Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 49
C++11 and beyond: General Features: Part 4:
rvalue and Move/l

Welcome to Programming in Modern C++ we are in week 10. And we are going to discuss

module 49.

(Refer Slide Time: 00:33)

r"" PPRLIEL L T

u’ﬂ Module Recap

o Introduced following C++11 general features:
o constexpr
o noexcept
o nullptr
o Inline namespace
o User-defined Literals 2
o Raw String Literals

Programming in Modern C++ Partha Pratim Das Mi92

pPRBAHLl St

ﬁ Module Objectives

o Understanding the difference between Copying and Moving
o Understanding the difference between Lvalue and Rvalue
Ovtos o Exploiting the advantages of Move in C++ using
o Rvalue Reference
o Move Semantics

o Copy / Move Constructor / Assignment
o Implementation of Move Semantics

Programming in Moder C+-+ Partha Pratim Das M493

In the last module, we have continued to discuss different general features of C++11, these
six features were discussed, they are diverse and kind of supports different requirements. In

this module and the next we are going to discuss something which is also a general feature,

but is fundamentally very, very significant for C++11 extension of the language, particularly

for making it a lot more efficient in execution than it used to be.

So, we need to for this, we need to understand the difference between copying and moving
something so fundamental. And the difference between lvalue and rvalue. And we take

advantage of move in C++ using what is known as rvalue reference and to move semantics.

(Refer Slide Time: 01:23)

pPRBAELl St

ﬁﬁ;} Module Outline

Programming in Modern C++ Partha Pratim Das M98

[R B I A R

E@ Copying vs. Moving

Copying vs. Moving

Sources:

® An Overview of the New C++ (C++11/14), Scott Meyers Training Courses
® Scott Meyers on C

Programming in Modern C++ Partha Pratim Das M495

PP QEL SO D

[;‘éj Copying vs. Moving

o C++ has always supported copying object state:
o Copy constructors, Copy assignment operators

o C++11 adds support for requests to Move object state:

7 s
Widget wi; (Wi wisstate
// copy wi’s state to w2 v
Widget w2(w1); / [w2 —{copyofwi's state
Widget w3; R
¢ \/ ‘E w3's state

// move w3’s state to w4 7
Widget w); [wa]

o Note: w3 continues to exist in a valid state after creation of w4

¢ we]| I

So, this is the outline. So, let us see the difference between copying and moving. So, C++ has
supported copying of states of objects, we know that and C++11 is providing support to
request moving objects. So, what is the difference? Suppose, we have an object of object wl
of widget type. So, | can use either we can use this kind of way to construct object w2 where
the copy of the state of wl will be created. And w2 will basically mean that it is a copy of
this.

Now, let us create another widget object w3. And let us write something like this what it
means we will come to that we say std::move(w3), by that what we mean is we do not want
to copy the state of w3, but we want to move the state of w3, which means that after this both
w3 as well as w4 will share the same state. So, this this, this kind of sounds like the issue of

deep copy and shallow copy, which will come to very soon.

(Refer Slide Time: 02:51)

pPRBQAEL e

[ﬁ?} Copying vs. Moving: Return Value

o C++ at times performs extra copy, while temporary objects are prime candidates for move:
typedef std::vect07> TVec;
TVec createTVec(); factory functior
TVec vt;
vt = createTVec(); in C++03, copy return value to vt, then destroy return value
e S
wH s
o Moving values wouldb perations into moves:
TVec vt;
vt = createTVec(); implicit move request in C++11. move data in return value object to vt
ja createTVec
@/‘
(ANl 9cC +c O) = - Eseoeey

Now, this becomes useful particularly for say a return value. So, in C++03, if you have a
vector and you have a create vector function, which creates a vector and returns you then if
you initialize this vt with the create vector, the create vector is returning a vector, so that
vector will be copied.

So, create vector is returning a vector and this vector will be copied. So, all elements as many
as are there will be copied. Now, in C++11, if | can make use of the move semantics move
request, then | can make it that whatever is returned by the vector will not be copied, but that
returned object itself will be moved into vt. So, what is the advantage that two advantages
one is -- see or rather one primary advantage is that for making the copy, | have to make copy
of so, many objects the vector could be really large.

So, so many constructions and after that this is a return value, this is the return value of
create. So, this cannot be used any further this cannot be accessed any further. So, | have to
delete each one of them. So, | have to copy make copies and then delete them, which is
useless. | can just use these objects, just take them directly. Because in any case, since is a
return value does not have a name, | cannot reuse it in any other context. So, that is that is the

insight between copy and move. | can move and get much better performance.

(Refer Slide Time: 04:44)

PPRBAHEI LSO D

[ﬁéj Copying vs. Moving: Append a Full Vecto

o Appending to a full vector causes much copying before the append. Moving would be efficient:

assume vt lacks unused capacity

std::vector<T> vt; std: :vector<T> vt;
Sl

T 7T

vt.push, vt.push_back(T object);

[T T
239 o[
Js|&| g 5||5)%
|[a||F])
|- - |- =

o vector and deque operations like insert, emplace, resize, erase, etc. would benefit too
' OCe Dy ——r

[3 B R AR A RS VR

@ Copying vs. Moving: Append a Full Vector

Fa
L

o Appending to a full vector causes much copying before the append. Moving would be efficient:

assume vt lacks unused capacity

std::vector<T> vt; std: :vector<T> vt;
vt.push_back(T object); vt.push_back(T object);
vt —TIT|T 77T | vt [—{T]T[T TTlT

T State
T State

T State |~

A
ate (&
T State
[TState}~——| [T State}
T State '<— T State
T State|
T State
‘T State
‘l’ State
State
State
State

o vector and deque operations like insert, emplace, resize, erase, etc. would benefit too
S oCwed L@ T

Think about appending to a full vector. Suppose | have a vector, say again. And suppose it
has become full. What happens if the vector becomes full and I try to do a push_back | am
trying to do a push_back of it, of a some T object, appropriate object. What we will have to
do? It will have to create another new space for the vector, copy all the existing elements, and

then put the push_back element at the end.

So, this is our original state of the vector, all these T objects were existing, since it has run
out of space, | take a bigger space, and then | copy each object, this entire vector, and then |
add the new element, this is what is freaking. Extremely expensive, because as many

elements are there, those many copies and there deletes all of these will have to happen.

Instead, the vector is going to change. And after this, this has been done, this old vector is of
no use. So, if you are, in any case, going to delete it. So, why not, we do a move. That is we
do not copy and construct the object and delete the earlier one, do not take this, say, | am
taking this making a copy, deleting this, taking this making a copy deleting this, instead of |

will just have the new vector allocation.

And let those existing objects be might, without actually doing copy, just moving that data
thing, no creation, no destruction, and then have the new one. So, it can be tremendously
great use if | could make use of this move. The question, obviously, is to decide when to copy

and when to move.

(Refer Slide Time: 06:52)

pYvRs el te

{%g Copying vs. Moving: Swap

o Consider swapping two values:

By Copy
template<typename T> void swap(T& a, T& b) { // std::swap impl. by copy
void swap(T& a, Tk b) {
T tmp(a);
a=b;

By Move
template<typename T> void swap(T& a, T& b) { // std::swap impl. by move
T tmp(std: :move(a)); // move a’s data to tmp
a = std::move(b); to
b = std::move(tmp); //

IR R T

[ﬁ;} Copying vs. Moving: Swap

o Consider swapping two values:

By Copy
template<typename T> void swap(T& a, T& b) { // std::swap impl. by copy
void swap(T& a, T& b) {

T tmp(a); // copy

a=b; //

b = tmp;

}

By Move

template<typename T> void swap(Tk a, T& b) { // std::swap impl. by move

T tmp(std: :move(a)); // move a’s data to tmp
e

a = std: :move(b);

b = std::move(tmp); //

}

S we T

PPl aEdlte .

g;] Copying vs. Moving: Swap

Fa
L

o Consider swapping two values:

By Copy
template<typename T> void swap(T& a, T& b) { // std::swap impl. by copy
void swap(T& a, T& b) {

T tmp(a);

a=b;

b = tmp;

}

By Move

template<typename T> void swap(Tk a, T& b) { // std::swap impl. by move
T tmp(std: :move(a)); // move a’s data to
a = std: :move(b); :
b = std::move(tmp); // move

So, that is that is the tricky part, which we will have to think about a very common function
that we always write swap, swapping, two variables that templatized function A and B have
the same type it swaps. And this is a code that all of us have learnt initialize a temporary and
use that to swap. So, what happens when you initialize when you create the temporary with a

now we are copying a to the temporary, so there are two copies of a, one is in a one is in tmp.

Then you are making a copy assignment to b, you are copying b to a. So, what happens there
are two copies of b one in a and other in b and finally you do copy tmp, copy assign tmp to b,

so there are again two copies of tmp, one in b, another is in tmp and then you destroy them.

So, every time you can see that you have 2 copies, which is unnecessary. Because you did
not, you did not want that all that you wanted is they just get swapped. So, kind of if | had
pointers to them, logical thinking is if I had pointers to them, | can just swap these pointers in
terms of actually changing the objects.

So, you can do that in C++11 by just saying this std::move, we just saw some time back,
which tells that do not copy the object, but move the object. So, initially, | need this, | need
this temporary to do the swap. So, | create the temporary, but | do not copy the state of it, |
move the state of it into that. So, a becomes tmp is now holding a, a becomes free, it is not
holding anything meaningful. So, then I move b into a.

So, a now holds that state of b and b becomes free does not hold anything meaningful. So, |
then move tmp into b. So, b becomes takes the state of tmp which was the original state of a

and tmp does not hold anything meaningful. So, | can destroy tmp without doing anything. |

do not just need to I did not do a copy. So, | did not take resources | did not create resources.

So, the destruct here is just dummies just call.

(Refer Slide Time: 09:37)

pPRsQEl te . 0N

ﬁﬁij Copying vs. Moving: Deep vs. Shallow Copy

o Moving most important when:

S
®
[
o
o
@
@
»
b

D

o Moving copies only object memory
o Copying copies object memory + separate memory

o Consider copying/moving A to B:

i A - copied

LA | copied | LA data copied — 12
VA =

[] [moved] | [Ay 1 g [r—imoved '@

o Moving never slower than copying, and often faster

S 9¢cwe .y s

So, copying versus move is a basic question, which is deep. If we have, if we see the
distinction between deep copy and shallow copy. Copy is in our connotation always deep
copy we have ensured that so if | have an object, then it is in memory and it has resources
like it is pointing to 10 other things 10 different pointers to different other objects, so they are
in a separate memory. So, when we talk about copy, we mean a deep copy that is copy the

object memory as well as the separate memory.

So, if I have A then | copy, then | have A’s data. And | will also have a copy of A’s data in
the sep..., from the separate memory that is the deep copy we say. So, we copy the pointed
objects as well, where is a move, | will have the A’s data the object memory and for move, |
will not have the copy of the A’s data, but | will use B’s data itself and not create that
separate memory again, just | take that memory. So, by that so move obviously invalidates
the source, which copy does not. So, whenever the source from where | am | want to make a
duplicate off is not required after this operation, | can certainly do move instead of doing

copy, certainly it will be always faster to do that.

(Refer Slide Time: 11:20)

pPRsQEd e

Eﬁéj Simple Performance Test

o Given
const std::string stringValue("This string has 29 characters");
e ————— e

class Widget { std::string s;
public:
Widget(): s(stringValue) { }

e

o Consider this push_back-based loop:
std: :vector<Widget> vw;

Widget w;
for (std::size_t i = 0; i < n; ++i) { // append n copies of W to VW
vw.push_back(w) ;
} ———— v
eC e vl e

So, just a performance test, which was done decades back. So, here is a widget which has a
string constant string value and it just constructs that and, it tries to do a push_back of the
same value in the in a vector of widgets repeatedly it is repeatedly being pushed back is just a
bulk workload to show that how does copy so in generally will copy the for the push_back,

how does it impact.

(Refer Slide Time: 11:58)

2 pPRsQEl e
@ Performance Data
i

10,000 Elements in vector

>

®
0.
-
£
a
o
<
[i}
i
£

[éj

pPRBAEL e

Performance Data

10,000 Elements in vector

o

e~

[ee—yy ‘
H
2 e I
g
Bl i =

00000 0500000 1000000 1S00000 2000000 250000 300000 350000 4000000 4500000 5000000
Time (ms]

{i

Performance Data

10,000 Elements in vector

Move w/noexcept

- —
+ Move wjo noexcept
Copy

v e
3
g Mo woncexest G
5

Copy

000000 0SO0000 100000 1500000 2000000 2500000 3000000 3500000 4000000 450000 5000000
Time (ms]

1000 Elements n vecier 100 Elements s vector ‘

And, results are really stunning, you can you can see that with copy, if you take this much
without copy with move you take this much less similar thing happens here obviously, in

terms of Visual Studio compiler, you see a much bigger advantage there are some reasons for

that, but the basic idea

difference between move without except, move without noexcept and move with no

exception.

You can see that in GCC if you if you do not have no except, then you may not get much
benefit, because you have a lot of exception possibility of exception handling code a data

structure that you need to deal with. But if you use no except as you are doing here, then you

get almost about half the

is being able to move instead of copy and you can also see the

required time.

(Refer Slide Time: 13:04)

pPRLAEL O T

[ﬁé} Copying vs. Moving

o Lets C++ recognize move opportunities and take advantage of them.
o How recognize them?
o How take advantage of them?
o Moving a key new C++11 idea
o Usually an optimization of copying
o Most standard types in C++11 are move-enabled
o They support move requests
o For example, STL containers

or;

o Some types are move-only
o Copying prohibited, but moving is allowed
o For example, stream objects, std: :thread objects, std: :unique_ptr, etc.

Programming in Moder C:++ Partha Pratim Das M49.13

So, performance gets so that is the objective with which C++11 has focused on the semantics
of move along with the semantics of copy. Now, the question naturally is how to recognize
them, how to take advantage of them. And for that C++ standard has made the standard types
move enabled and some of the types are moved, you cannot copy them you can just move
them we will talk about those more in future.

(Refer Slide Time: 13:31)

PPRB ALt BN

W Rvalue References and Move Semantics
o

Sources:

nd move semantics, isocpp.org

New C++ (C++11/14), Scott Meyers Training Courses

® Rvalue References
0 C++ Rvalue Ref
O Lvalues
0 What a

® Move Semantics

nces Explained
, accu.org, 2004
alues, xvalues, glvalues, and prvalues?, stackoverflow.com, 2010

O What is move semantics?, stackoverflow.com, 2010
0 M.3 — Move constructors and move assignment, learncpp.com, 2021
0 Move Constructors and Move Assignment Operators (C++), Microsoft, 2021

Rvalue References and Move Semantics

Programming in Modem C++ Partha Pratim Das M49.14

So, for this what we need to understand and | would request you to be very, very attentive
and really focus on this because this is something which is simple, but the core of C++ move

11 performance.

(Refer Slide Time: 13:44)

rﬂ‘ Lvalues and Rvalues
12X

o Lvalues are ally things we can take the address of
o In C, Expressions on left-hand-side (LHS) of an assignment
o Named objects - variables

o Legal to apply address of (&) operator

o Lvalue references

o Rvalues are generally things we cannot take the address of
o In C, Expressions on right-hand-side (RHS) of an assignment
o Typically unnamed temporary objects - expressions, return values from functions, etc.
o Rvalue references

o Examples:
int x, *plnt; // x, pInt, *pInt are lvalues
std::size_t f(std::string str); f and str are lvalues, f rvalue
£("Hello"); p string("Hello") cre s rvalue
std: :vector<int> vi; vi is lvalue
vi[5] = 0; vi[5] is lvalue

o Recall that vector<T>: :operator([] retums T&

["’;.} Lvalues and Rvalues

we can take the address of-

o Lvalues are g

o In C, Expressions on left-hand
o Named objects - variables \F‘/
o Legal to apply address of (&) operator 0\ X

o Lvalue references

> (LHS) of an assignment G

y things we cannot take the address of:

o Rvalues are
o In C, Expressions on right-hand-side (RHS) of an assignment
o Typically unnamed temporary objects - expressions, return values from functions, etc.

o Rvalue references Y v
o Examples:

int x, *plnt; x, pInt, *pInt are lvalues
std::size_t f(std::string str); // f and str are lvalues, f's r s rvalue
f("Hello"); / p string("Hello") cre s rvalue
std: :vector<int> vi; vi is lvalue
vi[5] = 0; vi[5] is lvalue
o Recall that vector<T>: :operator[] retums T&

o Cwec (@ ——

pPRsQE Lt EN

0

[";J Lvalues and Rvalues

ly things we can take the or.

o Lvalues are g

o In C, Expressions on left-hand-side (LHS) of an assignment
o Named objects - variables

o Legal to apply address of (&) operator

o Lvalue references

o Rvalues are generally things we cannot take the address of

o In C, Expressions on right-hand-side (RHS) of an assignment
o Typically unnamed temporary objects - expressions, return values from functions, etc.
o Rvalue references

. Examyfes:/
int x, *p nt§/ // x, pInt, *pInt are lvalues
std::size_t f(std::strigg H f and str are lvalues, f’s

rvalue

1("Hello"); tring("Hello") cre s rvalue
§td::vector<int> vi; vi is lvalue
vi[5] = 0; // vi[5] is lvalue

0 Recall that vector<T>: :operator[] returns T&

19Cewe . - .

PR aElste

géj Lvalues and Rvalues

o Lvalues are generally
o In C, Expressions on left
o Named objects - variables
o Legal to apply address of (&) operator
o Lvalue references

side (LHS) of an assignment

ve cannot take the address of

Rvalues are generally thing

o In C, Expressions on righ e (RHS) of an assignment
o Typically unnamed temporary objects - expressions, return values from functions, etc.
o Rvalue references

o Examples:
int x, *plnt; x, pInt, *pInt are lvalues
std::size_t f(std::string str); f and str are lvalues, f’s return is rvalue
£("Hello"); temp string("Hello") created for call is rvalue
std: :vector<int> vi; vi is lvalue
vi[8] = 0; vi[5] is lvalue

0 Recall that vector<T>::operator[] returns Tg
e — <

QG #e T u]8 E—C ..

What is rvalue and what is move semantics? So, in this let us understand that what is an
Ivalue and what is an rvalue. So, Ivalue, rvalue, this name were given in terms of C mode in
terms of C programming lvalue is something that occurs on the left hand side of an

assignment and rvalue is something which occurs on the right hand side of the assignment.

Now, what it means? Is if | am doing b assigned to a, then for b, | need the value of b but for
a | need the address of a where it has to go | have to locate a. So, this is the left-hand side this
is the hand side and this is what we call Ivalue, this is what we call rvalue. Coming to C++
connotation this besides assignment there are several contexts where you need to talk about
Ivalue and rvalue. So, the this basic left hand side of an assignment connotation has reduced
so often, now we talk about Ivalue as locator value which can be located and rvalue is

something which is not an Ivalue.

So, with that distinction, if we look at then these are Ivalues are named objects variables,
which you can catch hold off make computations with us the value in future. rvalues are
typically unnamed temporary objects, which exists which has a value, but there is no way that
you can catch hold of them like expressions a + b * ¢, naturally all of this cannot happen in

one go, this happens and the value is generated with which you are adding a.

But can you access that value? No, this is an unnamed temporary thing. Similarly, return
values from function these are all or different rvalues, and then you have lvalue reference and
rvalue reference here are examples for your understanding int x, int *pint, these are naturally
Ivalues you can catch hold of them, f() as a function is an lvalue, str as a parameter is an

lvalue.

Whereas, f’s return value if the return value is an rvalue, because either you copy and keep it
or move and keep it or it actually gets lost at the end of the function called this will get lost.
So, in this you have a, you have a Hello within double quotes, which means it is a constant
char*. Now, from that a std string has to get constructed to be called to that function, there is
a construction involved. Now, that object which gets constructed and passed the str you have
no hold on that object that object will get created will go to the function and will get

destroyed after that after the function.

So, the str std::string of Hello, that object is not exist is a temporary and you will not be able
to catch hold of it. So, it is an rvalue. Similarly, vi if I define it is an lvalue vi[5] is an lvalue.
And that is the reason you will see that if you look at the in vector, if you look at the access

operator operator, square brackets, it returns a reference because it is an Ivalue.

(Refer Slide Time: 17:36)

pPRBAEl e

[gé} Moving and Lvalues

o Value movement generally not safe when the source is an Ivalue object
o That continues to exist, may be referred to later:
TVec vti;

i
TVec vt2(vtl);
—Tuse vil...

to vt2, not moved!

o Value movement is safe whe 1 rvalue object

o Temp's usually go av

s end. No way to tell if their value has been modified
TVec createTVec(); s Yo

TVec vti;

vtl = createTVec(); rvalue source: mov

auto vt2 = createTVec(); rvalue sot

vtl = vt2; // lvalue so

auto vt3(vt2); lvalue source: copy
std::size_t f(std::string str); as before

£("Hello"); // rvalue (temp) source: move okay
std::string s("C++11");

1(s); lvalue source: copy needed

o Cwe T] LG L

PPl aElte

[g%} Moving and Lvalues

o Value movement t
o That continues to exist, may be referred to later:
TVec vti;
TVec V‘C2§::9;
...use vtr7.
= = ;
o Value movement is safe n rvalue object
o Temp's usually go away at state d. No way to tell if their value has been modified
TVec createTVec(); for
TVec vti;
vtl = createTVec(); rvalue s
auto vt2 = createTVec(); rvalue
vtl = vt2; lvalue
auto vt3(vt2); lvalue
std::size_t f(std::string str); as before
£("Hello"); rvalue (temp) source: move okay
std::string s("C++11");
i(s); 1lvalue source:
oG we dlu]a I

pPRsaud e

Eéj Moving and Lvalues

o Value moveme ot safe when the source is an Ivalue object

o That continues to exist, may be referred to later:
TVec vti;

TVec vt2(vtl); it is expected that vtl be copied to vt2, not moved!

...use vtl...) bov

o Value movement is safe whe

o

Temp's usually go away at stateme

TVec createTdec(); as before

TVec vti; /

vtl = createTVec(); /] 1V lf urce: mov
();\/ e so

auto vt2 = createTVec rvalle s

vtl = vt2; / lvalue gour
auto vt3(vt2) ;\/ ¢/ lvalul

std::size_t f(std::string str); bef
f("Hello"); rvalue

std: :string!;["cﬁil") ; S
£(s); 1lvalue source

~—

e e .

Now, how do you move what is the consequence of moving movement of values in terms of
Ivalues and rvalues. So, if you move a value, when it is an Ivalue, that is often generally not
safe. So, you have a vector vtl, you are creating another vector with vt2 with vt1. Now, there
are two choices as we have seen, we can copy the state so that vt1l remains valid, and vt2 is a
copy of that vtl or we can move the state so that we do not have to duplicate both vtl, vt2 is
the same state.

Now, the risk of doing that is vtl is an lvalue, | have a name, it is a named object. So,
subsequent to this construction, subsequent to this construction of vt2, I can still use vtl, so
vtl and vt2 needs to be different. So, move here is not something which is smart. Whereas if |
have values which are rvalues, which are temporary, it is safe to move them. | have this

function, | have an object vtl, and | have called this function and the returned object from

createTVec. | am assigning to vtl. Now, the return of TVec is a temporary object which will
get destroyed anyway at the end of this call. So, if | move that to vt1, I do not lose anything.

So, it is an rvalue and naturally move is okay.

Similarly, if 1 do an initialization of vt2 not an assignment using the return value of TVec it is
again an rvalue and moving is okay. Whereas, if | assign vt2 to vtl, then vt2 is an lvalue. So,
| need a copy. If I do a copy construction of vt3 from vt2, it is again an Ivalue | need a copy,

If I have this function f() as before as we have seen Hello is a rvalue, a temporary value.

So, move is okay if | have a string like this then f() calling f(s) need to have a copy because I
have s as a named object representing the string within double quotes C++11. It represents a
std::string and | can use it subsequently for that. So, that is a judgement point that you would
have to see that is there a way to use that object, subsequently if it is then it cannot be moved,
it should not be moved, then it should be copied. So, move is not good for Ivalues, but move

is excellent for rvalues.

(Refer Slide Time: 20:49)

PP QEL At

[ﬁéj Rvalue References

o C++11 introduces rvalue references
o Syntax: Ti
o Normal references now known as Ivalue references
> Rvalue references behave similarly to Lvalue references
o Must be initialized, cannot be rebound, etc.
o Rvalue references identify objects that may be moved from
o Reference Binding Rules
o Important for overloading resolution /
o As always:

> Lvalues may bind to Ivalue references
> Rvalues may bind to value references to const

o In addition: \/(

> Rvalues may bind to rvalue references to non-const
> Lvalues may not bind to rvalue references

— Otherwise Ivalues could be accidentally modified

IR . L

So, to be able to detect that a different kind of reference is introduced in C++ it is known as
rvalue reference in the syntax, it just uses the ampersand twice. So, normal references as we
have known them is now known as Ivalue reference. So, rvalue reference behaves very
similar to Ivalue reference, rvalue reference will identify if I hold an rvalue reference to an

object | know that I can move from that object that is I should move from that object.

So, it can be used in overload resolution, rvalue and Ivalue references. lvalue may bind to

Ivalue references, rvalue may bind to Ivalue references to constant that we have seen that you

cannot pass an expression where there is an reference, but you can pass a constant expression,
because you need to have that reference to be identifiable by the by the parameter name. In
addition, rvalues may refer to rvalue references to non-constant and lvalues may not bind to
rvalue references, because if they do, then the possibility of the move or possibility of further

changes will be accidental.

(Refer Slide Time: 22:21)

pPRsQEL e

[gé} Rvalue References

o Examples:

void fi(const TVec&);”//~ /| takes const lvalue ref

TVec vt;

fi(vt); // fine (as

fl(createTVec());/;/ // fine (as always)

Tvoid £2(const TVec);v/ // #1: takes const lvalue ref

void fQ(IYgggg);y/’ // 32;{}u s non-const rvalue ref
f2(vt); // 1v¥dlue => #1

f2(creaté%6£c()); // both viable, non-const rvalue => #2

void f3(const TVeckt);
void £3(TVeckt);

// #1: takes const rvalue ref
// #2: takes non-const rvalue ref

£3(vt); // error! lvalue
f3(createTVec()); // both viable, non-const rvalue => #2
e we i vd -wetms

PPl et

{iﬁ?} Rvalue References

o Examples:

void f1(const TVec&); // takes const lvalue ref
TVec vt;

fi(vt);

f1(createTVec());
void f2(const TVeck);
void £2(TVeckk);
f2(vt);
f2(createTVec());

void f3(const TVeck&);
void £3(TVeckk);
£3(vt);
f3(createTVec());

S 9Cwe

// #2: takes non-const rvalue ref
// lvalue => #1

/] #2: tak
// error! lvalue
/ both viable, non-const rvalue => #2

as

takes const lvalue ref

#1:

ble, non-const rvalue => #2
s const rvalue ref
es non-const rvalue ref

o m el |

So, again a couple of example, here, you have this as a constant lvalue reference in f1. So, if
you pass vt to that, it is fine, if you pass this to createTVec call to that also is fine. So, what
we are doing is are basically taking a you need a lvalue and you have lvalue reference and

you have passed it rvalue. So, rvalues can be converted to lvalue constant Ivalues.

If I have f2() of two times which one which takes constant lvalue reference and other which
takes non constant rvalue reference, then if 1 do f2(vt) it will is taking an Ivalue. So, it will
call this form if | do f2(createTVec()) then both are viable, it will take the rvalue because it is
it is an rvalue. So, it can it can take an rvalue reference. So, having this overload allows me to
differentiate between whether | can treat it as an lvalue or | can treat it as an rvalue. See more

here you have a constant TVec rvalue reference and non-constant.

So, a constant rvalue reference and non-constant rvalue reference and you try to pass an
Ivalue to that now, this is an error because it tells you to actually move the object, but being
an lvalue, you cannot move that object. So, this conversion will give you an error. Whereas if
you do f3(createTVec()), then you have a rvalue, so both of these are possible non-constant

one that will be preferred for reason that we will come to very soon.

(Refer Slide Time: 24:40)

pPRBAEL O

W Rvalue References and const
12

o C++ remains const-correct:
o const Ivalues / rvalues bind only to references-to-const
o But rvalue-references-to-const are essentially useless
o Rvalue references designed for two specific problems:

> Move semantics
> Perfect forwarding

o C++11 language rules carefully crafted for these needs
> Rvalue-refs-to-const not considered in these rules
o const T&&s are legal, but not designed to be useful
> Uses already emerging :-)
o Implications:
o Do not declare const T&& parameters

o Not possible to move from them, anyway
o Hence this rarely makes sense:

¢ wed B e

Now, the question is, what is what about const-ness? The const lvalue or rvalue bind only two
references to const but rvalue references to const are essentially useless. Why? Because why
did we identify rvalue because we should be able to move. Now, if we are saying that | have
a reference to an object which is an rvalue, but to be treated as a constant, then naturally |
cannot move it. Because to be able to move, | need to make changes in that source object. So,
it kind of contradicts the semantics of it is it is legal, though it is its semantic use is really not

understood so well till this time.

But it is typical that rvalue reference to const is not considered right now, but it is not illegal

to write it will, but it will not let you do that move that is the consequence. So, you should not

do that. And this rvalue references solve two specific problems, which is move semantics and
perfect forwarding. So, remember this part that you should never declare the const reference

rvalue reference parameter.

(Refer Slide Time: 26:10)

pPRsaEd te .

{é}] Distinguishing Copying from Moving

o Overloading exposes move-instead-of-copy opportunities:
class Widget { public:

Widget(const Widgetk); // copy constructor
Widget (Widget&&) noexcept; move

Widget& perator=(const WidgetZ); copy

Widget& operator=(Widget&) noexcept; move ass

=
15 Vi
Widget createWidget();"// factory function
Widget wi; j
Widget w2 = vi; / lvalue)
w2 = createHidget();\/ rvalue src => move
Wl = w2; lvalue src => copy required

o Move operations need not be noexcept, but it is preferable
o Moves should be fast, and noexcept => more optimizable
o Some contexts require noexcept moves (for example, std: : vector: : push_back)
o Move operations often have natural noexcept implementations

o We declare move operations noexcept by default

2 C e BREL Tt

So, differentiate this we have a widget this is a typical copy constructor with lvalue. We write
another with rvalue and we call that a move constructor. So, the difference is in the copy
constructor, the source object state will be copied and the object created in the move
constructor source object state will not be copied it will be moved and we need noexcept for

optimization.

Similarly, this is copy assignment operator, this is move assignment operator, in the copy
assignment, you make a copy of the source object in a move assignment you do not make
that. So, if we have this function if we have the w1, we are creating w2 with that, so, wl is an
Ivalue. So, copy is required. But if | assign create widget result into w2 then the result is an
rvalue. So, move is okay. Whereas, if | directly assigned w2 to wl then a copy will be

required. So, that is the basic difference.

(Refer Slide Time: 27:30)

pPREQELI SO D

ﬁ Copy vs. Move : Lvalue vs. Rvalue

class A { publicAM() { std::cout << "Defa Ctor" << endl; }
%onst Az) { std::cout << "Copy Ctor" << endl; }
A(Akk) noexcept { std::cout << "Move Ctor" << endl; }
}& operator=(const Ak) { cout << "Copy =" << endl; return *this; }

operator=(Akk) noexcept { cout << "Move =" << endl; return ttlus }
riend A operator+(const Ak a, const Ak b) { A t; return t; }

h o

Only Copy Copy & Move
Debug Release Debug Release
Aa; Defa Ctor Defa Ctor Defa Ctor Defa Ctor
Ab= Copy Ctor 4
Ac=a+b; // rvalue Defa Ctor Defa Ctor
/ RVO in a + b for rel Copy Ctor Move Ctor
A d = std::move(a); r‘/alue or
b =a; lvalue
c=a+b; rvalue

® Return Value Optimization (RVO) eliminates the temp. obj. created to hold a function's return value

_ @ std::move(t) produces a rvalue from t to indicate that the object t may be moved from
(9 ewe D - I .5

[3 B R AR A RS R

ﬁ Copy vs. Move : Lvalue vs. Rvalue

class A { public: A() { std::cout << "Defa Ctor" << endl; }
A(const A%) { std::cout << "Copy Ctor" << endl; }
A(A%E) noexcept { std::cout << "Move Ctor" << endl; }
Ak operator=(const A%) { cout << "Copy =" << endl; return *this; } / C
A% operator=(Akk) noexcept { cout << "Move =" ndl; return *thls, }
friend Q/;eratoﬁ(const A% a, const Ak b) { A‘/!return t } e obj
) =

Only Copy / Copy & Move IZ
Debug se Debug Relpase
Aa; // 1lvalue Defa er/ Defa [Ctor Defa Ctor Defa|Ctor
Ab: / lvalue \p ""r\/ t"\r
Ac=a+h; rvalue Defa Ctor\/ Def Ctor Defa Ctor
£ 1 ild Copy Ctor Move Ctor
rvalue ¥ Move Ctor
lvalue Copy =
rvalue Defa Ctor

Il X ST Ml — .

pPRsAEd te

@ Copy vs. Move : Lvalue vs. Rvalue

L

class A { public: A() { std::cout << "Defa Ctor" << endl; }
A(const A%) { std::cout << "Copy Ctor" < emdl; }
A(AkE) noexcept { std::cout << "Move Ctor" << endl; }
Ak operator=(const A%) { cout << "Copy =" << endl; return *this; }
A% operator=(Akk) noexcept { cout << "Move =" 44 endl; return #this; } //
friend A operator+(const Ak a, const Ak b) { return }

Only Copy
Debug Ra‘e{a:c

Aa; Defa Ctor

Ab=a; Copy Ctor

Ac=a+b; Defa Ctor
/RVO ina+b Copy Ctor

A d = std::move(a); // rvalue

b=a; / lvalue

c=ath; rvalue

—_—

® Return Value Optimization (RVO) ellmlnates the temp. obj. created to hold 4 function’s return value

® std::move(t) produces a rvalue from t to indicate that the object t may be moved from
. 6 4 @ 2 B s

And so, here | have given a couple worked out a couple of examples in detail to show you
how does this copy and move constructor as well as assignment operator work. So, here is a
class A which has a default constructor, it has a copy constructor, it has a move constructor,
copy assignment operator, move assignment operator and binary operator which does not as
such do anything it just creates a temporary the result object and returns that object in

between of course, you will have the actual computation to be done.

Now, if you look at you will see that if you do only copy, then the calls will happen like this,
forget about the release part initial. So, A is declared. So, default constructor if you have only
copy a is assigned to b, the Ivalue copy constructor a plus b assigned to c. So, what will

happen first this operator will be called. So, A t will be created and then it will be copied.

So, At is created and then it is copied if | put this forget about this now, suppose | do an
assignment of a to b the copy assignment suppose | do a + b and assign it to ¢ default
construction of t copy construction for doing the return by copy return by value you need a
copy construction and finally the copy assignment happening here. So, this is what happens if
you just have the copy constructor and copy assignment operator.

Now, let us say we have move constructor and move assignment operator also. We have not
commented them out we also so this is same. This is same because it | have an Ivalue. But
when | create this | have a default constructor for this t but after that, for the return earlier |
was having a copy construction. Now, | have a move construction because this return value is

a temporary object, it is an lvalue.

So, | can just move the state, |1 do not need to copy the state. Then I have std:: move, which
says that take this Ivalue and a is an Ivalue, but convert that to, rvalue converted to an rvalue
reference. So, you can, with that, you can, you will have a move constructor, which will

forcibly convert the Ivalue to an rvalue and we will move.

Similarly, in this assignment, | have an Ivalue. So, copy copy. In this computation, | have a
default, for constructing this, 1 have a move constructor for the return and then move
assignment operator. So, this is how you start to benefit because you get a lot more of move
construction and move assignment happening, which are much less expensive than you,

actually.

(Refer Slide Time: 31:05)

PP AE L tS

[{;} Copy vs. Move : Vector

class C { int* data;
public: = W
Clint d) {
data = new int(d); re obje
cout << "Ctor: " << d << endl;

C(const C& src) : myClass{ *src.data } { // Copy Constructor by delegation
cout << "C-Ctor: " << ssre.data << endl;

C(Ckk src) : data{ src.data } noexcept {
cout << "M-Ctor: " << #src.data << endl;

src.data = nullptr;

“C() { // Destructor

if (data != nullptr) er is to mullptr
cout << "Dtor: " << xdata << endl;

else If pointer is p to mullptr
cout << "Dtor: " << "mullptr " << @

delete data; // Free up the memory assi

}
| §
e Cee s [0 —

So, here I have given this detailed explanation for your self-study. Here is another example
also using a class C, which has a resource in terms of an int pointer. So, with that you have a

default constructor, copy constructor, move constructor and destructor.

(Refer Slide Time: 31:34)

pPRLQEL O

[ﬁg Copy vs. Move : Vector

int main() { vector<t> v;
v.push_back(C{10});
v.push_back(C{20});

Only Copy Copy & Move
(\‘n-_;u(r Remark Debug Release Rem
{ vector<c> v;\/
size ¥ Ctor: 10/ Ctor: 10 Ctor: 10
v.push_back(¢{10})/| ctor: 10 | Ctor: [10
size() = 1 C-Ctor: 10)C-Ct 1
Ctor: 20 Ctory 20 Ctor: 20 Ctor: 20
v.push_back(C{20}); 5‘:: -1
ize() = 2 Ctor: 20 Dele
C-Ctor: 20 C-Cpor: 20 C-Ctor M-Ctor: 20 M-Ctor: 20

Dtor: nullptr Dtor: nullptr

Copy vs. Move

int main() { vector<c>
v.push_back(C{10});
v.push_back(C{20});

. Vector

Vi

Only Cepy
Release

PP aElste

Copy & Move

{ vector<t> v;

v,push;gack(c{w)) 3| Ctor: 1

mpixﬁéﬁ‘fﬁér(‘c‘(m));

C-Ctor: 20 C-Cter: 20
Dtor: 20 Dtor} 20

Ctor: 10

Ctor: 20

M-Ctor: 20

Ctor: 10

Ctor: 20

M-Ctor: 20

Dtor: nullptr Dtor: nullptr

oewe vl

pvRsaEdste

Copy vs. Move : Vector

int main() { vector<c> v;
v.push_back(C{10});
v.push_back(C{20});

Only Copy
Release

{ vector<t> v;

sizey). = Cse %\ Ctor: 10
v.push_back(C{10}); 1

—_—

Ctor: 20 Ctor: 20

v.push_back(C{20}); Dtor: 10
size() = 2 Ctor: 20 Ctor: 20

C-Ctor: 20 C-Ctor: 20

Dtor: 20 Dtor: 20

M-Ctor: 20 M-Ct
Dtor: nullptr Dtor

r: 20
nullptr

ol EE

And using that, if you create a vector and start doing push back, the main thing you will see is
certainly, if you want to do a push_back, what will happen, initially, the vector has size 0, its
got nothing, just this vector. Now, you do a push_back. So, it has you have to first construct,

you have to first construct the temporary object C(10), that will have to be constructed.

And then you have to do a copy construction. So, here, the copy construction texts, uses the
default constructor to construct and that that copied value will be put in the vector and the
original Ivalue, this one will get destroyed. Because this is an lvalue this is an rvalue, the

temporary gets destroyed, that is fine.

Now, if you want to insert the second one, here, the vector is already full. So, as we have

seen, we have to make a move. So, create an object for 20. And then you have to create a

copy of the existing value 10. And then destroy the earlier value, create an existing copy of

existing, destroy the earlier value, and then make a copy of 20.

And you will have that so you have that additional task. In contrast, if you had just done
move, then instead of copy construction here, you can just do with move construction, instead
of doing a release, you do not need to do that, because you have already taken that resource.
Similar thing, you will benefit in terms of moving the existing object instead of copying it.

So, that is a basic advantage that you gain.

(Refer Slide Time: 33:33)

pPRBAHL O

Ln{ Copy vs. Move : Vector: Explanation

class C { int* data; /* raw pointer */ public:
C(int d); /#Ctors/ C(const C& src); /+C-Ctor#/ C(C&k src); /#M-Ctor*/ “C(); /+Dtor*/ };
o { vector<C> v; = v is default constructed as an empty vector of C. v.size() = 0
o v.push_back(C{10}); = ConstructC 10} copy/move & place in v[0], and destruct. v.size() = 1
Ctor: 10 /* Ctor for C{10} => t10, Temp.obj. and rvalue #/ Ctor: 10
t /* delegated from C-Ctor */
r: 10 /* C-Ctor for t10 => v10 = v[0], 1 to place in v */ M-Ctor
Dtor: 10 /* Dtor for t10 #/ Dtor: nullptr

® v.push_back(C{20}); = Construct C{20}. Copy/move v[0] and destruct old v[0]. Copy/move & place
{20} in v[1], and destruct. v.size() = 2
Ctor: 20 /* Ctor for C{20} => t20, Temp.obj. & rvalue */ Ctor: 20
Ctor: 10 /* delegated from C-Ctor */
10 /* C-Ctor for v10 => v10_1 = v[0], lvalue to place in v */ M-Ctor: 10

/* Dtor for vi0 +/ Dtor: nullptr
/* delegated from C-Ctor */
-Ctor /% C-Ctor for t20 => v20 = v[1], e to place in v ¥/ M-Ct ;
Dtor: 20 /# Dtor for t20 */ Dtor: nullptr
® } = Automatic v going out of scope. Destruct v[0] and v[1]
Dtor: 10 /* Dtor for v10_1 = v[0] */ Dtor: 10
Dtor: 20 /' Dtor for v20 = v[1] */ Dtor: 20
Programming in Partha Pratim Das M49.25

And again, | have given a very line by line step by step explanation for what is going on. So,

use it in your self-study to get more insight.

(Refer Slide Time: 33:45)

PP QElstO U

[géj Copy vs. Move : Vector: Performance Trade-off

o Since, class C has no default constructor, vector<C> v is constructed as an empty vector with
v.size() = 0. Hence, every time a push_back (insert at the end()) is done, we need to
expand the allocation of the vector by copying / moving the existing elements

o For v.pushback(C{10}), C{10} is constructed as a temporary object (rvalue). So, it needs to
be copied / moved for push_back to the vector as Ivalue. Same for v.push_back(C{20})

o Further, for v.push_back(C{20}), fresh allocation and copy / movement of existing element is
needed for push_back

o To push_back the n element, we need to copy / move existing n — 1 elements. This means:

o Using Copy
> n— 1 resource allocations (new int) and de-allocations (delete)
> For n elements this adds to 37— ﬂ",—_ll = 0(n?) total allocations / de-allocations

—

o Using Move e
> 0 resource allocations (new int) and de-allocations (delete)
> For n elements this adds to }:7:_01 0 = 0 total allocations / de-allocations. Huge
Benefit! ey

Nl ¢ ¢ ...

Now, if we just try to analyze, what, what advantage do we get. So, you can see that for the
first copy, we can just we need to copy that object temporarily. In the vector for the second, |
need to move the earlier object because the vector is full, and then copy the new one. For the
third, | need to move, copy both of these existing objects, and then copy the new one. So,

using copy every time for inserting the i plus first object I need to make i copies.

So, if I look at insertion of n objects, then there are order n square, total copy and release.
That is allocation and de-allocation | have to do. Instead, if | use if I could use move, then
whatever exists. | am just moving. | am not creating any new int* data resource, neither I am
releasing them. So, it is simply 0. So, a huge huge benefit. And that is the incentive of why

we should use the move semantics.

(Refer Slide Time: 34:50)

pPRsAEl e

[é} Implementing Move Semantics

o Move operations take source's value, but leave source in valid state:

class Widget {
public:
Widget (Widget&k rhs) noexcept : pds(rhs.pds)
{ rhs.pds = nullptr; }
——————

Widget& operatoryﬁdgem& rhs) noexcept {
delete pds; get rid of current value
pds = rhsApds;‘/ / take source’s value

rhs.pds = nu]lpu;"‘ leave rce in valid state
return *this;

}

i : | .

private: |:Widget—|
struct DataStructure; | Fdae,)
DataStructure *pds;

}i
o Easy for built-in types (for example, pointers). Trickier for UDTs. ..

:DataStructure

@C «€ O .

Now, implementing the move semantics is simple. So, | will just give you a glimpse here.
And we will discuss more again in the next discussion that if you have a move constructor,
then from the source, all that you are doing is you are just moving the source, take the sources
value. And then you release it, let us set it to the null pointer. Similarly, free is an assignment
operator, you can do the same thing release what you had copy and set the source to null.

This will be simple.

(Refer Slide Time: 35:39)

AP QElte . X

[ﬁéj Implementing Move Semantics

o Widget's move operator= fails given move-to-self:

Widget w;
v = std::move(w); indefined behavior!

o |t may be harder to recognize, of course:
Widget *pwi, *pw2;
tp-l = std: :move(+pw2) ; indefined if pwl == pw2
o C++11 condones this
o In contrast to copy operator=
o A fix is simple, if you are inclined to implement it:

Widget& Widget::operator=(Widget&t rhs) noexcept {
if (this == &rhs) return *this; r assert(this != &rhs);
——

9 C+e T B0 L.

Now, the problem with this is a problem we had seen earlier in the copy assignment operator
is that the self copy is a problem. So, the same thing will happen in terms of move also, that it

is correct undefined behavior if you are moving from this object to itself. So, also in move,

what you will have to do is to check that your source object and the target object are not the

same. You already know this.

(Refer Slide Time: 36:10)

PP AEd te

[ﬁ?} Implementing Move Semantics

o Part of C++11's string type:

string: :string(const string);
string: :string(stringk&) noexcept; // move constructor

o An incorrect move constructor:

class Widget { std::string s;
e i

public:
Widget (Widget&& rhs) noexcept
: s(rhs.s) // compiles, but
e T—".
b

o rhs.s an lvalue, because it has a name
o Lvalueness / Rvalueness orthogonal to type!
> ints can be Ivalues or rvalues, and rvalue references can, too.

o s initialized by string's copy constructor

SR R e

Rest of it is simple. But remember, this | will leave as questions in this, 1 will answer them in
the next module, because | want you to think about this, that in a move constructor from
moving from a source, | say | have a string s and I have written this this will compile. But this
will copy you have to find the justification for why it will copy and how to solve that

problem.

(Refer Slide Time: 36:48)

pPRsAEL e

@ Implementing Move Semantics

o Another example:

WidgetBase(const WidgetBasek);
WidgetBase(WidgetBasekk) noexcept;
—

.

class Widget: public WidgetBase { public: h

class WidgetBase { public: H
——

Widget (Widget&& rhs) noexcept
: WidgetBase(rhs)

-

o rhs is an Ivalue, because it has a name
o lts declaration as Widget&& not relevant!

..¢4€ 2 -l g WIS

Similarly, if | take a different one, there is a there is a base type. And there is a derived type.
And | am passing this RHS as a parameter to the base type, and | expect the move
construction to happen, but you will find that it is not happening it will it will still copy. So,
think over that as to reasoning as to what is the problem here particularly that the variables
we are copying from our Ivalues. So, that is that is this knave implementation will not work.

So, we will have to see what more we will have to do.

(Refer Slide Time: 37:31)

pPRB ANl e

E’ﬂ;j Module Summary

o Understood the difference between Copying and Moving
o Understood the difference between Lvalue and Rvalue
o Learnt the advantages of Move in C++ using

o Rvalue Reference

o Move Semantics

o Copy / Move Constructor / Assignment

o Implementation of Move Semantics

Programming in Modem C++ Partha Pratim Das M49.32

And | will talk about that, but before that, 1 would expect that you have thought through this.
So, here we have in this module, we have introduced something very very fundamentally
important there is difference between copying and moving particularly lvalue and rvalue and
the advantage of moving in C++ the rvalue semantics and the move rvalue reference and the

move semantics. Thank you very much for your attention and we meet in the next module.

