
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Tutorial 10

How to optimize C++ 11 programs using rvalue and move Semantics?

Welcome to Programming in modern C++. We are going to discuss tutorial 10. How to

optimize C++ programs using rvalue and move Semantics?

(Refer Slide Time: 0:44)

We have during the course of our discussion on rvalue references universal references and the

move operations. We have seen that this support can significantly reduce the necessity to

copy particularly the temporary objects. In this tutorial, we are going to discuss a number of

examples to illustrate which of these optimizations can as it is be done by the compiler and

for which it needs the support from the program to suggest to the compiler as to what can be

optimized out that is what can be treated as a temporary object as an rvalue.

(Refer Slide Time: 1:41)

And we will get towards building up a small but complete project of sorting an arbitrary data

type containing resources to understand this.

(Refer Slide Time: 01:55)

So, if we talk about optimizing C++ program obviously, you know there are several

optimizations and C++ has always produced fast programs. But unfortunately, there is one

problem area which slows down many C++ program that is creation of temporary objects.

C++ to keep its object orientation to keep its implementation of various semantics, need to

regularly create temporary objects and delete them.

And when you put those things together, then often you have a lot of temporary objects

which are created and deleted. Now, sometimes, these objects can be optimized away by the

compiler. And that process is known as copy elision. Copy elision is an optimization

technique that remove eliminate the unnecessary copying of objects. Copy elision primarily

depends on the identification of rvalues by the compiler, because you know, that rvalues can

be removed, can be optimized away once they are used.

Because since they do not have a name, they cannot be used by the programmer, and

therefore, after it their use if they are removed, then it does not really impact the correctness

of the program. In addition, what the compiler can do is, in addition to what the compiler can

do, we can also help the compiler by explicitly marking rvalues. And how do we do that, we

can do that by providing rvalue references or by providing move operations along with the

copy operations if they are at all needed. So, in this tutorial, we are going to elucidate some

of these scenarios of copy elision and the sorting project that I just mentioned.

(Refer Slide Time: 4:00)

So, let us first look at copy elision. As I told it is a compiler optimization technique that

eliminates unnecessary copying of objects. And there are several such which exists the most

common being the return value optimization. I have talked about this earlier, but in this

tutorial, I am going to talk about it in little bit longer length. The other place where copy

elision can be used effectively is copy initialization. It is usually equivalent to a direct

initialization in terms of performance, but semantically it may be different because it requires

an accessible copy constructor. So, let us see what all can be done in terms of copy elision.

(Refer Slide Time: 4:56)

So, first, let us look at copy initialization of objects. I have a very small class see here most

often I have written classes as struct. Because the issue of encapsulation or access restriction

is not the focus to discuss whatever we are discussing in terms of structs will apply equally

well for the classes altogether. So, we have an explicit constructor, which is a parametric

constructor, and it has a copy constructor which does nothing but there is a global variable n

which the copy constructor is supposed to increment.

And we do not do we have a parameter constructor we do not have any data, because we are

not interested in looking at the data member values and so on immediately. So, in the context

of this, we have removed these two-object initialization you can easily make out that this is a

direct initialization where we are expected to invoke the parameter constructor and see one

after that invocation will become an added value.

The next one, as we will identify is a copy initialization C(77). This particular object will be

constructed by the parametric constructor and then from that a copy initialization will be will

happen to c2. And this is it is to be noted that C(77) is rvalue here. The interesting thing is if

you actually execute this program, and to test whether the copy initialization is or the copy

constructor is getting invoked, or how many times it is getting invoked, we are incrementing

n every time it is invoked, and we at the end, we print n.

Now, if you execute this program, irrespective of whether you do that in GCC, or in

Microsoft Visual C++, whether you do it in release build or in debug build whatever, it will

always print 0. And you will get amazed because, you know, it is not only that it is keeping

the copy construction, but the copy construction has a side effect it is keeping that as well.

And before you think that this is an error of the compiler, let me tell you that this actually is a

language specification. Now, you might think, it is not doing something because the copy

constructor does not do anything meaningful. So, let us try to put something meaningful.

(Refer Slide Time: 7:52)

In that let us introduce a data member, let us initialize the data member in the parameter

constructor, print the value of the data member. Also, let us copy the appropriate data

member value in the copy constructor and print its value with one increment. This increment

will tell us that this is getting printed from the copy constructor. Then we have a destructor

where all so I am printing the value so that we can trace exactly what is happening.

Now, if you do that, this is the parameterized constructor. This prints 42 as we expect, here,

first see 72 is expected to be executed. So, that will call the parametric constructor, so it will

print 72. After that you would have expected a copy to happen. But that copy call does not

happen. There is no printing of 78 happening from here. So, again even though there is a

direct data member to initialize and things to do, those get skipped by the constructor, that is

the copy constructor does not happen. And, and therefore prints us 0.

In fact, if you if you comment the copy constructor, and of course if he will say that if a copy

comments the copy constructor, then also how do I know that copy constructor is actually

invoked or not? Because the compiler will give me a free copy constructor. So, you can

comment out the copy constructor and explicitly delete it. You have already learned how to

delete a function in a class explicitly delete that so no copy of free copy constructor is

provided.

Then the C++ compiler will give an error the use of deleted function. I mean, is not it a little

funny because if I provided it does not invoke it, but if I say that it is not there, then it does

complain. So, that is what I was saying that here the behavior is like the direct initialization,

which is very similar to the copy behavior. But semantically it is different because it, it still

wants that a copy constructor must be accessible. So, it has to be accessible then it does not

use it. And now in all this, if you have to understand why this is happening, you have to note

that the C(77) is rvalue, because it is a temporary object which you have no control to hold

on.

(Refer Slide Time: 10:41)

Understanding that, let us see, that if we now change this code slightly to construct an object

from lvalue. So, these remain same, all that this is same, this is same, but I add a third

initialization for instance c3 from c1 where you can see c1 is lvalue, whereas this one is an

rvalue. Now, you see something interesting, it does as before, this also does as before, but as

you try to copy constructor, as you try to construct c3 from c1 which is lvalue, it actually

invokes the copy constructor.

And as it invokes the copy constructor c1 has a member value 42. So, it increments it to 43.

So, it prints 43. And at the end of the program, you will now see 3 objects getting deleted

with their respective values destructed with their respective values. So, this is this is the basic

copy elision that the compiler does.

(Refer Slide Time: 11:47)

If you want to see that well, if the compiler were not aligning the copies, then how would you

look like in GCC you have a nice way you have a flag by this minus f means flag, fno-elide-

constructors, then it will disable the copy elision and you can see exactly as you expected it to

see. So, this will invoke the parametric constructor, this will then invoke again the parametric

constructor, that then it will invoke the copy constructor, you get 78.

And after having invoked that, the lvalue C(77). The temporary object which was created has

no use for any further. So, that temporary object is now deleted right here. And then this is a

copy construction that you have seen earlier. So, you are left with you have created 4 objects

and you have deleted 1. So, you are left with 3 objects that are deleted at the end, you will be

able to see that the value of n is 2 because you have invoked the copy constructor twice once

here and once here.

So, in copy elision, basically what you are doing when you do not have this flag on what you

are doing is when this object is constructed as an rvalue a temporary object, you do not

actually copy to c2 rather what you what the compiler does for addition is compiler takes the

address of the location of c2 and constructs a temporary object directly there. So, though it is

a temporary object, it is not constructing and then copying it, but it is directly constructing it

right here, which is actually semantically correct.

Now, that justifies why this call is not made. And why does it still need the copy constructor

definition? Because it needs to know whether it is allowed to make such a copy. Though it is,

it is constructing this temporary itself in the location of c2 semantically it is a copy operation.

So, it wants to know whether that copy operation is allowed. But it is optimizing by directly

doing that construction. That is the reason it does not need to call this particular copy

constructor. So, that is the kind of copy elision optimization that happens.

(Refer Slide Time: 14:29)

Let us take another example of copy elision which is return value optimization. We have the

same class, I define two functions f() and g(), f() construction object by parametric

constructor and directly returns in by value. And here it constructs into a temporary into a

local object, and then returns that by value, in both cases, you will expect that there will be a

copy construction, there will be a direct construction by the parameter constructor and a copy

constructor by return by value try to invoke these two functions, you will find that there is

just the direct construction happening, no copies are been made.

Which you can argue that both of these are actually rvalues and the compiler sees that this

rvalue has no use, it has not been assigned to anything or passed to some other function or a

method. So, it deduces that it is enough to just construct the object, but it then does not need

to actually copy it, it has no further use. So, that temporary object can be deleted. So, that is

example.

(Refer Slide Time: 15:58)

Now, let us just give it a little twist, give the same this is same, this is same, except that now

instead of just invoking the function, I am invoking the function to initialize two objects c1

and c2, you will see the same behavior 19 constructed. So, this is constructed. But the copy

constructor is not invoked. Why is the copy constructor not invoked? Because it does the

copy elision that is it constructs this C(i) which is local to function f() in the address of c1

itself.

So, that it does not unnecessarily need to do the copy and then delete that temporary object, it

saves on both of that. Similarly, when you do g(35), you have constructed C, so you get 35

and this return by value of this variable c is again optimized out by doing an addition that is

the compiler goes to the extent to see that this c will actually get copies to c2. So, when it is

constructing the C(i), it is constructing in the address value of c2 itself. Of course, now, since

both of these have actually been instantiated into two local variables have made, the elisions

will happen at the end.

(Refer Slide Time: 17:31)

You can again use this flag to force that the compiler does not do any such copy elision if you

do that, then in this case, it will first construct this object then it will copy then it will delete

the temporary object and then it will again copy into c1 you know you can see that. Two

copies and one elision are happening additionally here whereas when you do the other thing,

you see the same behavior it first constructs then it copies return by value, then it distracts the

local object c and then it copies into c2 finally, c1 and c2 are destroyed. So, you can see that

copy elision and how much of you know effort the copy the additional you know task which

is unnecessary can be actually handled by the copy elision optimization.

(Refer Slide Time: 18:42)

So, these are not just optimizations by the by the compiler, but they are language specified

also for example, in C++03 itself you had this kind of optimizations given that if you do

return T construction by value, then only one call to the default constructor will happen

exactly as we have seen.

(Refer Slide Time: 19:13)

Similarly, there are it can it can in a return statement, if your operand is a named object that is

lvalue then you will have NRVO Named Return Value Optimization. If it is the initialization

of your object with a nameless temporary that rvalue you will have rvalue optimization. And

in C++17 this rvalue optimization is no more considered a copy elision it is mandatory and it

is different or optimization altogether. But C++17 we are not discussing at that length.

(Refer Slide Time: 19:56)

So, having said that now we are set to just show you a sample, you know sorting project,

where you can see this benefit. So, we have a resource class R. So, it is just a dummy

resource class, which will just have an integer a data class, which has a resource of the

resource class R, and we have templatized swap function, a bubble sort function templatized

to sort an array and a main function to give the calls. So, let us see how does that work.

(Refer Slide Time: 20:28)

So, first we start with the functions with copy, I mean classes with copy support, everything

is with copy support. So, this is my resource class, it has constructors and destructors as

expected, and my data class has a resource of that resource class are so, it is a it holds a

pointer to that resource. So, every time it has to get a proper resource object constructed to

get this value.

(Refer Slide Time: 21:00)

So, in the data class it has appointed to this so, it has all its usual operations of you know

default will set it to null. Otherwise, if it is parameterized, then it will construct an object with

value R->i will allocate for that, and put that pointer in case of a copy construction, it will

copy the value of the resource from the source object and construct a new object through that

is a deep copy will get done, this is exactly what happens in the copy assignment operator

delete will have to release this resource. So, the standard scenario and then we have a we

have friend operator out stream function to just you know, do our understanding of what is

going on. And I have provided a operator greater than comparison operator of two D objects

so that I can do sorting based on that.

(Refer Slide Time: 22:15)

So, now, to do the sort function, what do we need, this is a this is a bubble sort function it

issues that the data values are of type T, and the rest of it is Bubble sort function which is

which, you know, so I am not going to explain the reason I have chosen Bubble sort is it is

easy for analysis. And I am going to construct a worst case for Bubble sort that is elements

are sorted in a certain order and I want to sort them in in the opposite order.

So, this is a comparison which will use the comparison operator actually I should write here

not D I should write here T, T::operator greater than and that will need to swap two objects.

Now, when you want to swap these two objects, then naturally I make use of this swap

function, which is standard templatized swap function which as you know, does multiple 3

copies. So, 3 constructors and destructors of the resource object with copy will be will have

to be done with move the scenario will change.

(Refer Slide Time: 23:30)

Now, let us see what happens in the main function I declare an array this is the number of

elements size of the array and the number of elements I assume them to be same, I declare an

array which means that the default constructor of the D class is used to fill the array with D

objects having null resource pointers, then I fill up this array using which with D(N – i)

objects, so you can see that I am actually filling them up in the increasing order in the

decreasing order.

So, 10-1, so this is the order in which that will be filled up, because I said I want to create a

worst case. So, every time I do this, I will construct this D(N – i) by the parameterized

constructor, then I will have it have to do the assignment using the copy constructor to

construct and deconstruct the R objects as they exist. This is just to print the array so that they

can see what is in then I call the sort function. The template is sort function and called sort

output now and sort what does the sort function do? It tries to sort them in the increasing

order, but this is strictly in the decreasing order. And I want to make them into increasing

order. So, I want to do just the opposite. So, which means that if I go back to the sort

function, it will be easier to see.

(Refer Slide Time: 25:11)

If you look into this sort function, then you will see that since it is strictly in the decreasing

order, and I want to make it, so, every time I do this comparison, this is going to succeed that

is, that is the reason I am using Bubble sort. So, very easy, you know, worst case. So, since

they are the numbers are decreasing, and I want them increasing, so, every time I compare the

consecutive pairs, they are in the wrong order. So, this will always be true, which means that

as many times as these loops go on this swap function will be called.

(Refer Slide Time: 25:50)

So, if I put a little algorithm analysis into this, then this basically means that, in every loop, it

will depend on the value of i, how many times it happens and it goes from 1 to N - 1, hence,

the total N the number of times the swapping will be done is N to N - 1 by 2. So, in every

swap, I have 3 assignments, copy assignments, so what will happen is I will have 3 resource

objects created and free resource object destruct. So, this is, this is the amount of construction

destruction of the resource objects that I am going to do.

(Refer Slide Time: 26:39)

Now, to this was analytical, so, if we if I really want to see the number that is happening, I

need to provide some support for the statistics. So, that you can these are techniques you can

do in in any, any class to if you are working on the performance. So, I put some counters

accounted to count the number of times direct constructed reasons number of times a copy

constructor is used and the number of times the destructor is used and the respective counters

are incremented in the respective function calls. And then I have a stat function, which

basically prints the values of these counters at any point of time, all of these are static,

because they are not bound to any particular R object, but should be usable anywhere.

(Refer Slide Time: 27:30)

Now, since I have these static members, so I will need to instantiate them in the global space,

and I instantiate and initialize them with 0. In addition, I do something, interesting is I define

another class struct in whose constructor I call this stat function, say with program start and

the stat function again in the destructor with program end and define a variable of instantiate

it in the global.

So, what will happen, this is a static object, extreme stat will become a static object.

Therefore, as you know, static objects must be constructed before main starts, and they are

distracted after main ends. So, this function will get called before main starts and this

function will get called after main returns. So, I will be able to get the first and the final

statistics. So, that is just a just a nice technique to create statistics.

(Refer Slide Time: 28:36)

So, I do the same thing in the main after the default initialization, I print statistics after filling

that arr[i], statistics after sorting, I print statistics and I get all of these. So, if you just recall

what will this mean this will mean that initially everything is 0, because no objects are

created so far, then after the default, again, no R objects are created, because the D objects

initialize the resource as null pointer.

Then after I initialize the array by this every time, I construct a D object with parameter in R

object will get initialized will get created so I have 10 creations of these and then they will be

copied 10 times to arr. So, there are 10 copies and those temporaries will be deleted. So, there

are 10 deletions. So, if you look into that and then I have this, then have the sort. And in sort

you can see that creation still remains to be 10. But I have 145 copies created instead of 10.

So, 135 more copies have been created these are because of the swap and those are created

and destroyed. So, just see how west fall it is.

(Refer Slide Time: 30:14)

And if you can tallied with the analytical formula, we have just derived you will find that this

is 135 which tallies with the fact that 10 plus 135 is 145 then you have the adding and finally,

you have the total copies created at 145 direct creation is 10 from here and therefore, the 10

objects in the array that existed when the main ends those will get destructed. So, you will

have 155 destructions.

So, you can see that you actually needed 10 objects to be created and 10 objects to be

distracted, but you have along with that you have created 145 objects Additionally, R objects

additionally and 145 R objects you have destructed.

(Refer Slide Time: 31:04)

So, that is the basic problem with temporaries. So, how do you get rid of this you know that

you can give a move support. So, you say I will not copy, if not required, I will not copy the

D objects, I will move them. So, I have a move constructor and a move assignment operator

added now. So, how will that impact, it will impact in the sense that if I run the program

again, when I am doing arr[i] = D(N – i), D(N – i) is a constructed object and D(N – i) is an

rvalue.

So, in this assignment, it is not the copy assignment which will bind it is a move assignment

that will bind and in the move assignment, I will simply move the resource I do not need to

copy the resource. So, after 10 when I do this, I will have only 135 copies made instead of I

was earlier having 145, I will have 135 only. Because these 10 copies that were required here

copies and destruction that were required here is saved. So, some benefit has been obtained.

(Refer Slide Time: 32:28)

Now, next we can actually the culprit is a swap function. So, what I can do is I can use

std::move from the library in the swap function and make all of that move. So, that the values

just keep on keep rotating around they are not copy created. So, if we do that, then naturally

all of these will be the first one the second one the third one all our move assignments move

of values.

(Refer Slide Time: 33:04)

So, for that, no, R object needs to be created or destroyed. Therefore, if you with this

modified swap function, if you run you will see that in short, there is no copy created of the R

object neither of neither therefore, they are destroyed. So, if you analyze all that you need is

45 swaps, which needed earlier 135 construction destruction, but all those 40, all those

unnecessary construction destructions have been optimized out now, at the end, you have just

10 constructions for the 10 objects and 10 destructions for the 10 objects the resources are

optimally used.

(Refer Slide Time: 33:54)

So, that is the director demonstration of the benefit of what you get by providing the move

support. Here I have given a table for your understanding that there are two places to support

this in this particular project one is in the class D you can have only copy support or copy and

move support and in the swap function, you can only copy version of soft function or move

version and naturally for combination.

So, if you do say if you do not have a copy move support in D then irrespective of which

swap function you use, you have the same complexity if you have move support in D but not

in the swap, you get little less but you still have a lot of unnecessary copies happening.

Whereas if you move supporting both, then you have no extra copies being done. So,

ordering swap copies are now really optimized out. So, that is a big optimization that the

program can guide to guide the compiler to do.

(Refer Slide Time: 35:08)

And this is just one example I have shown, you can see this in the whole. In the next couple

of slides, I will not go through I have just put together the entire code one after the other, as it

finally stands out this struct R, the struct stat, the struct D, the two versions of the swap

function, the sort function, and finally the main function.

(Refer Slide Time: 35:38)

So, you can put them together into one source file and execute with move, without move and

so on and experiment further. And here are some problems that you can try out like providing

construction destruction counting, and statistic generation support for the class D objects also.

We are just done for class on the resource object, you can change the resource from being a

pointed resource to an actual data member resource, and we will need to make changes in the

class R as well. To optimize unnecessary copies out, you can explore on the move support,

which are available in containers in the standard library, particularly vector and map and so

on.

(Refer Slide Time: 36:25)

So, in this tutorial, we have tried to explain the optimization by copy elision. And we have

understood the copy and move optimization by rvalue and move semantics through a small

example with a complete project. Thank you very much. I hope you this will be useful for

you in understanding the rvalue and move semantics and their one of their use in this context.

So, see you in the next discussion.

