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Lecture 51
C++11 and beyond: General Features : Part 6:
Rvalue & Perfect Forwarding

Welcome to programming in Modern C++. We are in week 11. And | am going to start

discussing module 51.
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o Introduced several C+411 general features
0 eto | decitype
o suffix return type
o Initializer List
Uniferm Intialization
o Range for Statement
O constexpr
0 noextept
O nulptr
o Inlee namespace
0 Userddefimed Literals
o Raw String Laerals
o Understood the difference betwesn Copying & Moving and Lvalue & Rvalue
o Learnt the advantages of Move in C++11 using Rvakoe Reference, Move Semantics, and Copy
Move Constructor | Assignment
o Learnt to mplement move semantics in UDTs using 2td: :pove and to implement std: :3ove
o Studied a project to code move-enabled UDTs
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In the last week, we have started talking about the modern part of C++ covering C++11

primarily, and there are several general features that we have covered which are listed here.

Then important general feature that we have discussed is the difference between copying and
moving particularly, what is the difference between Lvalue and Rvalue and what is move
semantics and how the move in C++ can take advantage of the move semantics to have better

performance we have seen std::move function also in the standard library.



(Refer Slide Time: 01:25)

o To understand how Rvalue Reference works as a Universal Reference under template
type deduction

¢ To understand the problem of forwarding of parameters under template type deduction

o To learn how Universal Reference and std: : forward can work for perfect forwarding
of parameters under template type deduction

o To understand the implementatico of =td: : forvard

o To understand how Move is an optimization of Copy

We will continue on that. In the current module we will try to understand how Rvalue reference
works as a universal reference under template type deduction and the problem that arises due to
forwarding of parameters known as forwarding problem that happens in the template type
deduction we try to learn how universal reference and std::forward function can work for perfect
forwarding of parameters. We will understand the implementation of std::forward and
understand how move is an optimization of the copy what is a solution that C++11 is actually

giving us.
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So, this is the outline which will be available on the left. So, starting with discussion on
Universal Reference, let me quickly specifically recap a few key concepts that we did in the last

module.
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¢ Collapsing in Templates: Recap (Module 50)

¢ 1 s initially instantiated as
vold f(lask & paras)
o C++03's reference-collapsing rule sy
B W
¢ S0, after reference collapsing, £'s instantiation is actually: void f{inth paras)
o C4++11's rules take rvalue references into account
oTk T
o Tk & Tk
O Tk Ak Té
O Tek &k ok

o Summary

One is of Reference Collapsing, that is, we observed that when we use the template in terms of
C++, often we will have multiple references coming for a for a particular type. So, in C++03,
there there was one reference collapsing rule so that you have T reference and another reference
then this will be collapsed to a single reference. So, reference to reference does not make a sense

its reference to the original.



So, this is what it is not only the in this kind of a template when we try to do an invocation and
binding using this function f then T becomes int& and therefore we have in total we have the

function having a type, T&& which is collapsed to the T&.
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o In C4403, given
texplate<typenase T> void £(Tk paras);
12t x;
f<izth>(x}; T iztk
o {5 initially instantiated a5
vold f(lazk & paras)
o C4++03's reference-colapsing rule saps
cTEoNn
So, after reference collapsing, £'s instantiation is actually: void f{inth paras)
C++11's rules take rvalue references into account
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In C++11 We have Rvalue references. So, there are 4 possibilities 4 possible combinations and
we learned the collapsing rule that reference collapsing involving any Lvalue reference will
always collapse to Lvalue reference and reference collapsing when it involves only Rvalue
reference, it will collapse to Rvalue reference. So, this is the only rule where Rvalue and Rvalue
will collapse to Rvalue otherwise, it will always be Lvalue. So, we need to keep this in mind and

this will be typically used here.
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o Function temglates with a TRE parameter need not generate functions taking a TRE parameter)

v

tesplate<typenase T> void £(Tht perma);

¢ T's deduced type depends on what Is passed to param

o Lvalue = T is a0 lvalue reference (TR)

o Rualue «» T s 3 non-reference (T)

® In conjunction with reference collapsing
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Now, if we look at the T&& parameter deduction in templates, particularly if I have an Rvalue

reference parameter in the template, then we know that this is, this will go through the template
type deduction and the in terms of template type deduction, what it does, when it actually a
parameter is passed, whether to this template f, this definition of the template f, if I pass if I call

it with f(x), where x is an Lvalue, then actually an Lvalue will be passed.

So, this is a Lvalue reference and you have the Rvalue reference. So, due to collapsing this will
become an Lvalue reference, the same thing will happen if | pass an Rvalue reference. So, I will
have an Rvalue reference and that will collapse to Rvalue reference only similar thing this is for

plain old data type, the same thing will happen for the user defined type.

So, we get a very specific feature that if the template parameter is an Rvalue reference, then
when Lvalue is passed to that in place of that parameter, then it will become an Lvalue reference
if an Rvalue is passed to that parameter, then it will become a non reference or a Rvalue

reference.
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o TkR really is 3 magical reference type! A
o For value arguments, Th& becomes Tk => lvalues can bind !)
o Fer realue arguments, TRE remains TRR > rvalues can b:m!J
o For const/volatile arguments, const/volatile becomes part of T
o Tk parameters can bind anything
o Two conceptual meanings for Thi syntax
o Rvalue reference. Binds rvalues only

void {{Vidgetk paras);
————m

o Universal reference, Binds lvalies and rvalues
eouuiaa b aanit

tesplate<typasase T>
vosd 1{TRE paran)|

pdeen = gopncs f
Really an rvalues reference i 2 reference-cofapsing context
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So, this is a very nice property of the Rvalue reference template parameter which is kind of
referred to often as a magical reference type so, that for Rvalue arguments, it binds with Rvalues
for Lvalue arguments it binds with Lvalues. So, what we get if we summarize that if | have a
plain function with Rvalue reference, then the calls to this function will bind only with Rvalue

references that is non constant Rvalues.

Whereas, if we have a universal reference, what is universal reference, if we have the Rvalue
reference in the context of a template parameter, then because of this property of reference
collapsing, if | pass an Lvalue for this template, then it will behave like an Lvalue reference. If |
pass an Rvalue, then it will behave like an Rvalue reference. So, it is kind of takes two different
contexts. So, and that is the reason this is called a universal reference that it is adapting itself to
the type of argument whether it is an Lvalue argument or it is an Rvalue argument according to
that, the binding will become appropriately different.
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o auto type deduction = template type deduction, so autokk variables are 3kso universal
references
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o Note that decltype() &k does not behave like a universal references as it does not use
template type deduction
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In this connection, we also note that the auto feature that we had studied earlier that auto we
mentioned that it follows the type deduction which is of templates type deduction. So, if | have
auto&&, that is auto of Rvalue reference type, then those are also those will also behave like the

universal reference.

So, here we have a Lvalue generated a function call which will give a value and here we have a
variable which is an Lvalue. So, if | initialize the auto variable v1 with calcVal, which is an
Rvalue, so, the type deduced by the auto&& going by the template type deduction will be int&&,
that is it will deduce a Rvalue reference type whereas if | initialize it with a Lvalue, then it will
deduce a Lvalue reference due to reference collapsing because auto follows the type deduction of

the templates. So, auto&& also behaves like the universal reference.
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o auto type deduction = template type deduction, so autok variables are 3o universal
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But, if we try to do something equivalent using say a decltype, we have seen decltype | can take
different type of each of these and then I in style of the auto if I try to put 2 ampersand, it will not
behave like a universal reference because decltype as you know always extracts the actual type
devoid of the references, it gets the actual type so, whether it is an Lvalue parameter or it is an
whether it is an Rvalue parameter or it is an Lvalue parameter, the type deduced by decltype will

be just the int.

Therefore, if 1 use two ampersand after this, it will both become Rvalue reference it will not
behave like a universal reference. So, this is the key behavior that is important to understand for

the universal references.
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o Read code carefully to distinguich them

& syntax: Oceus after 3 POD o UDT for Rvalue References, but after

type variable T for Universal References \
¢ for T for Universal References w}l'.\' | ,‘
o Behayi {ifferent /'-\/ |\:\w'.’?

s bind only rvalues

bind lvaluss and ralues /

~ that is, may become either Tk or Tk, depending on initislizer

o Consider 814 :vectar
tasplatedclaes T, claes Allecatorsallocator<T»>
class vecter { public: ...

vold push back(const Tk x);

void pesh back(Tak x);

tesplatecclans. .. Args?

vold emplace btack{Azgakd, ., args);

-
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o Read code carefully to distinguich them
& syntax: Occus after 3 POD or UDT for Rvalue References, but after
type variable T for Universal References
for T for Universal References

s bind only rvalues
bind lvaluss and ralues
~ that is, may become either Tk or TR, depending on initislizer
o Consider 8td: :vector

tasplatedcliaes T, clags Allecatorsallocator<T»>

class vector { public:
4 4
: -~
class.. -2
vold eaplace back{Azgabh, ., args);
B
¢ g o i |

Universal and rvalue references are can be compared very easily both use the same && syntax,
and it works as an Rvalue reference if it occurs after a plain old data type or a user defined type
for Rvalue reference, but for a variable type T in a template && will work as a universal
reference and there Rvalues will bind with Rvalue reference will bind with Rvalues and Lvalue
and universal reference will bind with Lvalues and Rvalues. So, this is for just a plain definition.

And this is for a template type definition.

So, if | write int&& in a function, then this will bind as a Rvalue reference, but when | write

T&& in a template situation, and then the template is invoked, then it will behave like a



universal reference. Some more examples are given here from the standard library like vector if
you do push_back ampersand that is how it is defined. So, this is a lvalue reference, there is a
overload, which is an rvalue reference, whereas, emplace_back is a universal reference because it

is templatized.
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Perfect Forwarding
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So, let us with this knowledge, let us move on to the next big problem that rvalue reference
solves the first problem that it solved is that of move semantics and we have learned about it

pretty well.
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T
L + Perfect Forwarding
==

o Goal: one functice that does the right thing
o Copies lvalue args
o Moves rvalue args
o Solution i a perfect forwarding function
o Templatized function forwarding Tk params to members
o What is Perfect Forwarding?
s Perfect forwarding allows 3 template function that accepts a set of arguments to
forward these arguments to another function whilst retaining the halue or rvalue
nature of the ceiginal function arguments

o Let us check an example
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The next problem, as it is known, it is called the Perfect Forwarding problem. The perfect
forwarding problem is arises when in a template function, | want to call another function and
pass the parameters | have a template function and | want to call another function from that
template function passing the parameters that the template function has received. So, this is what
is called the parameter forwarding. So, you will receive parameters and you are forwarding it to

another function.

Now, when you do this forwarding process, what you want is that the Ivalue arguments should be
should work as copies and rvalue arguments should work as move this property should remain so
that the move semantics that we have created so, with so, much of care can be carried forward to
all kinds of function calls.
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alie arg passed to 11
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2(const Datak) recerves Lvalue
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So, let us see how what does that mean. So, to illustrate that, we have 1 template function right
here, which has 2 type parameters T1, T2 both of them are given universal references, that is the
, this is written as rvalue reference. So, in the template type deduction context, this will become a
universal reference. So, this function f wants to call a function g and a function h, to g it passes

parameter plto h it passes parameter p2, this is what it wants to do.

Now, for g and h, we have written 2 overloads for g we have written 1 overload, which takes
const int& which means it takes an Lvalue parameter and it has another overload where it takes a

Rvalue parameter. So, we want to check that when I forward this call from f to g using parameter



pl, which of these functions should get called. This is what is done for a plain old data type built

in type int.

Similarly, I have defined another arbitrary class data and | have defined similar functions with | 1
with Lvalue parameter and another with Rvalue parameter for this user defined type data and |
call this h this is just to show that the behavior is same for the built in type as well as for the user
defined type in terms of f g is passed the parameter p2, this is the scenario.

Now, let us see if | try to create 2 variables I of int and d of Data, d has a default constructor so,
that is what will get generated we are not really bothered about what the values are. We are more
bothered about the actual binding of the functions. So, if | do f(i, d), that means that | am passing
Ivalue parameter as p2 as well as lvalue parameter as p2, because both an i and d are Ivalues, |
am passing Ivalue arguments to both of them. So, | expect that P1 and P2, both will be received

as lvalues and will be passed on as lvalues.

So, if it is passed on as lvalues, then naturally for g this will get should get called for h this
should get called. So, you can see the respective statements given here to understand which

function has been called. And I correctly find that those functions have been called.
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vold dicoast Detad) { 514 icout << "Datal ip h* << snd::esdl; )
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Balue arg passed to pl o glintak) receives Lvalue
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But now say, suppose | keep the Ivalue for the second parameter, but the first parameter |
changed to rvalue and I could have done it by, having a function which returns integer also, but |
have used that simple technique that we have learnt is you can take any lvalue and call std::move
on that which converts strips up the Lvalue reference and gives it the Rvalue reference. So, this

becomes an Rvalue.

So, this is an Rvalue | am passing and this is an Lvalue | am passing so p1 is Lvalue, Rvalue, p2
is Lvalue. So, I would have expected that why for h it is an Lvalue. So, this function should get
called this function should get called but for g this is a Rvalue. So, | would have expected that

for the g this function should have been called. But no, this function does not get called g also



binds with the Lvalue version of the function. And you can continue this combination see both
for, if you have an Rvalue reference in terms of the function h that is the function using the UDT
parameter even then, you get the similar result, if both are Rvalues, then also you get the similar

result.
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In short, what you find that irrespective of whether the parameter is actually an Lvalue or an
Rvalue, in spite of the universal reference, it is passed always as an Lvalue. So, the forwarding is
not correct, the forwarding is not happening in the proper way, the Lvalue, Rvalue -ness of the

parameter is getting lost. Why is this happening, very simple.

The reason it happens is when | get the parameter p1 or p2 here, pl is a name. So, it is a named
parameter. So, when | pass pl here, irrespective of the fact that |1 had got pl, possibly as an
Lvalue, but the fact that it has a name, the compiler deduces that pl is an Lvalue, it forgets that it
has an Rvalue. So, it does not matter whether p1 was received as an Lvalue or an Rvalue, the
sheer fact that it has a name will make it a Lvalue and therefore the Lvalue part will happen. So,

that is why this solution of forwarding gets broken.

It is liking the move semantics it is very easy to fix that and for that in the utility again you get
another function which is known as std::forward and you specify the type you want. What it does
is it checks from the T1 by the template deduction it checks what is the reference type is it
Lvalue reference or an Rvalue reference and accordingly from this pure Lvalue, it either
maintains the Lvalue reference if it is received as an Lvalue, but it makes it the Rvalue reference

if it is received as an Rvalue.

So, STD forward actually is a pair of functions, which converts an Lvalue to an Rvalue if

required or keeps an Rvalue as an Rvalue.
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So, with that, when we try, we see that the first case has no difference, but then the second case
where the first parameter is an Rvalue, we see that actually the Rvalue version of the function g
is getting called. Similarly say if you take the last one, both of them are Rvalues and in both

cases, the Rvalue version Rvalue reference version of the functions are getting called.

So, by using std::forward, we are able to preserve the Rvalue, Lvalue -ness under the template
type deduction and forward perfectly that is the reason this is called perfect forwarding solution
or perfect forwarding to say, so, you can, in summary you can get exactly the behavior that you

had wanted. So, that is the basic solution of the forwarding problem like in move semantics we



could achieve the move semantics with the help of function std::move here we can get perfect

forwarding by std::forward, very simple solution.
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o Only int-compatible types valid for call to g()
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Now, this this entire process is very typesafe in the sense that when it does the forwarding it not
only forwards to the corresponding type, but it does the same if or any type that is convertible to
the given type. So, if | have a type h that that we have and if we have any type u which is derived
from h we know that an object of type you can be passed in place of a parameter of type T in

terms of reference and the same thing is allowed here.



So, if | define a derived data by specializing data then and we use the object of the derive data
and pass it exactly the same way either by Rvalue reference or by by Lvalue reference the entire
code will work exactly as fine. But in the contrary, if 1 have some other class, which is not
related to which is not a specialization of data, then try to do this parameter take make an object
and try to pass it as a parameter it will fail as it is expected to fail because it cannot bind to a

unrelated class.

So, that tells us that this mechanism of universal reference along with the std::forward is not only

solving the perfect forwarding problem, but it is fully typesafe solution.
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Now, in fact, you can you can also make sure that if you want that compatible types will not be
forwarded even that can be done at a compile time using a specific feature called static assert, |
will talk about it in one of the later modules where you can specify this is a do not try to
understand the details of this entire thing we will come to that when we do static assert, but the

basic thing is you are trying to say that the type of T1 what is the type that you will allow.

So, | am, if | say that for type of T2 here, | will allow only data then when | try to pass a
reference to a derived object in Lvalue or Rvalue, then this code will not compile rather | will get
a compilation error message that T2 must be of data. So, in this way you can also statically
control what you want whether you want the compatibility to extend or how much you want the

compatibility to extend and so on.
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So, in the in the following I have given a number of examples based on perfect forwarding this
one the first one is based on a little variant of the earlier example where instead of using

std::move to generate your Rvalues we have directly used constants or direct temporary objects
here and you can see the how the code similarly behaves.

| have given some functionality in the class Data also | would want you to read and run this and
see that you actually get these outputs first is without std::forward in which case everything will

be forwarded as Lvalue and in the second case with std::forward where appropriate Lvalue or
Rvalue forwarding will happen.
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There are two other examples, please go through them. One is a generic factory method here
what | want is | want to write a factory kind of function, which takes a create object function
which takes a type and and a value and gives me an object of that type. So, it is kind of as if it is
in the in the factory and these all should be generic in nature. And in the next couple of slides
slowly this whole code has been developed and I do not want to go through it in the presentation.
I would want you to run and study and understand this.
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So, this was, this is example 2, which spans over 4 versions and finally gives you a complete
solution to see how perfect forwarding can be effectively used in terms of achieving in a really

powerful compact generic code.
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The next example is about applying, we call it a apply functor, which takes a function and its
arguments and applies the function on the arguments. Properly distinguishing the Lvalues and
Rvalues again, the solution is developed in two steps, first you just take the name solution and it
will not work because everything will be forwarded as Lvalue when the apply tries to take the
function and pass the argument to it. But, if you when you use std::forward on the parameter, you
will be able to forward it in the proper way. So, please go through and repair on this. The

complete solution is finally given in this slide 24.
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Moving forward, what is this std::forward, it is a it is a simple function in the utility component
of the Standard Template Library, which which has this property that if it gets a Lvalue
reference, then it will give you an Lvalue reference if it gets an Rvalue reference, it will give you

a Rvalue so, that is what we wanted.
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The implementation is pretty straightforward, it is templatized by the type. So, for Lvalues, you
will get T would be T& for Rvalues T will be simple T and in both cases, we want a universal
reference to be returned. Because then under template deduction, it will be Rvalue or Lvalue
appropriately, what you do is something very, very simple, you just do the Remove reference,
which we had done earlier, take the type of that and make an Lvalue. Do the same thing, make it

an Rvalue.

So, you can see that the forward has two overloads one for an Lvalue parameter, Lvalue
reference type one for Rvalue reference type. So, depending on the reference type, it has actually
got which through template deduction you know, you will be able to choose the right one and
then you cast it always to the universal reference and return that. So, with this, your std::forward

also is a very simple code, which will work always.
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Now, before I close a couple of comments about finally, move as an Optimization of Copy, it is

not something which is different. But so the the tas
is not possible to move that is that is the essence of
only copy constructor, and no move support, then
copy constructor of the class, you would remembe

module 50.

So, | am trying to do STD move and trying to mov

this will also use the copy constructor, it will that Rvalue will automatically be converted to the

k of move can be taken up by a copy when it
the whole thing. So, if my resource class has
even though | might ask the resource in the

r these classes we had discussed earlier in in

e that but since there is no move constructor,



Lvalue and will be passed to the copy constructor of move my resource. Whereas, if | have the
move support added that is if | have given a move constructor, the similar passing the Rvalue
reference Rvalue type will give me actually a binding to the move constructor of the my resource

class.

So, it is very flexible, that it is not something different that you need to do, you are doing the
same, your intention is to move in both cases, but depending on the support given by the target
class, if it has moved it will move if it does not have move it will seamlessly without bothering

you fall back to the copy version.
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So, that that way it makes it always sensible that you write the move versions as and when it is
possible or as and when you feel that well move is will be beneficial than copying. So, you
provide that support and in terms of using the other classes it will translate seamlessly because
you will be able to take that work with move if the move support is there, if it is not there, it will

seamlessly fall back on the copy support.

So, this is this is the basic principle of design that it should be. Of course, note that there are
some classes near where the copy operation have forcibly been blocked. So that they can there
they are called move only types where you can only move you cannot copy an object, they are

only movable not copyable. We will talk about these kinds of classes and objects at a later point



of time. But in general, the types should support move when it is cheaper than copy. That is the

general principle that we learn from this support.
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And just to realize that, we have always been talking about move benefits in case of move
constructor move assignment operator, but move in place of copy is not limited to these 2
functions, you can any function can have a move version, if it is meaningful. For example, here |
am | am trying to | have a class my list which has a list ID and a vector of values integer values
given. So, | have a setter function a function to set an ID given an ID it will set an ID, it | have a

value setter also given a vector of values it will set that vector. So, these codes are trivial.



But what it what these codes will do, we we have known always that these codes will copy either
this ID string or this vector of values and so on. But we can also if we want, we can also move
versions of that by simply changing the parameter of this function to a Rvalue reference non

constant Rvalue reference. So, you just overload that function.

And instead of copying, here, you write a move. So, what will happen if your set ID is being set
with an Rvalue, then that Rvalue will not have to be copied, which it would in case these were
not there. So, this is what makes can make any function which needs to move around data more

efficient to work with the copy.
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Now, naturally, compilers like compilers to give you support in terms of constructors destructors,
copy constructors, etc, that you have missed out that you have not read. Move constructor and
move assignment operators are also special in that way that compiler generates the move

operations if you have not provided but you are asking for it.

But there are certain conditions under which (the) this will be done one is all data members of
the class must be movable only then the compiler will generate otherwise, if you write it will be
there otherwise it will not be there. The second condition is they should not be any user declared

copy or move operation.

If similar rule applies for copy free copy functions also that if you define a copy constructor, then

no free copy constructor will be provided. But here no matter we will have any move operation



defined or any copy operation defined, then this free move functions will not be available.
Similarly, if you have a user declared destructor the move operation will not be made freely

available, you will have to write it if you need them.
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class Vidget { privats
std: ivecsor<int> v;
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So, these are some of the rules of compiler generated version. So, here | have just shown some
examples that if you have a destructor that is if you are doing a custom deletion, then you have to
decide what kind of copying you will do because the free move will not be available.
Unfortunately, free copy is available which is a bad thing. We will talk about that (on a) at a later
point.
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Similarly, if you are doing custom moving then you have to do custom copying also, because
you have if you have provided for say, these are, this is a class widget one, which has 2
parameters which are copyable and movable. So, you just have provided a constructor no copy
construction operation, no copy operations, no move operations compiler will give you both

move and copy operations in terms of construction and assignment.

But, if you add in this Widget2 if you add a user declared copy constructor, then no implicit
move operation will be provided though implicit copy assignment operator will be provided. So,
the custom move if you have custom move semantics, then you must have custom copy
semantics. That is that is what it all relates to. And that is so, so, default is to try to define the
move semantics in every case, make advantage of compiler generated move constructor and
assignment operator whenever it is possible. But make keep this in mind that whenever possible,
moving is cheaper than doing copies and that can give you great optimization in terms of your
code.
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o Learnt how Rvalue Reference works 35 3 Universal Reference under template type
deduction

o Understood the problem of forwarding of parameters under template type decluction
and its solution usng Universzl Reference and std: : forvard

o Learnt the implementation of std; : forvard

o Understood how Move warks 2 an optimization of Copy

So, in summary, we have learnt how Rvalue references work as universal reference and how to
solve the perfect forwarding problem and what is the way to design with move as an
optimization of the copy? Thank you very much for your attention. We will meet in the next

module.



