Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Tutorial 10
How to optimize C++ 11 programs using rvalue and move Semantics?

Welcome to Programming in modern C++. We are going to discuss tutorial 10. How to

optimize C++ programs using rvalue and move Semantics?

(Refer Slide Time: 0:44)

L R B A A R

{éj Tutorial Objectives

o To understand optimization by copy elision

o To understand copy / move optimization by Rvalues and Move Semantics

Programming in Moder C++ Partha Pratim Das TI02

We have during the course of our discussion on rvalue references universal references and the
move operations. We have seen that this support can significantly reduce the necessity to
copy particularly the temporary objects. In this tutorial, we are going to discuss a number of
examples to illustrate which of these optimizations can as it is be done by the compiler and
for which it needs the support from the program to suggest to the compiler as to what can be

optimized out that is what can be treated as a temporary object as an rvalue.

(Refer Slide Time: 1:41)

pPRBAHl O

[ﬁ;} Tutorial Outline

® © © © © o U
N = u

Programming in Modern C++ Partha Pratim Das T103

And we will get towards building up a small but complete project of sorting an arbitrary data

type containing resources to understand this.

(Refer Slide Time: 01:55)

rPRLANLI SO T

[;ﬁ;} Optimizing C++11 Programs

Optimizing C++11 Programs

Sources:

® Move semantics and rvalue references in C++11, cprogramming, Alex Allain, 2019
® Copy elision, wikipedia

Programming in Modern C++ Partha Pratim Das. Ti04

PPl aEdlte i

g?] Optimizing C++11 Programs

Fa
L

o C++ has always produced fast programs

o Unfortunately, untl C++11, there has been an obstinate wart that slows down many C++
programs:
o the creation of temporary objects “

0p o Sometimes these temporary objects can be optimized away by the compiler by copy elision*

‘ (the return value optimization, for example). But this is not always the case, and Tt can result
in expensive object copies

o Copy elision (or omission) depends primarily on identification of rvalues by the compiler and
Can be optimized away -

o n addition to what the compiler can do, we can reduce copies by explicitly marking rvalues in
the code by Rvalue references and by providing the move operations along with the copy
operations (if neede —_——

o We first elucidate some common scenarios of copy elision that the language standard specifies
and the compiler exploits for optimization

o Next we show through a small sorting project how the programmer can expose good move
opportunities for the compiler to optimize copies

Lcompiler optimization technique that eliminates unnecessary copying of objects
Programming in Moder C++ Partha Pratim Das Ti0S

So, if we talk about optimizing C++ program obviously, you know there are several
optimizations and C++ has always produced fast programs. But unfortunately, there is one
problem area which slows down many C++ program that is creation of temporary objects.
C++ to keep its object orientation to keep its implementation of various semantics, need to
regularly create temporary objects and delete them.

And when you put those things together, then often you have a lot of temporary objects
which are created and deleted. Now, sometimes, these objects can be optimized away by the
compiler. And that process is known as copy elision. Copy elision is an optimization
technique that remove eliminate the unnecessary copying of objects. Copy elision primarily
depends on the identification of rvalues by the compiler, because you know, that rvalues can

be removed, can be optimized away once they are used.

Because since they do not have a name, they cannot be used by the programmer, and
therefore, after it their use if they are removed, then it does not really impact the correctness
of the program. In addition, what the compiler can do is, in addition to what the compiler can
do, we can also help the compiler by explicitly marking rvalues. And how do we do that, we
can do that by providing rvalue references or by providing move operations along with the
copy operations if they are at all needed. So, in this tutorial, we are going to elucidate some

of these scenarios of copy elision and the sorting project that I just mentioned.

(Refer Slide Time: 4:00)

PPRLQHuLLO T

?

[@} Copy Elision

Copy Elision

Sources:

® Copy elision, cppreference

® Copy elision in C++, geeksforgeeks, 2017

@ Copy elision, wikipedia

Programming in Modem C++ Partha Pratim Das T106

pPRsQEd te .

[g%} Copy Elision

: s ;
o In C++ programming, copy elision” refers to a compiler optimization technique that

eliminates unnecessary c of objects

o The C++ language standard generally allows implementations to perform any optimization,

provided the resulting program's observable behavior is the same as if, that is pretending, the
program were executed exactly as mandated by the standard.

Copy Eliin o Beyond that, the standard also describes a few situations where copying can be eliminated even
if this would alter the program’s behavior
o the most common being the return value optimization‘/
o Another widely implemented optimization, described in the C++ standard, is when a
temporary object of class type is copied to an object of the same type. As a result
> copy-initialization is usually equivalent to direct-initialization in terms of performance,

ut semantically,
D> copy-initialization still requires an accessible copy constructor

e
o The optimization cannot be applied to a temporary object that has been bound to a reference

“elision is the omission of a sound or syllable when speaking (as in I'm, let's)
Programming in Moder C+-+ Partha Pratim Das o7

So, let us first look at copy elision. As | told it is a compiler optimization technique that
eliminates unnecessary copying of objects. And there are several such which exists the most
common being the return value optimization. | have talked about this earlier, but in this
tutorial, 1 am going to talk about it in little bit longer length. The other place where copy
elision can be used effectively is copy initialization. It is usually equivalent to a direct
initialization in terms of performance, but semantically it may be different because it requires

an accessible copy constructor. So, let us see what all can be done in terms of copy elision.

(Refer Slide Time: 4:56)

PP QHL At T

E;H Copy Elision: Copy Imt|al|zat|on

Copy Elision: Copy Initialization

Programming in Moder C++ Parth Pratim Das TI08

pPR2sQEl tO UD

ﬁ Copy Elision: Copy Initialization

o What will be the output?

#include <igstream>
int n = 0;
struct C {
explicit C(int)-{ }
C(const C&) {-} the copy construct

¥ s it modifi ur:
int main() {
C c1(42); n, calls C(int). ¢l is lvalue
Cc2=C(77); . C(77) by C(int) is rvalue, skiy
std::cout << n <« std endl ts 0 if the copy was elided,

}

o Interestingly both GCC-C++ and MSVC++ and print 0 even in debug build

o Copy constructor C::C(const C&) is not even invoked

o If you think this is because C: :C(const C&) does not do anything meaningful for the object,
check the next version

Programming in Modern C++ Partha Pratim Das Ti09

PPl aElte . S EN

ﬁ Copy Elision: Copy Initialization

o What will be the output?

#include <iostream>
int n = 0;
struct C {
explicit C(int) T }
C(const C&) { ++n; }

b a
int\main() {
c1(42); 11s C(int). c1 is 1value
Cc2 m by s rvalue, skips
stdizcong <A n <«< std sendl;]
}

o Interestingly both GCC-C++ and MSVC++ and print 0 even in debug build

o Copy constructor C::C(const C&) is not even invoked

o |f you think this is because C: :C(const C&) does not do anything meaningful for the object,
check the next version

Programming in Moder C++ Partha Pratim Das T109

PPl aEdlte .

g‘éj Copy Elision: Copy Initialization
o What will be the output?

#include <iostream>

int n = 0;

struct C {
explicit C(int) { }
C(const C&) { ++n; }

b

int main() {

C c1(42); direct-initialization, calls C(int). c1 is lvalue
Cc2=C(77); py-initialization. C(77) by C(int) is rvalue, skips C(const Ck)
std::cout << n << std::endl; prints 0 if the copy was elided, 1 otherwise // 0

}

o Interestingly both GCC-C++ and MSVC++ and print 0 even in debug build

o Copy constructor C::C(const C&) is not even invoked”

o [f you think this is because C: :C(const C&) does not do anything meaningful for the object,
check the next version .

Programming in Moder C++ Partha Pratim Das T109

So, first, let us look at copy initialization of objects. | have a very small class see here most
often | have written classes as struct. Because the issue of encapsulation or access restriction
is not the focus to discuss whatever we are discussing in terms of structs will apply equally
well for the classes altogether. So, we have an explicit constructor, which is a parametric
constructor, and it has a copy constructor which does nothing but there is a global variable n

which the copy constructor is supposed to increment.

And we do not do we have a parameter constructor we do not have any data, because we are
not interested in looking at the data member values and so on immediately. So, in the context
of this, we have removed these two-object initialization you can easily make out that this is a
direct initialization where we are expected to invoke the parameter constructor and see one

after that invocation will become an added value.

The next one, as we will identify is a copy initialization C(77). This particular object will be
constructed by the parametric constructor and then from that a copy initialization will be will
happen to c2. And this is it is to be noted that C(77) is rvalue here. The interesting thing is if
you actually execute this program, and to test whether the copy initialization is or the copy
constructor is getting invoked, or how many times it is getting invoked, we are incrementing

n every time it is invoked, and we at the end, we print n.

Now, if you execute this program, irrespective of whether you do that in GCC, or in
Microsoft Visual C++, whether you do it in release build or in debug build whatever, it will
always print 0. And you will get amazed because, you know, it is not only that it is keeping
the copy construction, but the copy construction has a side effect it is keeping that as well.

And before you think that this is an error of the compiler, let me tell you that this actually is a

language specification. Now, you might think, it is not doing something because the copy

constructor does not do anything meaningful. So, let us try to put something meaningful.

(Refer Slide Time: 7:52)

7
fl

i

pPRBAEl e

Copy Elision: Copy Initialization

o What will be the output?

#include <iostream>

int n = 0;

struct C { int i;‘/
explicit C(int i) : i(i) { std::cout << i<« ’ ?; }
C(const C& c) : i(c.i) { std::cout << #+i << ? ?; +4n; }

() { std:zcout ™" <« i<« ;)
b -
int main() {/

C cl(4 .
std::cout !! n

} /1 -T1 42

direct-init., calls C(int). cl is lvalue
copy-init. C(77) by C(int) is rvalue, sk
<< std::endl;

o C::C(const C&) is just not invoked!

o Yet, if you comment the copy constructor and explicitly delete it (C(const C&) = delete;) so
use of deleted

that no free copy constructor is provided, C++11 will give error:
function ‘C::C(const C&)’

Programming in Moder C+-+ Partha Pratim Das

rints 0 if the copy was elide

42"/

ips C(const C&) // 77
d, 1 otherwise 0
=

T10.10

an

Fa
L

PPl aElte i

Copy Elision: Copy Initialization

o What will be the output?

#include <iostream>

int n = 0;

struct C { int i;
explicit C(int i) : i(i) { std::cout << i <<’ ’; }
Clconst C& c) : i(c.i) { std::cout << ++i << ? ?; +4n; }

“C() { std:scout << "** << i< 2;)
b
int main() {
C c1(42); it., s C(int). c1_is lyalue
C 2 = C(TT); // cop ¢(7) by Clint) ;.;
std::cout & n << std::endl; prints 0 if th¥-eepy was e
} /1 <11 42

o C::C(const C&) is just not invoked!

o Yet, if you comment the copy constructor and explicitly delete it (C(const C&) = delete;) so

that no free copy constructor is provided, C++11 will give error:
function ‘C::C(const C&)’

Programming in Mode C+-+ Partha Pratim Das

s C(const Ck)

42
7
d, 1 otherwise 0

use of deleted

T0.10

In that let us introduce a data member, let us initialize the data member in the parameter

constructor, print the value of the data member. Also, let us copy the appropriate data

member value in the copy constructor and print its value with one increment. This increment

will tell us that this is getting printed from the copy constructor. Then we have a destructor

where all so I am printing the value so that we can trace exactly what is happening.

Now, if you do that, this is the parameterized constructor. This prints 42 as we expect, here,

first see 72 is expected to be executed. So, that will call the parametric constructor, so it will

print 72. After that you would have expected a copy to happen. But that copy call does not
happen. There is no printing of 78 happening from here. So, again even though there is a
direct data member to initialize and things to do, those get skipped by the constructor, that is
the copy constructor does not happen. And, and therefore prints us 0.

In fact, if you if you comment the copy constructor, and of course if he will say that if a copy
comments the copy constructor, then also how do | know that copy constructor is actually
invoked or not? Because the compiler will give me a free copy constructor. So, you can
comment out the copy constructor and explicitly delete it. You have already learned how to
delete a function in a class explicitly delete that so no copy of free copy constructor is

provided.

Then the C++ compiler will give an error the use of deleted function. I mean, is not it a little
funny because if | provided it does not invoke it, but if | say that it is not there, then it does
complain. So, that is what | was saying that here the behavior is like the direct initialization,
which is very similar to the copy behavior. But semantically it is different because it, it still
wants that a copy constructor must be accessible. So, it has to be accessible then it does not
use it. And now in all this, if you have to understand why this is happening, you have to note
that the C(77) is rvalue, because it is a temporary object which you have no control to hold

on.

(Refer Slide Time: 10:41)

pPRLQE T

[ﬁ;} Copy Elision: Copy Initialization

o Let us construct an object from an lvalue
—_—
#include <iostream>

int n = 0;

struct C { int i;
explicit C(int i) : i(i) { std::cout << i <« ?; }
C(const C& c) : i(c.i) { std::cout << ++i << ? ?; +4n; }
€0 { std:scout << " ¢ 1<}

]}.!;lt main() {//

C c1(42 , calls C(int). c1 is lvalue 42
Cc2 = it. C(77) by C(int) is rvalue, skips C(const C&) // 77
C &3 =(&) py-init., calls C(const C&) as cl is lvalue 43
std::cOUT << n << std::endl; prints 0 if the copy was elided, 1 otherwise 1

} 43 TT7 "42

Programming in Moder C++ Partha Pratim Das Tiol

PPl aEdlte i

g}] Copy Elision: Copy Initialization

Fa
L

o Let us construct an object from an lvalue

#include <iostream>
int n = 0;
struct C { int i;

explicit C(int i) : i(i) { std::cout << i<’ ?; }
(const C& c) : i(c.i) { std::cout << ++i << ? ’; +4n; }
“CO) { std::cout << "M << i<

b

int main() {
C c1(42); jirect-init., calls C(int). c1 is lvalue 42/
C c2 = C(77); py-init. C(77) by C(int) is rvalue, skips C(const C&) 77‘/
Cc3=cl; copy-init., calls C(const C&) as ci is lvalue 3
stdTTcout << n << std::endl; prints 0 if the copy was elid ise

d, 1 otherwvi 1
} /1 43 77 42
—_——
)
Programming in Moder C++ Partha Pratim Das TI011

Understanding that, let us see, that if we now change this code slightly to construct an object
from Ivalue. So, these remain same, all that this is same, this is same, but | add a third
initialization for instance ¢3 from c1 where you can see cl is Ivalue, whereas this one is an
rvalue. Now, you see something interesting, it does as before, this also does as before, but as
you try to copy constructor, as you try to construct c3 from c1 which is Ivalue, it actually

invokes the copy constructor.

And as it invokes the copy constructor c1 has a member value 42. So, it increments it to 43.
So, it prints 43. And at the end of the program, you will now see 3 objects getting deleted
with their respective values destructed with their respective values. So, this is this is the basic

copy elision that the compiler does.

(Refer Slide Time: 11:47)

PP QEL L

E@E Copy Elision: Copy Initialization

o Using -fno-elide-constructors option to disable copy-elision:
edlieeeodionncivaio e
#include <iostream>

int n = 0;

struct C { int i;
explicit C(int i),: i(i) { std::cout << i <<’ ?; }
Clconst C& c) : ic.i) { std::cout << ++i << ? ?; +4n; }
€0 { std:zcout <70 ¢ <€ ¥y }

int main() { /
C c1(42); direct-init., calls C(int). c1 is lvalue 42
Cc2= m cop} t. C(77) by C(int) is rvalue, skips C(const C&) V7 %8/%
Ta=(cl} py-init., calls C(const C&) as cl is lvalue 3V
std:icolt << n << std::endl; prints 0 if the copy was elided, 1 otherwise // 2
} /1 743 “78 "42 -
—

Programming in Modern C++ Partha Pratim Das 1012

PPl aElte

g;] Copy Elision: Copy Initialization

Fa
L

o Using -fno-elide<tonstructors option to disable copy-elision:
#include <iostream>
int n = 0;
struct C { int i;
explicit C(int i) : i(i) { std::cout << i <<’ 7; }‘ W
Clconst C& c) : i(c.i) { std::cout << ++i << ? 7; +; }

%00 { std:scout™XE*O K 1< ;|
}.

int main()
[QE‘ dir init., calls C(int). ¢l is lvalue 42
" m py-init. C(77) by C(int) is rvalue, skips C(const C&) b i ¢
ces= cl; P it., calls C(const C&) as cl is lvalue 43

std::cout << n << sfd::endl; prints 0 if the copy was elided, 1 otherwi 2
} /1 ~43 78 42

Programming in Moder C++ Partha Pratim Das 0.2

If you want to see that well, if the compiler were not aligning the copies, then how would you
look like in GCC you have a nice way you have a flag by this minus f means flag, fno-elide-
constructors, then it will disable the copy elision and you can see exactly as you expected it to
see. So, this will invoke the parametric constructor, this will then invoke again the parametric
constructor, that then it will invoke the copy constructor, you get 78.

And after having invoked that, the lvalue C(77). The temporary object which was created has
no use for any further. So, that temporary object is now deleted right here. And then this is a
copy construction that you have seen earlier. So, you are left with you have created 4 objects
and you have deleted 1. So, you are left with 3 objects that are deleted at the end, you will be
able to see that the value of n is 2 because you have invoked the copy constructor twice once

here and once here.

So, in copy elision, basically what you are doing when you do not have this flag on what you
are doing is when this object is constructed as an rvalue a temporary object, you do not
actually copy to c2 rather what you what the compiler does for addition is compiler takes the
address of the location of ¢2 and constructs a temporary object directly there. So, though it is
a temporary object, it is not constructing and then copying it, but it is directly constructing it

right here, which is actually semantically correct.

Now, that justifies why this call is not made. And why does it still need the copy constructor
definition? Because it needs to know whether it is allowed to make such a copy. Though it is,
it is constructing this temporary itself in the location of c2 semantically it is a copy operation.
So, it wants to know whether that copy operation is allowed. But it is optimizing by directly

doing that construction. That is the reason it does not need to call this particular copy

constructor. So, that is the kind of copy elision optimization that happens.

(Refer Slide Time: 14:29)

pPRBAHl O BN y
ﬁ Copy Elision: Return Value Optimization (RVO) é

Copy Elision: Return Value Optimization (RVO)

Programming in Moder C+-+ Partha Pratim Das TI0.13

pPRsQEdl te 0D

[ﬁé} Copy Elision: Return Value Optimization (RVO)

o Similar behaviour would be observed through function return by direct construction:
#include <iostream>
int n = 0;
struct C { int i;
explicit C(int i) : i(i) { std::cout << i <<’ ?; }
Clconst C& c) : i(c.i) { std::cout << ++i << ? ?; +4n; }
“C() { std::cout << """ <« i<’ ?;}
C f(int 1) {
return C(i); jirectly constructed object by C(int): C(i) is rvalue
} m is to be copy constructed by C(const C&) to be returned as rvalue. Skipped
C g(int 1) {
Cc(i); ¢ is lvalue needs C(int)
return ¢; ¢ by C(const C&) to be returned as rvalue
}
int maln()/ \
£(19); \/ £(19) is rvalue - unused and destructed 19 -19
g(35); £(19) is rvalue - ted 35 “35
std::cout << n << std::endl; 2 d - 0
zrogummmé in Modern C++ Partha Pratim Das Ti0.04

Let us take another example of copy elision which is return value optimization. We have the
same class, | define two functions f() and g(), f() construction object by parametric
constructor and directly returns in by value. And here it constructs into a temporary into a
local object, and then returns that by value, in both cases, you will expect that there will be a
copy construction, there will be a direct construction by the parameter constructor and a copy
constructor by return by value try to invoke these two functions, you will find that there is

just the direct construction happening, no copies are been made.

Which you can argue that both of these are actually rvalues and the compiler sees that this
rvalue has no use, it has not been assigned to anything or passed to some other function or a
method. So, it deduces that it is enough to just construct the object, but it then does not need
to actually copy it, it has no further use. So, that temporary object can be deleted. So, that is

example.

(Refer Slide Time: 15:58)

PP QE L SO D

{;;} Copy Elision: Return Value Optimization (RVO)

o Similar behaviour is also observed if the return value is used in initialization without being
discarded - however, the destruction order changes:
#include <iostream>
int n = 0;
struct C { int i;
explicit C(int i) : i(i) { std::cout << i <<’ ?; }
Clconst C& c) : i(c.i) { std::cout << ++i << ? 7; +n; }
O { std::cout << """ <« i<}

|4
C f(int i)

retu // directly
} // rvaludTH) is to be

b by C(int): C(i) is rvalue
d by C(const Ck) to be returned as rvalue. Skipped

C g(int 1) {
C c(i); t: ¢ is lvalue needs C(int)
return c; ¢ by C(const C&) to be returned as rvalue
}
int majg() { v
Cel)= £(19); t. £(19) by C(int) is rvalue, skips C(const C&) // 19
C c2 = g(35); init. g(35) by C(int) is rvalue, skips C(const C&) // 35
std::cout << n <« std tendl; rints 0 if the copy w ded, 1 otherwis 0
;rogummu%sm W i+ Partha Pratim Das TI015

pYvRsasudste N

ﬁ Copy Elision: Return Value Optimization (RVO)

o Similar behaviour is also observed if the return value is used in initialization without being
discarded - however, the destruction order changes:
#include <iostream>
int n = 0;
struct C { int i;
explicit C(int i) : i(i) { std::cout << i <<’ ?; }
C(const C& c) : i(c.i) { std::cout << ++i <<’ ’; +n; }
“C() { std::cout << """ <« i<<? 7}

C f(int i) {
return C(i); n by C(int): C(i) is rvalue
} // rvalue C(i) is to be copy c by C(const Ck) to be returned as rvalue. Skipped

C glingA) { v h
directly constructed object: ¢ is lvalue needs C(int)
rethrf @ return object constructed from ¢ by C(const Ck) to be returned as rvalue

}

int main() {
= £(19); copy-init. £(19) by C(int) is rvalue, skips C(const C&) // 19
= g(35); py-init. g(35) by C(int) is rvalue, skips C(const Ck) s
Aty N y

t :cout << n << std::endl; // prints 0 if the copy wa ded, 1 othe 0
} '35 “19
rogramming in Modsm C+-+ Partha Pratim Das TI015

Now, let us just give it a little twist, give the same this is same, this is same, except that now
instead of just invoking the function, I am invoking the function to initialize two objects c1
and c2, you will see the same behavior 19 constructed. So, this is constructed. But the copy

constructor is not invoked. Why is the copy constructor not invoked? Because it does the

copy elision that is it constructs this C(i) which is local to function f() in the address of cl1
itself.

So, that it does not unnecessarily need to do the copy and then delete that temporary object, it
saves on both of that. Similarly, when you do g(35), you have constructed C, so you get 35
and this return by value of this variable c is again optimized out by doing an addition that is
the compiler goes to the extent to see that this ¢ will actually get copies to c2. So, when it is
constructing the C(i), it is constructing in the address value of c2 itself. Of course, now, since
both of these have actually been instantiated into two local variables have made, the elisions
will happen at the end.

(Refer Slide Time: 17:31)

PPRLQAEs L 5, EN :
E@E Copy Elision: Return Value Optimization (RVO) l g !|

o Using -fno-elide-constructors option to disable copy-elision:
#include <iostream>
int n = 0;
struct C { int i;
explicit C(int i) : i(i) { std::cout << i <<’ ?; }
C(const C& c) : i(c.i) { std::cout << ++i <<’ ’; +n; }
"C() { std::cout << """ << i<’ ;)
C f(int) {
return C(i); directly constructed object by C(int): C(i) is rvalue
} rvalue T(i) is to be copy constructed by C(const Ck) to be returned as rvalue. Skipped
C g(int i)/{
Cc(i) irectly constructed object: ¢ is lvalue needs C(int)
refurn c/ return object constructed from ¢ by C(const C&) to be returned as rvalue
}
int main() { VA% 7oA
Ccl=£(19); copy-init. £(19) by C(int) is rvalue, skips C(const Ck) 19 20,19 21
C c2 = g(35); py-init. g(35) by C(int) is rvalue, skips C(const C&) //&5 % o 37
e, S &
std::cout << n << std::endl; rints 0 if the copy was elided, 1 otherwise 4
} /1731 "
r——
Programming in Modern C++ Partha Pratim Das T10.16

You can again use this flag to force that the compiler does not do any such copy elision if you
do that, then in this case, it will first construct this object then it will copy then it will delete
the temporary object and then it will again copy into c1 you know you can see that. Two
copies and one elision are happening additionally here whereas when you do the other thing,
you see the same behavior it first constructs then it copies return by value, then it distracts the
local object ¢ and then it copies into c2 finally, c1 and c2 are destroyed. So, you can see that
copy elision and how much of you know effort the copy the additional you know task which

IS unnecessary can be actually handled by the copy elision optimization.

(Refer Slide Time: 18:42)

PR QEHL SO T

[ﬁg Copy Elision: Language Specification

Copy Elision: Language Specification

Sources:

@ Copy elision, cppreference

Programming in Modern C++ Partha Pratim Das Two17

'1 PP aud o U ?
% Mandatory Elision: Copy / Move Operations &

F
N

o Under the following circumstances, the compilers are required to omit the copy and move
construction of class objects, even if the copy / move constructor and the destructor have
observable side-effects

o Objects are constructed directly into the storage where they would be copied / moved to

o The copy / move constructors need not be present or accessible:

o In a return statement, when the operand is a prvalue of the same class type (ignoring
cv-qualification) as the return type:

T£0 {

o More are specified for 17

Programming in Mode C++ Partha Pratim Das T1018

So, these are not just optimizations by the by the compiler, but they are language specified
also for example, in C++03 itself you had this kind of optimizations given that if you do
return T construction by value, then only one call to the default constructor will happen

exactly as we have seen.

(Refer Slide Time: 19:13)

r" pPRBQE Lt N
Y

A = .
L“.i Non-Mandatory Elision: Copy / Move Operations

o Under the following circumstances, the compilers are permitted, but not required to omit the
copy and move construction of class objects, even if the copy / move constructor and the
destructor have observable side-effects

o Objects are constructed directly into the storage where they would be copied / moved to

o This is an optimization: even when it takes place and the copy / move constructor is not
called, it still must be present and accessible (as if no optimization happened at all), otherwise
the program is ill-formed:

o In a return statement, when the operand is a named object (and not a function or a catch
clause param) with automatic storage duration, and which is of the same class type
(ignoring cv-qualification) as the function return type. This variant of copy elision is known
as Named Return Value Optimization (NRVO)

o In the initialization of an object, when the source object is a nameless temporary and is of
the same class type (ignoring cv-qualification) as the target object. When the nameless
temporary is the operand of a return statement, this variant of copy elision is known as
Return Value Optimization (RVO) v

o Return value optimization is mandatory and no longer considered as copy elision since

Programming in Moder C++ Partha Pratim Das T1019

Similarly, there are it can it can in a return statement, if your operand is a named object that is
Ivalue then you will have NRVO Named Return Value Optimization. If it is the initialization
of your object with a nameless temporary that rvalue you will have rvalue optimization. And
in C++17 this rvalue optimization is no more considered a copy elision it is mandatory and it

is different or optimization altogether. But C++17 we are not discussing at that length.

(Refer Slide Time: 19:56)

[ﬁ;] Sorting Objects

Sorting Objects

Programming in Modern C++ Partha Pratim Das T2

PP AHIl L T

[géj Sorting Objects

o To illustrate the effect by copy optimization, we consider a tiny sorting project
o We intend to sort objects of a data class D having resource of a class R
o We define the following to get started:
o Resource class R
o Data class D
o A template function swap
o A template function sort to bubble sort an array
o The main function to initialize an array and sort it
o We are interested to see the trade-off of move and copy. So we build a statistics support in the
code to count the number of constructfons and destructions of the resource objects from class R
o Initial version works with only Copy operations
o We next add move operations in Data class D and move support in swap function
o We compare the statistics to show the huge benefit accrued with the move semantics

Programming in Moder C++ Partha Pratim Das T021

So, having said that now we are set to just show you a sample, you know sorting project,
where you can see this benefit. So, we have a resource class R. So, it is just a dummy
resource class, which will just have an integer a data class, which has a resource of the
resource class R, and we have templatized swap function, a bubble sort function templatized
to sort an array and a main function to give the calls. So, let us see how does that work.

(Refer Slide Time: 20:28)

rPPRBLAEHSL SO T

E:ﬁ] Sorting Objects: Copy Support)

Sorting Objects: Copy Support

Programming in Modern C++ Partha Pratim Das T2z

pPRLQEd to

g;] Resource Class, R

Fa
L

o Let us consider a resource class R, and

o A data class D having resource R:

struct R {
int i; I 1 resource

int i) : i(1) { }

R(const Rz 1) : i(r.i) { }
RO {}

i

struct D { // Data class w
R* r; F

—

Programming in Moder C++ Partha Pratim Das T1023

So, first we start with the functions with copy, | mean classes with copy support, everything
is with copy support. So, this is my resource class, it has constructors and destructors as
expected, and my data class has a resource of that resource class are so, it is a it holds a
pointer to that resource. So, every time it has to get a proper resource object constructed to
get this value.

(Refer Slide Time: 21:00)

E:&i} Data Class, D

pPRsAEd te .

X

struct D { // Data class with resource
R* r;
D() : r(nullptr) { }
D(int i) : r(new R(i)) { } ric constru
D(const D& &) : r{new R(*(d.r))) { } // Copy tor - co
D& operator=(const DE) { Copy assignment -

if (this 1= &d) { Self copy guarc
delete r;
r = new R(x(d.r));

}

return *this;

“D() { delete r; } Destructor - free resour
friend bool operator>(const D& c1, const D& c2) { Jompare D objects for sorting

return cl.r->i > ¢2.r->i;
friend std::ostreamk operator<<(std::ostreami os, const D& d) { // Stream D objects
0s << d.r->i << ? 7,
return os;
b
Programming in Modern C++ Partha Pratim Das Tio24

So, in the data class it has appointed to this so, it has all its usual operations of you know
default will set it to null. Otherwise, if it is parameterized, then it will construct an object with
value R->i will allocate for that, and put that pointer in case of a copy construction, it will
copy the value of the resource from the source object and construct a new object through that

is a deep copy will get done, this is exactly what happens in the copy assignment operator

delete will have to release this resource. So, the

standard scenario and then we have a we

have friend operator out stream function to just you know, do our understanding of what is

going on. And | have provided a operator greater than comparison operator of two D objects

so that | can do sorting based on that.

(Refer Slide Time: 22:15)

L

g%} sort Function

sasad te

e

o We store N number of D objs in an array

o We sort the array by Bubble Sort in ascending order

j{mplate«ypename ™

void swap(T& a, Tkb) { and b using cop
Tt=a; t copy- rom two a’s
a=b; a cop o b’s,

b=t b cop
} // t destroyed

template<typename T>
void sort(T arr[], int n) { bl
for (int i = 0; i <n - 1; ++i)
for (int j = 0; j <n-1i-1; +j)
if (arr(j] > arr(j + 1) {
swap(arr(j], arr(j + 11);
—_——

Jompare by D::operator>
—_

s of R objs with copj
f R objs with mow

Partha Pratim Das T1025

So, now, to do the sort function, what do we need, this is a this is a bubble sort function it

issues that the data values are of type T, and the

rest of it is Bubble sort function which is

which, you know, so | am not going to explain the reason | have chosen Bubble sort is it is

easy for analysis. And | am going to construct a worst case for Bubble sort that is elements

are sorted in a certain order and | want to sort them in in the opposite order.

So, this is a comparison which will use the comparison operator actually I should write here

not D | should write here T, T::operator greater than and that will need to swap two objects.

Now, when you want to swap these two objects, then naturally I make use of this swap

function, which is standard templatized swap function which as you know, does multiple 3

copies. So, 3 constructors and destructors of the resource object with copy will be will have

to be done with move the scenario will change.

(Refer Slide Time: 23:30)

pPRBAEd e

i Function
E’J malin
int main() {

const int N = lb;r
D arr[N];
s

for (int i =N -1; i >=0;
arr[i] = D(N - i);

by D::operator=(const D)

ng. 1098764321

————

S——— Cons

ifor (int i = 0; i < N; ++i)

std::cout << arr[i]; std::cout <<

gort(arr, N); Sort ar ing order __»

for (int i = 0; i < N; ++i) nt array after s ng. 12345678910
% std::cout << arr[i]; std::cout << std::endl;

}

o To get an estimate for the resource construct. and destruct., we build a worst-case for Bubble
Sort, that is, populate arr in strictly descending order. Being sorting, this is dominated by swap
o Clearly in the worst case number of swaps = ZN,]I i= w Hence number of

i=
. ’ p 3eNa(N-1
(unnecessary) resource constructions and destructions = 3 * # of swaps = 281

Programming in Moder C+-+ Partha Pratim Das T1026

Now, let us see what happens in the main function | declare an array this is the number of
elements size of the array and the number of elements | assume them to be same, | declare an
array which means that the default constructor of the D class is used to fill the array with D
objects having null resource pointers, then | fill up this array using which with D(N — i)
objects, so you can see that | am actually filling them up in the increasing order in the

decreasing order.

So, 10-1, so this is the order in which that will be filled up, because | said | want to create a
worst case. So, every time | do this, | will construct this D(N — i) by the parameterized
constructor, then I will have it have to do the assignment using the copy constructor to
construct and deconstruct the R objects as they exist. This is just to print the array so that they
can see what is in then I call the sort function. The template is sort function and called sort
output now and sort what does the sort function do? It tries to sort them in the increasing
order, but this is strictly in the decreasing order. And I want to make them into increasing
order. So, | want to do just the opposite. So, which means that if 1 go back to the sort

function, it will be easier to see.

(Refer Slide Time: 25:11)

pPRLAEL O

[ﬁj main Function

int main() { pop
const int N = 10;
D arr[N];

for (int i =N -1; i >=0;
arr[i] = D(N - i); v 1 by D::operator=(const D&)

for (int i = 0; i < N; ++i) g. 10987654321
std::cout << arr[i]; std::co
sort(arr, N); Sor
for (int i = 0; i < N; ++i) ar
std::cout << arr[i]; std::cout << std::endl;

}

o To get an estimate for the resource construct. and destruct., we build a worst-case for Bubble
Sort, that is, populate arr in strictly descending order. Being sorting, this is dominated by swap

2 N-1- N—
o Clearly in the worst case number of swaps = 2:11 i= M Hence number of
3eNs(N-1)
— 5

g. 12345678910

(unnecessary) resource constructions and destructions = 3 * # of swaps =

Programming in Modem C++ Partha Pratim Das T1026

g? sort Function

pPRs Al te .

7
PN

o We store N number of D objs in an array
o We sort the array by Bubble Sort in ascending order

template<typename T>
void swap(T& a, Tkb) { // Swap a and b using copy

Tt=a; t copy- a a’s
a=b; a co m b: two b’s a
t o t’s b

b=t; Bedoid
} // t destroyed

template<typename T>
void sort(T arr[], int n) {

for (int i = 0; i <n - 1; ++i)
for(intj=0;j<n-i-j;++j)

if (arr[j] > arr[j + 1]) {

e by D::operator>

swap(arr[j], arr(j + 11); jestr.s of R objs with copy
) r. and destr. of R objs with move
Programming in Modern C+-+ Partha Pratim Das 1025

If you look into this sort function, then you will see that since it is strictly in the decreasing
order, and | want to make it, so, every time | do this comparison, this is going to succeed that
is, that is the reason | am using Bubble sort. So, very easy, you know, worst case. So, since
they are the numbers are decreasing, and | want them increasing, so, every time | compare the
consecutive pairs, they are in the wrong order. So, this will always be true, which means that

as many times as these loops go on this swap function will be called.

(Refer Slide Time: 25:50)

| 3 B

[l‘;} main Function

int main() {
const int N = 10
D arr(N];

for (int i =N -1; i>=0;
arr[i] = D(N - i); on by D::operator=(const D&)

for (int i = 0; i < N; ++i) g. 10987654321
std::cout << arr[i]; std::cout << st

sort(arr, N);

for (int i = 0; i < N; ++i)
std::cout << arr[i]; std::cout << std :endl;

g. 12345678910

}

o To get an estimate for the resource construct. and destruct., we build a worst-case for Bubble
Sort, that is, populate arr in strictly descending order Bemg 5ol I)g this is dommated by swap
o Clearly in the worst case number of swaps = Z 71 { N=0¥Hence numiser o

: - 3eNs(N-1
(unnecessary) resource constructions and destructlons =3 % £ of swaps o 2(-1)
Programming in Modern C++ Partha Pratim Das T1026

So, if | put a little algorithm analysis into this, then this basically means that, in every loop, it
will depend on the value of i, how many times it happens and it goes from 1 to N - 1, hence,
the total N the number of times the swapping will be done is N to N - 1 by 2. So, in every
swap, | have 3 assignments, copy assignments, so what will happen is | will have 3 resource
objects created and free resource object destruct. So, this is, this is the amount of construction

destruction of the resource objects that | am going to do.

(Refer Slide Time: 26:39)

rpPRBAHL SO T

EH Sorting Objects: Statistics Support

Sorting Objects: Statistics Support

Programming in Modern C++ Partha Pratim Das Two2r

pPRBAEL e

@ Resource Class R with Statistics
i

Fa
L

o To count the exact number of constructions and destructions of R objects, we add three static
counters in R
o We also add a static method stat() to print the statistics at anytime from anywhere

struct R {
int i; d resource
R(int i) : i(i) { _++nCtor; } Parametric constructor
R(const R& r) : i(r.i) { ++nC_Ctor; }

“RQ { +ndtor; }
e /

nsigned int nCtor}
nsigned int nC_Ctor;
nsigned int nDtor;/

static \
static
static

static froid stat(std::string s) { // Print R object statistics
d::cout << s /* Banner message */ << "R obj Created = " << R::nCtor <<
" R obj Copy Created = " << R::nC_Ctor << " R obj Destroyed = " << R::nDtor <<

std::endl;

}

l.égmmmmg in Modern C++ Parth Pratim Das TI028

Now, to this was analytical, so, if we if | really want to see the number that is happening, |
need to provide some support for the statistics. So, that you can these are techniques you can
do in in any, any class to if you are working on the performance. So, | put some counters
accounted to count the number of times direct constructed reasons number of times a copy
constructor is used and the number of times the destructor is used and the respective counters
are incremented in the respective function calls. And then | have a stat function, which
basically prints the values of these counters at any point of time, all of these are static,

because they are not bound to any particular R object, but should be usable anywhere.

(Refer Slide Time: 27:30)

pPRsAEd e

r@ Resource Class R with Statistics
12N

o Static counters of R are globally instantiated and initialized with 0's.
o We also add helper class Stat whose constructor and destructor calls R: :stat (). Next we
globally instantiate an object extremeStat of Stat
o Being global static, extremeStat is constructed before main() is called and is destructed
after main() returns
o Hence the statistics in printed before calling main() and after returning from main()

Instantiations of static R objects in global namespace
unsigned int R::nCtor = 0;
unsigned int R::nC_Ctor = 0;
unsigned int R::nDtor = 0;

struct Stat { // Helper class t ;:;:% bjects s
Stat() { R::stat("Program Start: "); } // C re main(), initial stat
“stat() { R::stat("Program End: ")) Destruct after main(), final stat

} extremeStat;
—_—

Programming in Modem C++ Partha Pratim Das T1029

Now, since | have these static members, so | will need to instantiate them in the global space,

and | instantiate and initialize them with 0. In addition, | do something, interesting is | define

another class struct in whose constructor I call this stat function, say with program start and
the stat function again in the destructor with program end and define a variable of instantiate

it in the global.

So, what will happen, this is a static object, extreme stat will become a static object.
Therefore, as you know, static objects must be constructed before main starts, and they are
distracted after main ends. So, this function will get called before main starts and this
function will get called after main returns. So, | will be able to get the first and the final

statistics. So, that is just a just a nice technique to create statistics.

(Refer Slide Time: 28:36)

pPRseud te.

E@] main Function with Statistics

int main() { pop
const int N = 10;
D arr(N];
s "Array Defa: ");

for (int i=N-1; i>= -
arr[i] = DN - 1); onstruct by D::D(int), assign b

D: :operator=(const D&)

\,l(:stat("Array Init: ");
for (int i = 0; i < N; ++i) Print
std::cout << arr[i]; std::cout <
sort(arr, N); Sort
\/f: :stat("Array Sort: ");
for (int i =0; i < Nj ++) int array after
std::cout << arr[i]; std::cout << std::endl;
} // statistics after destruction of array elements by s."Stat()
Program Start: R obj Created = 0 R obj Copy Created = 0 R obj Destroyed = 0
Array Defa: R obj Created = 0 R obj Copy Created = 0 R obj Destroyed = 0
Array Init: R obj Created = 10 R obj Copy Created = 0 R obj Destroyed = 0
10987654321
Array Sort: R obj Created = 10 R obj Copy Created = 135 R obj Destroyed = 135
12345678910 :
Program End: R obj Created = 10 R obj Copy Created = 135 R obj Destroyed = 145"
Programming in Moder C++ Partha Pratim Das T10.30

pPRBQE Lt U

[ﬁé} Analysis of Statistics

® Program Start: R obj Created = 0 R obj Copy Created = 0 R obj Destroyed = 0 v
O Static object extremeStat constructed by Stat: :Stat() before main() is invoked, reports statistics

® Array Defa: R obj Created = 0 R obj Copy Created = O R obj Destroyed = 0 v
0 D arr[N]: N = 10 D objects are coffstructed by D::D(). As D: :r is set to nullptr in each, no R object is

constructed s
® Array Init: R obj Created = 10 R obj Copy Created ﬂ’R obj Destroyed = 10
0 ... =DV - 1): "= 10D object¥are constructed by D: :D(int). 7 D: :r is set to new R(i) it each, N = [0 R
object ¥TTTtTACted
O arr(i] = ...: D(N - 1) is now copy assigned to arr elements by D::D(const D& d). Hence, the resource R
objects is destructed (delete r) and constructed (new R(*(d.r))) for each
O Note that D(N - 1) is an rvalye, yet it is copy assigned as there is no move assignment
010987654321
O arr before sorting. Filled with a strigs
® Array Sort: R obj Created =

decreasing sequence N

R obj Copy Created =

R obj Destroyed

eMe(i—1) _ 3veefi0-1)

0 sort(arr, N);: Being the worst caof bubble sort, 2 = 135 R objects are Gonstructed by
R::R(const Ri) and destructed by R::"R() for 45 swaps. Note that t, a, and b in swap are Ivalues
012345678910
O arr after sorting in increasing order
® Program End: R obj Created = 10 R obj Copy Created = 145 R obj Destroyed = 155
O int main() { ... }: Remaining N = 10 D objects destructed by D:: D() with delete D::r. Static object
extremeStat destructed by Stat::“Stat() after main() returns reports

Programming in Moder C++ Partha Pratim Das T1031

So, | do the same thing in the main after the default initialization, | print statistics after filling

that arr[i], statistics after sorting, | print statistics and | get all of these. So, if you just recall

what will this mean this will mean that initially everything is 0, because no objects are
created so far, then after the default, again, no R objects are created, because the D objects

initialize the resource as null pointer.

Then after | initialize the array by this every time, | construct a D object with parameter in R
object will get initialized will get created so | have 10 creations of these and then they will be
copied 10 times to arr. So, there are 10 copies and those temporaries will be deleted. So, there
are 10 deletions. So, if you look into that and then I have this, then have the sort. And in sort
you can see that creation still remains to be 10. But | have 145 copies created instead of 10.
So, 135 more copies have been created these are because of the swap and those are created

and destroyed. So, just see how west fall it is.

(Refer Slide Time: 30:14)

PPl aEdlte . i

[gé} Analysis of Statistics

® Program Start: R obj Created = 0 R obj Copy Created = 0 R obj Destroyed = 0
O Static object extremeStat constructed by Stat: :Stat() before main() is invoked, reports statistics
® Array Defa: R obj Created = 0 R obj Copy Created = 0 R obj Destroyed = 0
O D arr[N]: N = 10 D objects are constructed by D::D(). As D::r is set to nullptr in each, no R object is
constructed
® Array Init: R obj Created = 10 R obj Copy Created = 10 R obj Destroyed = 10
O ... =D(N - 1i): N=10D objects are constructed by D: :D(int). AsD::r is set to new R(i) in each, N=10R
object is constructed
O arr(i] = ...: D(N - i) is now copy assigned to arr elements by D::D(const D& d). Hence, the resource R
objects is destructed (delete r) and constructed (new R(*(d.r))) for each
O Note that D(N - 1) is an rvalue, yet it is copy assigned as there is no move assignment
010987654321
O arr before sorting. Filled with a strictly decreasing sequence
® Array Sort: R obj Created = 10 R obj Copy Created = 145'R obj Destroyed = 145
0 sort(arr, N);: Being the worst case of bubble sort, 2X#=1) — m’;}ﬂ‘ = 135 R objects are constructed by
R::R(const R&) and destrucsd by R: :"R() for 45 swaps—Nutethat t, a, and bn svap are Ivalues
012345678910
O arr after sorting in increasing order
® Program End: R obj Created = 10 R obj Copy Created = 145 R obj Destroyed = 155
= s—
O int main() { ... }: Remaining N'= 10 D objects destructed by D:: D() with delete D::r. Stau";'object
extremeStat destructed by Stat::“Stat() after main() returns reports

Programming in Modern C+-+ Partha Pratim Das TI031

And if you can tallied with the analytical formula, we have just derived you will find that this
is 135 which tallies with the fact that 10 plus 135 is 145 then you have the adding and finally,
you have the total copies created at 145 direct creation is 10 from here and therefore, the 10
objects in the array that existed when the main ends those will get destructed. So, you will
have 155 destructions.

So, you can see that you actually needed 10 objects to be created and 10 objects to be
distracted, but you have along with that you have created 145 objects Additionally, R objects
additionally and 145 R objects you have destructed.

(Refer Slide Time: 31:04)

pPRBAEHL SO BN

ects: Move Support

Sorting Objects: Move Support

Programming in Moder C++ Partha Pratim Das TR

PP QE L SO U

Class D with Move Support

o To minimize copies, we provide move operations in class D to be able to move rvalues whenever
possible

struct D { // Data class
R* r;
DO);
D(int i);
D(const D& d);
D& operator=(const D& d); /
D0);

D(D&k d) : r(d.r) { d.r = mullptr; } // Move
D& operator=(Dik d) { Move ass
if (this != &d) { Sel
r=d.r;
d.r = nullptr;

}
return *this;
b

o We again run the program and gather statistics
Programming in Modern C++ Partha Pratim Das TI033

'1 L R O B A SRR VR
!

ﬁ Analysis of Statistics: Move Support in Class D

o Here is the statistics with move support. We note the changes:

® Program Start: R obj Created = 0 R obj Copy Created = 0 R obj Destroyed = 0
® Array Defa: R obj Created = 0 R obj Copy Created = O R obj Destroyed = 0
® Array Init: R obj Created = 10 R obj Copy Created =_O=R obj Destroyed = 0
0 ... =D(N-i):N=10D o’bj_ects are constructed by D::D(int). AsD::r is seffo new R(3) in
each, mm is constructed
0 arr[i]{=\...: DN - i) is now move assigned to arr elements by D::D(D&& d) since DN - i) is
3 rvalue

0 Hence, no resource R object is destructed or constructed - just owenership of resource is transferred
10987654321

Array Sort: R obj Created = 10 R obj Copy Created = 135 R obj Destroyed = 135
12345678910 ==

Program End: R obj Created = 10 R obj Copy Created = 135 R obj Destroyed = 145

Programming in Modem C++ Partha Pratim Das TI034

So, that is the basic problem with temporaries. So, how do you get rid of this you know that
you can give a move support. So, you say | will not copy, if not required, I will not copy the
D objects, | will move them. So, | have a move constructor and a move assignment operator
added now. So, how will that impact, it will impact in the sense that if | run the program
again, when I am doing arr[i] = D(N — i), D(N — i) is a constructed object and D(N — i) is an

rvalue.

So, in this assignment, it is not the copy assignment which will bind it is a move assignment
that will bind and in the move assignment, | will simply move the resource | do not need to
copy the resource. So, after 10 when | do this, I will have only 135 copies made instead of |
was earlier having 145, I will have 135 only. Because these 10 copies that were required here

copies and destruction that were required here is saved. So, some benefit has been obtained.

(Refer Slide Time: 32:28)

pPRBAELte

{%éj swap Function with Move Support

o To minimize copies further, we provide move support in swap() function using std: :move

template<typename T>

void swap(T& a, Téb) {
T t = std::move(a); t move-
a = std: :move(b); a mo
b = std::move(t); b mov fr q

} // t déstroyed, bR no resource destruction as t had no ownership

Programming in Moder C++ Partha Pratim Das T1035

Now, next we can actually the culprit is a swap function. So, what | can do is | can use
std::move from the library in the swap function and make all of that move. So, that the values
just keep on keep rotating around they are not copy created. So, if we do that, then naturally
all of these will be the first one the second one the third one all our move assignments move

of values.

(Refer Slide Time: 33:04)

pPRsQEl te 0N

Eﬁ;} Analysis of Statistics: Move Support in Class D and Fun

o Here is the statistics with move support. We note the changes:

® Program Start: R obj Created = 0 R obj Copy Created = 0 R obj Destroyed = 0
® Array Defa: R obj Created = 0 R obj Copy Created = O R obj Destroyed = 0

® Array Init: R obj Created = 10 R obj Copy Created = 0 R obj Destroyed = 0
010987654321

® Array Sort: R obj Created = 10 R obj Copy Created = 0 R obj Destroyed = 0

— | :
0 sort(arr, N);: Being the worst case of bubble sort, w = %D_'

performed. But no swap copies any R object only moves™
0 Hence no unnecessary construction and destruction of R objects
12345678910
® Program End: R obj Created = 10 R obj Copy Created = 0 R obj Destroyed = 10

= 45 swaps are

Programming in Moder C++ Partha Pratim Das 1036

So, for that, no, R object needs to be created or destroyed. Therefore, if you with this
modified swap function, if you run you will see that in short, there is no copy created of the R
object neither of neither therefore, they are destroyed. So, if you analyze all that you need is
45 swaps, which needed earlier 135 construction destruction, but all those 40, all those
unnecessary construction destructions have been optimized out now, at the end, you have just
10 constructions for the 10 objects and 10 destructions for the 10 objects the resources are

optimally used.

(Refer Slide Time: 33:54)

[R-E S RN A

Eﬁi Sorting Objects: Summary

Sorting Objects: Summary

Programming in Modern C+-+ Partha Pratim Das T

r‘ pPRLQEd e
¥

H Analysis of Statistics: Summary

L

struct D void swap(T&, T&) || R(int) | R(const R&) RO
Only [Copy+ || Copy Move
Copy | Move
Yes Yes N 3xz(;a-1) N 3}(-(;&—1) LoN= N-(s;l—i)
]
Yes Yes ¥ Weli=t) |y | Felit) |y Ne(R1)
2 2 2
Yes Yes N s (i-1) eli=1) | 0 _ Ne(3i-1)
B 2 2 =R
Sy
Yes Yes N 0 N
C -_— — ’

o With move support in the class and in swap function, we can elide O(N?) copies (and
destructions) ‘

Programming in Moder C++ Partha Pratim Das T1038

So, that is the director demonstration of the benefit of what you get by providing the move
support. Here | have given a table for your understanding that there are two places to support
this in this particular project one is in the class D you can have only copy support or copy and
move support and in the swap function, you can only copy version of soft function or move

version and naturally for combination.

So, if you do say if you do not have a copy move support in D then irrespective of which
swap function you use, you have the same complexity if you have move support in D but not
in the swap, you get little less but you still have a lot of unnecessary copies happening.
Whereas if you move supporting both, then you have no extra copies being done. So,
ordering swap copies are now really optimized out. So, that is a big optimization that the

program can guide to guide the compiler to do.

(Refer Slide Time: 35:08)

Sorting Objects: Project Codes

Programming in Modern C++

Partha Pratim Das

Ti0.39

PP QEl Tt

E;;} Resource Class R

vi, BN

struct R {
int i; ped resource
R(int 1) : i(i) { +nCtor; }
R(const Rk r) : i(r.i) { ++nC_Ctor; }
“R() { ++nDtor; }

static unsigned int nCtor;
static unsigned int nC_Ctor;
static unsigned int nDtor;

static void stat(std::string s) {
std::cout << s /* Bamn

<< "R obj Created = " << R::nCtor <<

" R obj Copy Created = " << R :nC_ Ctor << " R obj Destroyed = " << R::nDtor <<

std::endl;
b
unsigned int R::nCtor = 0;
unsigned int R::nC_Ctor = 0;
unsigned int R::nDtor = 0;

struct Stat { // Helper class to prin
Stat() { R::stat("Program Star
“stat() { R::stat("Program End:

} extremeStat;

Programming in Modern C-+-+

Partha Pratim Das

re main(), initial stat
r main(), final stat

T4

ﬁ Data Class

struct D
Re 1;
D() : r(nullptr) { } Defau
D(int i) : r(nevw R(1)) { } Par
D(const D& d) : r(new R(*(d.r))) { }
Dk operator=(const D& d) {
if (this != &d) { // Selt

delete r; * Free resource */ r = new R(*(d.r));

} return #this;

}
D() { delete r; } t
#ifdef MOVE_ If MOVE_ is defined (set -D= ‘WVE
D(D&k d) : r(d.r) { d.r = nullptr; }
D& operator=(Dik d) { ove a
if (this != &d) { g

flag in GCC to

r =d.r; * M resource #/ @.r = nullptr;

} return #this;

#endif // _MOVE_ End of conditional compilation by

friend bool operator>(const D& c1, const D& c2) {
return cl.r->i > ¢2.r->i;

friend std::ostreamk operator<<(std::ostreamk os
0s << d.r->i << ’ ’; return os;

inlgummmg in Modem C++

MOVE

, const D& d) {

Partha Pratim Das

define _MOVE_), use move operations

Ti041

L S B A A RS

)
T main Function

7
PN

int main() { // To populate and sort g £ D objs having R
const int N = 10; s of array and. nnE %
D arr(N];
R::stat("Array Defa: ");

ts with D objs having R obj resources
for (int i = N - 1; i >= 0; --i)
arr(i] = D(N - i); Sonstruct by D::D(int), assigr
D::operator=(const D&) for copy, constr. / destru. R objs
D::operator=(Dkk) for move, no constr. / destru. R objs

R::stat("Array Init: ");
for (int i = 0; i < N; ++i)
std::cout << arr[il;

std::cout << std::endl;

sort(arr, N);

R::stat("Array Sort: ");
for (int i =0; i < N; ++)
std::cout << arr[il;

std::cout << std::endl;

Programming in Modem C++ Partha Pratim Das T1043

s."Stat()

And this is just one example | have shown, you can see this in the whole. In the next couple
of slides, I will not go through I have just put together the entire code one after the other, as it
finally stands out this struct R, the struct stat, the struct D, the two versions of the swap

function, the sort function, and finally the main function.

(Refer Slide Time: 35:38)

pPRLQEL O

[ﬁ] Problems

o Provide construction / destruction counting and statistics generation support for class D

o Consider that the resource in D is held as a data member (R r;) and not as a pointer
(R *r;). Provide appropriate support in classes R and D to avoid unnecessary copies
during sorting

o Explore the move support in standard library containers, especially vector and map

Programming in Moder C+-+ Partha Pratim Das TI044

So, you can put them together into one source file and execute with move, without move and
so on and experiment further. And here are some problems that you can try out like providing
construction destruction counting, and statistic generation support for the class D objects also.
We are just done for class on the resource object, you can change the resource from being a
pointed resource to an actual data member resource, and we will need to make changes in the

class R as well. To optimize unnecessary copies out, you can explore on the move support,

which are available in containers in the standard library, particularly vector and map and so

on.

(Refer Slide Time: 36:25)

pPRB ATl te

@ Tutorial Summary

o Understood optimization by copy elision
o Understood copy / move optimization by Rvalues and Move Semantics

o Developed a complete sorting project with copy optimization by move

Programming in Moder C+-+ Partha Pratim Das T1045

So, in this tutorial, we have tried to explain the optimization by copy elision. And we have
understood the copy and move optimization by rvalue and move semantics through a small
example with a complete project. Thank you very much. | hope you this will be useful for
you in understanding the rvalue and move semantics and their one of their use in this context.

So, see you in the next discussion.

