move this property should remain so
that the move semantics that we have created so, with so, much of care can be carried forward to
all kinds of function calls.

(Refer Slide Time: 12:46)
'rv--" L B /0..._}‘\

+ Perfect Forwarding Example: (

Flazlsde Clastrmed
class Dwra [dmr &) peblie: Deval): 1003 {) |i

vold glecant Seak) (endi-coen <¢ "ioak by ff) Y
*iotkk i l_' LIRS |

4. jcoun << "Datal ie h* << snd:ieedl;)
std:cout <€ *Datall io A << std:iaedl;) tvalas

Rvalue
® Lvalie arg passed to p t Datak) receives Lyalue
o Roplue arg passd 1o 5

L S

MDarakh) receives Lvals

=

L L A /

ng Example: (

7 —
: s+ Pertect Forwardi
|

Fiaciste lsstreed

/.:.m Dara (1m &) pebdlie: Denal): 1

e i 1
vold plecast feak] (sndiccoet <C "Itk &g " <% %) Ivalus
/.')AI[inead) { otdiicoon < “fonhh b g" <% Y) j
/ s
/\'ull dcoast Datad) | s1d:icout << "Tatal Ip b* << snd:ieadd;) Yvalus \
wold b{Detadd) { snd:cout <¢ "Datald o A* << std:ieedl;) rvalae I
/ 3

tetk ta @ Dasad in b

.
F =

L

fé‘ Perfect Forwarding E
v, Perfect Forwarding Example: (
==

q

Fiaclsde satrmer
class Dwta { A &) pedlie: D

vold plecoat jeak] (@
vold glinuid)

vold lconat Detad) { s1d:icout << "Datal ie h* << sndiiesdl; |} Ivalue
i
vold b{luiadl) { sndeicoon <¢ *Databl 3o A" <¢ std:ieedl;) rvalae

templateciypouase TL "'.'.',mnc ™
void ¢ 1, Toek p2l | 1valus 3z rvalue
_‘;1 : Lyalse M Ivalue 1x ¢

alie 124 Ivalue 1

it d \
Ivalae, lvalee stk 1a g Dasad iz /
Lae, lvalue itk in g Dezak 12 b
valme, valme stk fa g fetad iz b
té:imaneidl) rvalae, roalee fatk 1o g Datab iz b

Lvalie arg passed to pl = gloonst Lath) recmves Lyslue
Ryalue arg passed to pl o glintak) seceives Lvalue

alie arg passed to 11
Seplus arg passad 10 22 = h(Datakl) receives Lvalse

2(const Datak) recerves Lvalue

K “‘

-

So, let us see how what does that mean. So, to illustrate that, we have 1 template function right
here, which has 2 type parameters T1, T2 both of them are given universal references, that is the
, this is written as rvalue reference. So, in the template type deduction context, this will become a
universal reference. So, this function f wants to call a function g and a function h, to g it passes

parameter plto h it passes parameter p2, this is what it wants to do.

Now, for g and h, we have written 2 overloads for g we have written 1 overload, which takes
const int& which means it takes an Lvalue parameter and it has another overload where it takes a

Rvalue parameter. So, we want to check that when I forward this call from f to g using parameter

pl, which of these functions should get called. This is what is done for a plain old data type built

in type int.

Similarly, I have defined another arbitrary class data and | have defined similar functions with | 1
with Lvalue parameter and another with Rvalue parameter for this user defined type data and |
call this h this is just to show that the behavior is same for the built in type as well as for the user
defined type in terms of f g is passed the parameter p2, this is the scenario.

Now, let us see if | try to create 2 variables I of int and d of Data, d has a default constructor so,
that is what will get generated we are not really bothered about what the values are. We are more
bothered about the actual binding of the functions. So, if | do f(i, d), that means that | am passing
Ivalue parameter as p2 as well as lvalue parameter as p2, because both an i and d are Ivalues, |
am passing Ivalue arguments to both of them. So, | expect that P1 and P2, both will be received

as lvalues and will be passed on as lvalues.

So, if it is passed on as lvalues, then naturally for g this will get should get called for h this
should get called. So, you can see the respective statements given here to understand which

function has been called. And I correctly find that those functions have been called.

(Refer Slide Time: 15:51)

L L /%70 . 4¢v®

%ﬂ' Perfect F ding E
: + Pertect Forwarding Example: |
A

Rualue arg passed to
alie arg passed to 3
dealue arg passed 1o Datakd) receives Lyales

R N | ! |

const Detak) recerves Lyalue

L /

ng Example: (

.’ﬁ‘. Perfect F di
’ s+ Pertect Forwardi
Ay

Fasists <lastregd
¢class Dava [a2 £ pedlie: Dera(): 4

grold glecoat feak) (sndoccoem < "ionk by g < ' Yy)

f

[veld glinthd { otdicont < "inthk ip gt ¢) Yy)
—_— ———

vold dicoast Detad) { 514 icout << "Datal ip h* << snd::esdl;)
vold {Dutalh) { otd:coot <¢ "Datald o A* << std:ieedl;) tvalae

Fiazlsde Clsstrma>
class Dwwa (dm &) poblie: Deval): 100} { } |

vold glecont teak) (eedi:dect <¢ "ok b gt < ' Y)

vold glinukd) { #tdiieoet < “intkk e gt <<t Y)
vold hcoast Detad) { s1d-cout << "Tatal ip b* << snd: end];) Ivalue
vold b{Dutadd) { stdeicoon <€ *Databh io A* ¢< std:ieedl;) rvalae

semplate<typesase Ti, typaaaze T2>
vold ¢{Tibk p1, T2Rk p2 | lvalus »r rvalue

Lvalue arg passed to pl = gloonst Lath) receves Lysue
Balue arg passed to pl o glintak) receives Lvalue

2(const Datak) recerves Lyalue

-

-

But now say, suppose | keep the Ivalue for the second parameter, but the first parameter |
changed to rvalue and I could have done it by, having a function which returns integer also, but |
have used that simple technique that we have learnt is you can take any lvalue and call std::move
on that which converts strips up the Lvalue reference and gives it the Rvalue reference. So, this

becomes an Rvalue.

So, this is an Rvalue | am passing and this is an Lvalue | am passing so p1 is Lvalue, Rvalue, p2
is Lvalue. So, I would have expected that why for h it is an Lvalue. So, this function should get
called this function should get called but for g this is a Rvalue. So, | would have expected that

for the g this function should have been called. But no, this function does not get called g also

binds with the Lvalue version of the function. And you can continue this combination see both
for, if you have an Rvalue reference in terms of the function h that is the function using the UDT
parameter even then, you get the similar result, if both are Rvalues, then also you get the similar

result.

(Refer Slide Time: 17:22)

fiast £
¢lass Dwra [fmn &) peblie: Deva(): 100} | } K

vold gplecont teak) (wed:ccocn <¢ “ionk bg g* < % %)
vold glinud) { otdiieoen < *

vold hcoast Detad) { s1d:icout << "Datal ip h* << sndiieed]; } Ivalue
vold b{Dutadd) { snd:icoor <¢ *Dataldd in A ¢< snd:iieedl;) tvalae

semplate<typesase T1, typesaze T2>
vold £{Tibk p1, TRk p2I | lvalus »r rvalus

1t
ie
. "
rald
~
) receves Lysue |
coves Lvalue '
ue arg passed to 7 atak) recerves Lyalue)
!

feplue otk passed 10 52 = h{Datakh) receives Lvalee

¢ e

Filaziste Clastrma>
¢class Dt { 1on & padlte: Dexal): 400} {) i

vold plecoat Seak) (sndiodecm <C "inak 2q gt € Y
vold glintad) { etdiicoet < “inthk i gt <<t Y)

vold dlconst Detad) { s1d.icoun << "Datald ip B° << std:ieadl;)
vold b{Datadd) { snd:icout <¢ *Datall io A® << stdiieedl;)

semplate<typagane T1, typsaase T2>

void pi} Taek gl | ta lvalus »: rvalue
Ivalse p v

1ph; TR ¢
ap2} TR |

tmt zadnl) (inot & | ata @
0, 4 Ivalae, lvalee tetk ia g Dasad 1n b
glszd: imavell), 4); rvalae, lvalee Sxtk in g Dazak 12 b
281, std:moveld)); Ivalan, Tvalee stk ia g Datad b
tlerdiimavell), stdiimoneidl)y rvalae, roalee fatk in g Detab iz b

Lvalue arg passed to pl = gloonst Lath) receves Lyslue
Raalue arg passed to glintkk) receives Lvalue
e arg passed to

t(const Datak) receives Lyalue

PPl te . L

Pt . |
iﬁi‘ Perfect Forwarding Example: (fixed) by std: :forvard

Fiaclsde Clastremed
class Dwta (1on & pedlie: Deval): 1003 { } |

vold plecoat feak] (endiccoc < "Ik Mg gt ' Y
vold glintkd { otdicoet < “iothk fp gt ¢) Y)

vold const Detad) { s1d. coun << "Tatal Ip B* << s2d::eadl;)
vold b{Duradh) { std:icoun <¢ *Datall io A* << std:ieedl;)

tatk ta g Tasad iz b
alue, lvalue Snth la g
valae, tvalee umtk g D io
té:imoreidl)y rvalae, Tvalee LEtRk i3 g Datald inh

® Lvalue arg passed to pl
& Raalue arg passed to
® Lvalue arg passed to
o Relue arg passad 10 Datakl) receives Rvale

¢ € [- I |

net Datad) recetves Lyalue

In short, what you find that irrespective of whether the parameter is actually an Lvalue or an
Rvalue, in spite of the universal reference, it is passed always as an Lvalue. So, the forwarding is
not correct, the forwarding is not happening in the proper way, the Lvalue, Rvalue -ness of the

parameter is getting lost. Why is this happening, very simple.

The reason it happens is when | get the parameter p1 or p2 here, pl is a name. So, it is a named
parameter. So, when | pass pl here, irrespective of the fact that |1 had got pl, possibly as an
Lvalue, but the fact that it has a name, the compiler deduces that pl is an Lvalue, it forgets that it
has an Rvalue. So, it does not matter whether p1 was received as an Lvalue or an Rvalue, the
sheer fact that it has a name will make it a Lvalue and therefore the Lvalue part will happen. So,

that is why this solution of forwarding gets broken.

It is liking the move semantics it is very easy to fix that and for that in the utility again you get
another function which is known as std::forward and you specify the type you want. What it does
is it checks from the T1 by the template deduction it checks what is the reference type is it
Lvalue reference or an Rvalue reference and accordingly from this pure Lvalue, it either
maintains the Lvalue reference if it is received as an Lvalue, but it makes it the Rvalue reference

if it is received as an Rvalue.

So, STD forward actually is a pair of functions, which converts an Lvalue to an Rvalue if

required or keeps an Rvalue as an Rvalue.

(Refer Slide Time: 19:35)

Fa - 5.
kﬁ" . :forward A

Fiaslsde Claatrw

class Dwra (ime & peblte: Devad): 100} | b)l

wpid plecoat jeak] (sndiccoct <C "inak by gt <t Yy)
‘4:1(int) { etdiicoet < "iothk ip gt ¢t Yy)

void diconst Detad) { 514 Ut << "Datal i b << sud:iead];)
vold b{Dutadd) { snd:icout <¢ "Datald o A* << std:ieedl;) rvalas

Ti, vypsaxze T2>
EAAE |

glintak) receives Rvalow
2(const Datak) recerves Lyalue

i

r"" PPl anste . L

Lﬁi Perfect Forwarding Example: (fixed) by std

Flasisde Clsstremed

class Dara (1m & ped Al ()
wpid plecoat feak] (endo-coen <C "inak A gt «
AH(intad { etdicoet < Vi <)

vold dconst Detad) | s1d:icoun << "Datal iz h* << s2diiesdd;) Ivalue
vold b{lurakh) { snd:icoon <¢ *Databd i A* ¢< std:ieedl;) rvala

value
o
alee tatk 3 g Dasad 2 bV
e, lyalee fetkk 1z g Datak 1o d
e, Tralee tstk I Detabd 1o b
s, Toalee fEtRk iy g Datadd Inh

anet Lath) receves Lydlue
k) receives Rvales
t Datak) recerves Lyalue

i -“

0 52
o

-

So, with that, when we try, we see that the first case has no difference, but then the second case
where the first parameter is an Rvalue, we see that actually the Rvalue version of the function g
is getting called. Similarly say if you take the last one, both of them are Rvalues and in both

cases, the Rvalue version Rvalue reference version of the functions are getting called.

So, by using std::forward, we are able to preserve the Rvalue, Lvalue -ness under the template
type deduction and forward perfectly that is the reason this is called perfect forwarding solution
or perfect forwarding to say, so, you can, in summary you can get exactly the behavior that you

had wanted. So, that is the basic solution of the forwarding problem like in move semantics we

could achieve the move semantics with the help of function std::move here we can get perfect

forwarding by std::forward, very simple solution.

(Refer Slide Time: 20:45)

o Despire ThR parameters, code fully type-safe

o Type compatibéity venfied upon instantiation \

o Only int-compatible types valid for call to g() \J

e Only Data-compatible types valid for call to h(). Foe example in the context of
et ——r

class Derivedlata: public Data { public: DerivedData(}: Data() { | }i
int mata() { ... erive&ata d; ...)
The code works exactly as before. Whereas for

class OtherDats | fnt i peblic: DtherData{): 1(0)

1t sain() | ... Otbarbata d;)
The code fails wmnila!icr» error: Do satchiag functiso for call to hiOtderDated
¢ +e o 1 ey

+ Perfect Forwarding

o Despite ThR parameters, code fully type-safe
o Type compatibéity venfied upon instantiation

o Only int-compatible types valid for call to g()

¢ Only Data-compatible types valid for call to b(). Foe example in the context of

tlass Derivedlata: public Data { public: DerivedData(}: Data() { | }
e — e e
iat mata() { ... lerivediuta d; ...)
The code works exactly as before. Whereas for

class OtherDats | it §; poblic: DtherData(): i(0) { } };

1ot sata() | ... Otbareta d; }
The code fails compilation: error: be satchiag fanctisn for call to h{0tierDated)
¢ €] i el

Now, this this entire process is very typesafe in the sense that when it does the forwarding it not
only forwards to the corresponding type, but it does the same if or any type that is convertible to
the given type. So, if | have a type h that that we have and if we have any type u which is derived
from h we know that an object of type you can be passed in place of a parameter of type T in

terms of reference and the same thing is allowed here.

So, if | define a derived data by specializing data then and we use the object of the derive data
and pass it exactly the same way either by Rvalue reference or by by Lvalue reference the entire
code will work exactly as fine. But in the contrary, if 1 have some other class, which is not
related to which is not a specialization of data, then try to do this parameter take make an object
and try to pass it as a parameter it will fail as it is expected to fail because it cannot bind to a

unrelated class.

So, that tells us that this mechanism of universal reference along with the std::forward is not only

solving the perfect forwarding problem, but it is fully typesafe solution.

(Refer Slide Time: 22:17)

o The flexibility can be removed via static_assert (1B larer) as follows

templatectypeasss T1, typesase T2>
void ¢(Tiek pi, Tikk p3) |
T2 Deta

gracic assers(atd: 15 sane< typeasoe 594; decay<Tiac type, Data >oivalue
t —

u'
-]
§
g
o
¥
5
.

T

class Derivedlata: public Data { public: Derivediatal): Datal)

ia% sain() | Deriveddata 4; ...)
e

Compde-time error: error: static asserticn failed: T2 mast bs Data

¢ +€ 0 _ e)

Now, in fact, you can you can also make sure that if you want that compatible types will not be
forwarded even that can be done at a compile time using a specific feature called static assert, |
will talk about it in one of the later modules where you can specify this is a do not try to
understand the details of this entire thing we will come to that when we do static assert, but the

basic thing is you are trying to say that the type of T1 what is the type that you will allow.

So, | am, if | say that for type of T2 here, | will allow only data then when | try to pass a
reference to a derived object in Lvalue or Rvalue, then this code will not compile rather | will get
a compilation error message that T2 must be of data. So, in this way you can also statically
control what you want whether you want the compatibility to extend or how much you want the

compatibility to extend and so on.

(Refer Slide Time: 23:24)

PPl e v

vold glisth o) | sed:icout << "t)
vold glintdh o) | s2diicoet <C "iathR g g: "6 Yy Y)

void MDatsd o) | #20::c0et

: < ot S pbd e 3
vold B{Detakk a) [std::cper << "Jar < ¢ atdiraadl)
7
telatediypetane praas T (Withost std: forward
wald £{TIAE 31, T2 2 \ imbisg tak
gl pt s2d): farvaed | inth iz g 4 Datad
..o b - ‘ std: farsand ! b te @ 2: Detsd i
< Ml L g wiad
ot sainl int £ {0)i Qata g;
£, 4 lvalae, lvales | With atd: forward
5, d) rvalee. lvalas intk Le g 1 Dwvalk ba b
i1, Data t ' ikt te g 4 Derad e b T
5, Data ' ‘\ Innd b gt 2; Dwtahd de b 4
v lonhh i g 4 Datadd $n by 4§
© ¢ 0 $ s

So, in the in the following I have given a number of examples based on perfect forwarding this
one the first one is based on a little variant of the earlier example where instead of using

std::move to generate your Rvalues we have directly used constants or direct temporary objects
here and you can see the how the code similarly behaves.

| have given some functionality in the class Data also | would want you to read and run this and
see that you actually get these outputs first is without std::forward in which case everything will

be forwarded as Lvalue and in the second case with std::forward where appropriate Lvalue or
Rvalue forwarding will happen.

(Refer Slide Time: 24:22)

r"'l‘ pPtbAns te. o
tﬁi Perfect Forwarding Example 2: Generic Factory Method /1

o Let us write a genenic factory method that shoukd be able to creste sach arbitrary object. That
means that the functice should have the following characteristics
o Can take an arbitrary mumber of arguments
o Can sccept Maloes and realues 25 an argument
o Forvards it argements identical to the underlying constructcr

Sinzlisde <Lostrean>

template Ciypecame T, typeame Arg®
T Createlbjectibogt o | coast lvalu
retum Ta);

it aninll o

AT
st mPt -.‘rnult\'-.'f\x.'.::\:v:?,
stdiicout <« TRJTIVET T OXTMEIRE < sti:iendl

sxt wyfiveds Craatelbrect<intr(§); realows: ervorT campot Sind mdarcsest lralwe mefervce

std:omt <€ "wpfive2; * ¢ myfived <C gtd:iemdl

¢ e 0 g sy

There are two other examples, please go through them. One is a generic factory method here
what | want is | want to write a factory kind of function, which takes a create object function
which takes a type and and a value and gives me an object of that type. So, it is kind of as if it is
in the in the factory and these all should be generic in nature. And in the next couple of slides
slowly this whole code has been developed and I do not want to go through it in the presentation.
I would want you to run and study and understand this.

(Refer Slide Time: 25:05)

r""‘ PPl b At R
tﬁi Perfect Forwarding Example 2: Generic Factory Method A

o Croatelbject<T>() needs exactly one srgument perfectly forwarded to the constnuctor
o For arbitrary number of arguments, we need a variadic template [THD later)

Arger
} { revees Tleed: :foraard<hngo (anga

v = Craataltjectciat>(five)

<& gpfive <C gtd:endl
{ “Tralewe®), etrd = Createlbjectcatd::atrizg(atr)

»land: orriag(“Fvalee’) ||

trd « Createlblect<std:
"strd: * € mmrd <o

> land: cpormisted))]

std nale
Creatednject
te €€ “dmab; * 1
struct Bate | Sataltat 1, double d, stdistring sl (|) d = Createdbject@atad{20LL, 314, ssndl;

.

So, this was, this is example 2, which spans over 4 versions and finally gives you a complete
solution to see how perfect forwarding can be effectively used in terms of achieving in a really

powerful compact generic code.
(Refer Slide Time: 25:24)

r‘" PP bQAnI e LD
iﬁi Perfect Forwarding Example 3: apply Functor/1 A

o Lot us design 3n apply functor that would take 3 function and its srguments aad apply the
function on the arguments

telateciyzasane F, typeasse. .. T
4::ostreask o3, FRE fuxc, Tabk. . pargs

| ralee

retum !

o args... are fvalues, but apply’s caller may have passed rvakoes
o Templates can distingush rvalues from halues
> apply might call the wrong cverload of func

class Data (|
Dats sylwta() { rotesn Datal);)

class Dwtadispazcher | padilc:

J{coast Dutal) cailed\nis®; |

agplylovd:cout, DevaDispatchar(), dj| Forwarding!: spasnrar ooat Detad) salled

applyletd: :cour, DetaDispetchar(), wyOuta{))| // Foswarding:: sperstor oat Dutal) o
Pipwany & Uiiv R

The next example is about applying, we call it a apply functor, which takes a function and its
arguments and applies the function on the arguments. Properly distinguishing the Lvalues and
Rvalues again, the solution is developed in two steps, first you just take the name solution and it
will not work because everything will be forwarded as Lvalue when the apply tries to take the
function and pass the argument to it. But, if you when you use std::forward on the parameter, you
will be able to forward it in the proper way. So, please go through and repair on this. The

complete solution is finally given in this slide 24.

(Refer Slide Time: 26:16)

Sowroes
. ' % socpp ong, 002
LI cppreference com
LS the diffaven 2 S0CPP. O
L f E 1}, Scoet Meyess Tralaing Courses
.
$+ «Fare 3
gtd::Torvara

o Let us relook at

teaplate<typename T1, typenane T2>
void f(Tikk p1, T28% p2) { ... h(sd::forvard<T2>(p2)); }
o T a reference (that is,T is T&) = halue was passed 1o p2
» std:; forvard<T>(p2) should return Ivalue
¢ T a non-reference (that is. T T) = rvalue was passed 1o p2
o std: :forvard<T>{(p2} should return rvalue
o std: :forvard is provided in <atility> for this
o Applicable only to / /
o Frese . ts Ivalue-ness | rvalue-ness | const-ness when forwarding them
1o ather functions

o Let us take a look at the implementation

Prgrommeg = Medies

Moving forward, what is this std::forward, it is a it is a simple function in the utility component
of the Standard Template Library, which which has this property that if it gets a Lvalue
reference, then it will give you an Lvalue reference if it gets an Rvalue reference, it will give you

a Rvalue so, that is what we wanted.

(Refer Slide Time: 26:45)

.........

o C4411 implementations

tamplatectypeainn T>'/ Ivaless (T 12 TR

Tee Iralun
forvard{typenane resove_reference<I>::typek 1) moexcept
| retwrn static cast<Tie>(c); |

tamplatedtypensne T TVAlbee
Tak valy
forvard(typerane ressve_reference<T>::typekk t) aoexcept
{ return etatic cast<TaR>(t); }

By design, param type disables type deduction = callers mest specify T
tesplatectypensne T1, typenase T2> void Z(Tikk pi, TRk p2)

| glatd:: torward(pl)); } 12! std: forvard
tenplateitypensse T1, typesssse T2> void Z(TIik pl, T2ek p2)

{ glstd::feyward<Ti>(pl)); ...)

¢ e o s |

-

The implementation is pretty straightforward, it is templatized by the type. So, for Lvalues, you
will get T would be T& for Rvalues T will be simple T and in both cases, we want a universal
reference to be returned. Because then under template deduction, it will be Rvalue or Lvalue
appropriately, what you do is something very, very simple, you just do the Remove reference,
which we had done earlier, take the type of that and make an Lvalue. Do the same thing, make it

an Rvalue.

So, you can see that the forward has two overloads one for an Lvalue parameter, Lvalue
reference type one for Rvalue reference type. So, depending on the reference type, it has actually
got which through template deduction you know, you will be able to choose the right one and
then you cast it always to the universal reference and return that. So, with this, your std::forward

also is a very simple code, which will work always.

(Refer Slide Time: 27:52)

4

of Copy

s/ 20

rﬁj M ' O . L N
: + Move 15 an Uptimization
=X

Move is an Optimization of Copy

Sewom

Prpamny » Modes

14}, Scoet Meyers Training Courses

L I

+ IVIOYE IS an Dtlﬂ‘-lZ&thﬂC opy
==

Copy Osly

o Move requests for copyable types w/o
mewve support yield copies

class MyResyurce | public ¢

Fybeaarce{const MyRessurced);

[

Ry Class (0rClasnkl wrc)

src.runcoped tor

0 std:imavelsre.r) mtums an rvakee of type
Mylesourca

® That rvakee is gossed to Myhesource's copy

Constuchor

L o

| |
!
! clase MClase | zablic £

fF20 .5

Copy & Mawe

¢ |f NyResource adds move support

Jas Mylastarse | peblis
Mikeszcrce(czmmt Mpdesctrced) |
Mlsscrce My hemircetd] scescept

Jaas WpClasa | patlic
MrSinas Dipinaadl scc) oontiept
r
: winsd; :mevelerc.e)) |

private: Mylesource £

urc.r & moved to ¢

® 3td: mom wisre.r) returss an rvalue of type
L))
® That ve 13 passed to NyRescurce s move

constructor wa normal cvarkading resolution

, wi. v"

.
i

Now, before I close a couple of comments about finally, move as an Optimization of Copy, it is

not something which is different. But so the the tas
is not possible to move that is that is the essence of
only copy constructor, and no move support, then
copy constructor of the class, you would remembe

module 50.

So, | am trying to do STD move and trying to mov

this will also use the copy constructor, it will that Rvalue will automatically be converted to the

k of move can be taken up by a copy when it
the whole thing. So, if my resource class has
even though | might ask the resource in the

r these classes we had discussed earlier in in

e that but since there is no move constructor,

Lvalue and will be passed to the copy constructor of move my resource. Whereas, if | have the
move support added that is if | have given a move constructor, the similar passing the Rvalue
reference Rvalue type will give me actually a binding to the move constructor of the my resource

class.

So, it is very flexible, that it is not something different that you need to do, you are doing the
same, your intention is to move in both cases, but depending on the support given by the target
class, if it has moved it will move if it does not have move it will seamlessly without bothering

you fall back to the copy version.

(Refer Slide Time: 29:42)

pP A te

L : Move 1s an Uptimization of Copy |
=

o Implications
for mave-umaware code

Copy requests for rvalues may slently become moves

Such types perform copies instead
— For example, all built-in types {POD)

» For example, Move-only types like std: ;thread and std: ;uniqua_ptr that
are moveable, but not copyable

Libranes use moves whenever passble (for example, STL)
o |n short
o Give classes move support when moving faster than copying
o Use std: :pove for Ivalues that may safely be moved from

so— @ Mt

So, that that way it makes it always sensible that you write the move versions as and when it is
possible or as and when you feel that well move is will be beneficial than copying. So, you
provide that support and in terms of using the other classes it will translate seamlessly because
you will be able to take that work with move if the move support is there, if it is not there, it will

seamlessly fall back on the copy support.

So, this is this is the basic principle of design that it should be. Of course, note that there are
some classes near where the copy operation have forcibly been blocked. So that they can there
they are called move only types where you can only move you cannot copy an object, they are

only movable not copyable. We will talk about these kinds of classes and objects at a later point

of time. But in general, the types should support move when it is cheaper than copy. That is the

general principle that we learn from this support.

(Refer Slide Time: 30:55)

(B R NN E- ¥ AN A

ﬁ Move is an O"tln HELIVI Ul LUpPy :
P22y Use Beyond Construction / Assignment

diistringt nesid)
strizgit aesld) peexcept

o(aewld);) /
2tC: svactordiatol cavfale)

croreistiet assfala
eloeviale)

peivate
std: ietTiag i6;
il cvectarcion> nls;
}i 4
» Note:
o As the move operator= of atd: :string = noexcept, setld is declared zoszcept
o Whereas aetVals is not declared noexcept, as the move operator= of std: ivectar is
not declared noexcept

L o

, W 1"

-

PR Ang st

.ﬁ Move is an OMIH HEdLIVIE Ul Uy
L‘i Use Beyond Construction / Assignment

oriat>k pewfale)

f it petValsiend: ivectoreiat i nesfals
[wals » stéiim zmh gl }
peivate
std: ietriag i6;
rid: cvectar<iot> nls;

Ji
* Note:
o As the move oparator= of atd: :string % noexcept, setld is declared nosrcep
o Wheress setVals is not declared noexcept, as the move operator= of std: (vectar is

not declared nooxcept

¢ oe 0 T o

And just to realize that, we have always been talking about move benefits in case of move
constructor move assignment operator, but move in place of copy is not limited to these 2
functions, you can any function can have a move version, if it is meaningful. For example, here |
am | am trying to | have a class my list which has a list ID and a vector of values integer values
given. So, | have a setter function a function to set an ID given an ID it will set an ID, it | have a

value setter also given a vector of values it will set that vector. So, these codes are trivial.

But what it what these codes will do, we we have known always that these codes will copy either
this ID string or this vector of values and so on. But we can also if we want, we can also move
versions of that by simply changing the parameter of this function to a Rvalue reference non

constant Rvalue reference. So, you just overload that function.

And instead of copying, here, you write a move. So, what will happen if your set ID is being set
with an Rvalue, then that Rvalue will not have to be copied, which it would in case these were
not there. So, this is what makes can make any function which needs to move around data more

efficient to work with the copy.

(Refer Slide Time: 32:46)

PPl and te ..

Fal = _
iﬁ‘l Compiler Generated Move Operations

o Move constructor and move operator= ae

o Generated by compilers under appropnate conditions

.ll

o Impliit move operations move everything
» Moast types qualdy

o Conditions

All built-in types (move = copy)
— Most standard library types (for example, all containers)
o Generated operations likefy to maintain dass invaniants
: . A
— Custom semantics for any = default Jmaﬂti(s napproprate
Move is an optimization of copy
|
— Dften indicates presence of implict class mvariant

o Move on this iater in the Module discussing default and delete
¢ e€ o ’ il

Now, naturally, compilers like compilers to give you support in terms of constructors destructors,
copy constructors, etc, that you have missed out that you have not read. Move constructor and
move assignment operators are also special in that way that compiler generates the move

operations if you have not provided but you are asking for it.

But there are certain conditions under which (the) this will be done one is all data members of
the class must be movable only then the compiler will generate otherwise, if you write it will be
there otherwise it will not be there. The second condition is they should not be any user declared

copy or move operation.

If similar rule applies for copy free copy functions also that if you define a copy constructor, then

no free copy constructor will be provided. But here no matter we will have any move operation

defined or any copy operation defined, then this free move functions will not be available.
Similarly, if you have a user declared destructor the move operation will not be made freely

available, you will have to write it if you need them.

" PPl band te . LR
CO’TIPINZ'T Generaceu wiuve VeI dLIuiD
Custom Deletion = Custom Copying

class Vidget { privats
std: ivecsor<int> v;

(Refer Slide Time: 34:03)

Fa
1

atd: :set<double> 8]
804 aize t plzesun
poblic
“Widget() [assert{aizeSus == v.size()vn.size());)

o |f Nidget had implicitly-generated move aperations
std:ivector<idges> w;

Nidges v

vu. pask_back{std: imaveiv)); v w

L Widget

¢ € [! wrws |

So, these are some of the rules of compiler generated version. So, here | have just shown some
examples that if you have a destructor that is if you are doing a custom deletion, then you have to
decide what kind of copying you will do because the free move will not be available.
Unfortunately, free copy is available which is a bad thing. We will talk about that (on a) at a later
point.

(Refer Slide Time: 34:28)

P2saAnd te .

r§ CO"ﬂp”ET G'Eﬂﬁfm..':u IVIUVE VpPEIdLIUED
P

ustom Moving = Custom Copying

copmble & movable type

wl Widawtdicanet Wi

o Custom move semantics =5 custom cogy semantics
> Maove is an optimization of copy
class Vidgerd | privace
sté:ulfatring sase;
Leeg lomg walue
erplicit Widgetd(std: iuifetring o)}

gall ethk rhsl scexcept

o(VidgetIes ths) ncexoept; 2w ixg

0 i |

Similarly, if you are doing custom moving then you have to do custom copying also, because
you have if you have provided for say, these are, this is a class widget one, which has 2
parameters which are copyable and movable. So, you just have provided a constructor no copy
construction operation, no copy operations, no move operations compiler will give you both

move and copy operations in terms of construction and assignment.

But, if you add in this Widget2 if you add a user declared copy constructor, then no implicit
move operation will be provided though implicit copy assignment operator will be provided. So,
the custom move if you have custom move semantics, then you must have custom copy
semantics. That is that is what it all relates to. And that is so, so, default is to try to define the
move semantics in every case, make advantage of compiler generated move constructor and
assignment operator whenever it is possible. But make keep this in mind that whenever possible,
moving is cheaper than doing copies and that can give you great optimization in terms of your
code.

(Refer Slide Time: 35:49)

o Learnt how Rvalue Reference works 35 3 Universal Reference under template type
deduction

o Understood the problem of forwarding of parameters under template type decluction
and its solution usng Universzl Reference and std: : forvard

o Learnt the implementation of std; : forvard

o Understood how Move warks 2 an optimization of Copy

So, in summary, we have learnt how Rvalue references work as universal reference and how to
solve the perfect forwarding problem and what is the way to design with move as an
optimization of the copy? Thank you very much for your attention. We will meet in the next

module.

