Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 48
C++ 11 and beyond: General Features: Part 3
Welcome to Programming in Modern C++. We are in week 10 and we are going to discuss

module 48.

(Refer Slide Time: 0:38)

Kot
. + Module Recap
i

o |ntroduced following C++11 general features

o Initializer List
o Uniform Initiaization
o Range for Statement

S T Pute Pt D

In the last module we have introduced, continued on introducing some general features of
C++ 11. We have talked about initializer list, the braced initialization and its consequences
and also the uniform initialization mechanism, which can be uniformly used everywhere in

C++ 11. And we have also seen a convenience mechanism for iteration over an entire data

structure by using the range for statement.

(Refer Slide Time: 1:12)

.

Fa
tBd¥: Module Objectives
i

o Introdecing following C++11 general features

o constexpr

o noexcept

o nullptr

o Infine namespace

o User-defined Lizerals
o Raw String Literals

We will continue on these and introduce several of other general features of C++ 11, which
are on one side for convenience, for safety, for efficiency and as well as will become
important for the later important features. So, these are the six features that we are going to

talk about in this module.

(Refer Slide Time: 1:37)

This will be our outline naturally which will be available on the left.

(Refer Slide Time: 1:43)

ressions at compile-1

constexpr: Evaluate constant expressions at compile-time

Seurces

L] tepr, hocpp org

® Asl v of the & 4}, Scort Meyers Traising Courses

. poviaiogees o

o (i wackoverflow com, 2013

.

Pragrsmmey & Madwes € - Prse riem D s

So, let us start with const expression. Const expression is a feature to evaluate constant

expressions at compile time.

(Refer Slide Time: 1:55)

o The constexpr mechanism
o provides more

¢ allows constant expressions invalving
o provides a way to guarantee that an

onuz Flags { good = 0, fail = 1, bad = 2, eof = § n,‘/
congtexpr int operater| (Flags f1, Flags £2)

| returs FTagatiEvelt) | inc(12)); |

void £({Flags 1) {

swited (x) {
case bad . */ break;
case oof . +/ break;
case badleof: [+ ¢/ break;
defanlt . +/ break;

constes

o The constexpr mechanism

o provides more
allows constant expressions involving
> provides a way 1o guarantee that an
onuz Flags (good = 0, fail = 1, bad = 2, eof = 4 };
congtexpr int operater|(Flags f1, Flags £2)
{ return Flags(iat(f1) | $nt(22)); |

|
void #(Flags 1) {
suited (x) (
case bad . +/ break,
case oof ' +/ break;
case badleof: /+ +/ break;
default ' +/ break; \

o The constexpr mechanism
> provides more senera !

allows constant expressions invalving
o provides a way 1o guarantee that an

"

onus Flags (good = 0, fail = 1, bad = 2,
constexpr int operater|(Flags fi, Flags 2
{ return Flaga(tat(fl) | inz(f2)); |

oof =4 };

———————
void £{Flags 1) {
swited (x) (
case bad . +/ break,;
case oof ' +/ break;
case badleof: /+ +/ break;
defauit . +/ break;

cons

o The constexpr mechanism
e provides more ;
allows constant expressions involving
o provides a way 1o guarantee that an

;.: =0, fail =1, bad = 2, eof = 4 };
v (constaxpr Yat operator| (Flags f1, Flags £2)

| repdra Flaga(ta(f1) | ine(12)); |

void £{Flags 1) {
seived (x) { /
case sa:.‘\// . */ break;
pot

case oof +/ break;

case bad! . +/ break;
defaclt . +/ break;

t“f . R L et y"

o The constexpr mechanisn
o provides more

o allows constant expressions involving
o proviles 3 way to guarantee that an

enuz Flags { good = 0, fail = 1, bad = 2, eof = 4 };
constexpr imt operator|(1, Flags £2)

{ return Flags(int(f1) | inz{£2)); } a0
—_— ‘DU v

void 1(Flags 1) { \
suited (x) { /
case bad . +/ break; \ 0\
case oof . v/ break; /

case Qﬁ_{r_{ . +/ break;
default: . +/ break;

So, let us, see what it means is; const expression is in a way more, | mean. it gives us more
than the general constant expressions. We have constant expression or const seen earlier, it
will provide for somewhat more and with some differences. It allows constant expressions
involving user defined types and provide a way to guarantee that an initialization is done at
compile time for a const expression, given that you have the constants available at compile

time.

So, here is a simple example of an enum of flags having four different possible innumerable
values and we are defining an operator or for two flags, f1 and f2. Now, if you look at this
then this is, it basically takes the flag f1 and the flag f2, converts each to int as you know
normal enum can be converted to int, and then returns the value as an int value. So, that is

what the flags are doing.

Now, what will you have? Since, if you know the values of the flags f1 and f2 at the time of
compilation, naturally this entire expression can be evaluated at the compile time. So, as an
illustration of that let us see we have a flag, we have a switch based on this flag type x. Now,
as you know the cases of the switch need to be constants at the compile time, so it is quite

obvious that I can have case bad which is basically case 2.

| can have case eof, which is ah case four, but | wanted to write case bad or eof. This is an
operation which normally you will expect at the runtime, if you, but if that happens at the run
time then this code cannot compile. This code will not compile because you will not know
what is the value of bad or eof as a constant at the compile time and switch case will not

allow that. So, without this const expression this code will not compile.

But what will happen with the const expression, with the const expression at the compile time
f1 will be treated as bad, eof will be treated as f, I am sorry, f2 will be treated as eof and it
will actually compute the o of these two and whatever is that odd value, so if 1 have 00 1 0
and eof is 4, so if | have or of that, so for this value this case will be applicable. So, this is
possible because we can evaluate this expression at the constant, as a constant expression at

the compiled time. So, this is the basic feature of the const expression as we have.

(Refer Slide Time: 5:07)

: constexpr

o Here constexpr says that the function must be of a simple form so that it

o |n addition to be able to evaluate expressions at compile time, we want 1o be able to
require expressions to be evaluated at compile time
o constexpr m froat of 3 variable definition does that (and implies const)

constexpr int xi = badlect;

void f:r:;gsl'im

constexpriat x2 = badif3; error: cannot evaluate at ccspile tiss
ey
int 33 = badif3;
oy
¢ Recall the use of constexpr in std: :initializer 1ist in Module 47
€ o€ 8 Bt

So, typically the cons expression is a function that must be of simple form that it can be
evaluated at compile time given the constant expression and it is not only that it gives us an
ability to evaluate expressions at compile time but we want to be able to require expressions
to be evaluated at compile time, because that gives better efficiency and of the code that we
have. So, const expression in the form, in front of a variable definition will does that, and will
do that and will also mean what we traditionally mean by const.

So, this is a different context, so we have const expression before int x and this is an
expression which can be evaluated at compile time, so it will evaluate, have a constant value
and will treat this as a constant. Similarly, but if we try to do say in flags, in this function if
we try to do this, see f3 is a parameter and | am using that, Now, this is, this function will get

the value of 3 at the runtime and only then it will know what is bad or 3.

So, you cannot evaluate this as a const expression, but if you just do bad or f3 you will be
able to do that, in fact, if you do const int x3, bad or f3 that will also be valid because const
does not need the evaluation to happen at the compiled time. It only says that it has to be a

constant expression. We have already seen the use of const expression in module 47 in the

standard library initializer list.

(Refer Slide Time: 7:04)

::ﬁ: constexpr

o Typically we want the compde-time evaluation guarantee foe

s, often for objects we want to place in !
o This also works for objects for which the constructors are smple encugh to be
constexpr and expressions mvolving such objects:

struct Point {
.\
int x, ¥;
constexpr Point(izt xx, imt yy) : x{xx), y{yy) { }

b

constexpr Poinmt orige(0,0);

constexpr Nt z = OTige.X;

constexpr Point al] = { Peint(0,0), Peint(1,1), Poizt(2,2) };
constexpr int x = aff).x; x beccaes 1

¢ e 8 -*.;.041

So, it can be used, const expression can be used with user defined types also. Here is an
example, we have a struct point and | have specified the constructor to be const expression,
so const expression point origo (0, 0) will actually at the compile time construct this object
and will also set the values of x and y. Similarly, it can then set z as a const expression origo
dot x which will actually get 0 and so on so forth, the arrays and so on. So, all of these
different types of const expressions are possible.

(Refer Slide Time: 7:45)

¢ Pleasa note that constexpr is not a general purpose replacement for const {or vice versa)
o const’s primary function
> is to express the ea that an object 5 not modified through an interface (even though
the cbject may very well be modified through other interfaces)
> It just so happens that declaring an object const provides excellent optimzatica
cpportunities foe the compiler
> In partiosdar, if an obpect is declared const and its address is not taken, a compiler 5
often able to evaiuate #ts initializer 3t compde time (though that's not guaranteed) and
keep that obmect i its tables rather than emitting it into the generated code
o constexpr’s prmary function
> is to extend the range of what can be computed at compile time, making such
computation type safe and 2iso usable in compde-time contexts [such 35 to mitiafze
enumerator or mtegral template parameters)
> Objects daciared constexpr have ther inttialzer evaluated 3t comple time

generated code if needed

Fragrammeg o Uedves (oo Pars e T s

Note the difference between const and const expression. It is not in general, one is not a
replacement of the other. Const’s primary concern is to express the idea that the object is not
modified through the const interface, though it may be modified through other means. So, it
just so happens that telling that an object is const provides good opportunities for

optimization for the compiler.

And for example, if an object is const and its address is not taken, then the compiler may not
allocate any memory for that, it can just keep it in a read only table, whereas const
expressions primary concern is to check what can be computed at compile time. So, making
such computations, type safe and usable in any compile time context. For example, size of an
array, initializing enumerators, passing as a int, template parameter and so on so forth. So,
objects declare const expression have their initializer evaluated at the compiled time. So, that

is the basic difference between these two.

(Refer Slide Time: 9:04)

s constexpr

e constexpr needs compile-time constant for initialization whereas const treats the
initiafized value as constant in run-time

#inclode <lostren /

constexpr ;n:/VLQ‘,\

void £(iat B) {
constexpr izt ¢l =

std:oout << gl <€ ' ' &K g2 <€ 7 ! <K 3 << std:iend];

e 8 . e

Here is another example to show the concept, so these are const expression for variable
declaration m, so where const will also work actually. You can then define const expression
cl as m + 1 which will be fine because m will be const, compile time 100, so this is 101. But
if you try to do say const expression int c2 of n + 1 where n is a parameter, this will not

compile, because it is not known to be a constant at the compiled time.

Whereas you can do const on this, because all that it says if you say const is, it says that when
this gets executed at the runtime, it is not required at the compile time, but the runtime when
it gets executed whatever is the value of n + 1, will be the value with which you initialize c2

and that cannot be changed through this interface at least. So, similar thing is for ¢3 being

defined as c2 + 1 and so on. So, that is the difference between these two const expression is a

very powerful mechanism to optimize at the compile time.

(Refer Slide Time: 10:17)

PP ands te . N

: To prevent Exception Propagation

noexcept: To prevent Exception Propagation

L] t pagation, secpp Oorg
L u New (4}, Scont Meyers Traising Courses

o |f a function cannot throw an exception or & the program & not whitten to handle exceptions
thrown by a function, that function can be declired nosxcept

extern "C* double sgrtideuble) moezcept;

vectarddeuble> my_cospataticnicp vactor<dontledk v) 2oexcept |
J e

{ v Eizel); ++4) rea(d] = sqreiv(i]);
roturn Tes;
|
® |f a function declared soacept throws [so that the excaption tries 10 #scape the soszcapt fusction)
O the program s terminated by a cad 10 std: : tarminatal)
O the call of terainate() caanot rely on objects being i well-defined states, that is. there is
> no gearantee that destructoes have been imvoked
> no geatanteed stack uswinding, and
10 possibility Sor resuming the program as f o problem 2ad been encowntered
O This is debberate and makes nosxcaps 2 simple, crede, and very efficent mechanism

& much more efficient than the cld dynamic tarou() exception specifcation mechansm

__“ . R

o If a function cannot throw an exception or & the peogram & not whitten to handle exceptions

thrown by a function, that function can be declired nosxcept

extern "C* double sqrt(deuble) moezcegt;

vectorddeuble ceprration(Poast vector<danbledk v} [zoexcept)|

for{int §; i<v,
return res;

i ++4) res[d] = sqreiv(il);

|
® If a function declared soexcept throws [so that the excaption tries 10 #scape the sostcapt fusction)
O the program s terminated by a cad 10 91d: tarsizatal)
O the call of terainate() caanot rely on objects being » well-defined states, that is. these is
» no gearantee that destructors have been imvoked
no geartanteed stack uswinding, and
no possibility Sor resuming the program as f no problem 2ad bean encountered

This is delberate and makes nosxcapt a simple, crede. and very efficent mechanism

cation mechansm

much more efficient than the cld dynamic tarou() exception spec

.9 € l R o

o |f a function cannot throw an excegtion oe # the program s net wiitten to handle exceptions

thrown by a function, that function can be declired nosxcept

extern "C* double sgrt(deuble) moezcegt;

vectorddeubled sy _comprtationicoast vector<danbledk v) zoexcept

<Jeuble> res(v.size(})

for{int &; t<v.alzel); Fihres[i] = sqreiv[i]);
!ntuni Ies;

|

® If a function declared soezcept throws [so that the excaption tries 10 #scape the soszcapt fusction)
O the program s terminated by 3 ol 10 9td: : tarmizatal)
O the call of teratnate() caanot rely on objects being m well-defined states, that is. there is

» no gearantee that destructors have been mvoked
no geatanteed stack uswinding, and
no possitelity Sor resumng the program a5 i no problem 2ad been encountered

0 This is defberate and makes nosxcapt 2 simple, crede, and very efficent mechanism

much more efficient thas the cld dynamic tarou() exception specitication mechansm

o, M e 1 Rl |

S A

o f a function cannot throw an exception or ¥ the program is not written to handle exceptions
thrown by a function, that function can be declared noexcept

o |f 3 fanction declared zoezcept throws {so that the axception tries to escape the zoexcept fusction)

O the program s terminated by 2 ol 0 s2d:: {)
O the call of terminate() caance rely on obpcts ;ng dl dehned states, that is, theee is
> no gearantee that destructors have been invoked
m0 geananteed stack unwinding. and
no possibility for resuming the program as # no problen had been encommtered
o T‘n is defberate and makes noaxcept 2 simple, crude. and very efficest mechanism

> much more eficent than the old dynamic throu() exception specification mechansm
—~——.

L k. S | RS i |

The second feature that we, this features are all kind of diverse because there are features on
different aspects that are being talked off, so there is a feature called noexcept to declare that
a function will not throw an exception or it cannot handle, it has not been written to handle
exceptions thrown by functions within it. So, we are saying that let us say extern C, a C

function from the standard math library, we say that sqrt function is noexcept.

Which means that the sqrt function will never throw if I call it. It will execute and give me a
proper value. So, using that I am defining some function for a, my computation function for a
vector, which | want to declare as noexcept. So, what it says? This noexcept says that this
function my computation, either will not throw or it is not written to handle exceptions to be

thrown. For example, it is using sqrt, so this will not throw.

But it is also using say v.size here, which might throw, but even if this throws, this function is
not written, equipped to handle that exception. So, that is the basic idea of noexcept. So,
naturally that opens the question as to what happens if a function specified to be noexept if it

throws. If it throws then naturally you are violating the basic guarantee given by the code.

So, this will in turn call a function in the standard library called std::terminate, which will
terminate the function, it is like, I mean close to what a bot does, you can also register your
own function for terminate. Now, this function terminate does not do the typical tasks of
exception handling. For example, it does not guarantee that the destructors of the objects that

are getting out of context will be called.

It does not guarantee that the stack will be properly unwinded or it does not keep the
provision of resuming the computation if the program has been found to have no further
problem. So, you will recall that in exception also, mechanism also, we had a way to say no
throw, no throw in this way, that is it specifies what does a function throws and giving an
empty parameter says that it does not throw of any kind. So, which is semantically similar to
noexcept, but the fact is through this throws mechanism is actually run time, so it is far less
efficient in terms of the exception specification in contrast to what noexcept can do which is a

compile time feature being provided.

(Refer Slide Time: 13:33)

¢ |t is possible to make 2 fuaction wexcept. For example, an algorthm can be

specified to be noexcept iff the operations it uses om a template argument are nosxcept

tasplatecciang T>
—

$(v.a%(0)

/
vector<T>k v) soetcept (neezcept !'i'f.s'.‘?lllf'f {
it 1, '.<r);'.zcy-)
r.atll) »¥ (7,

| ———

o noexcept (f(7.at(0))) w true if £{v.at(0)) cannot throw, that =
o if the £() and at() used are noexcept

¢ The ncezcept () operater is 2

- pri and

o [t is possible to make 3 function t zoexcept. For example, an algorithm can be
specified to be noexcept iff the operations it uses on a template argument are nosxcept

templatedclass

Liv.az(0))

o Here, we use noexcept as an operator.

o noexcept(f(v.at(0))) s true if £{ that &
o if the £() 3nd at() used are noexcept
— —
o The noexcept() operator 5 3
and
L 3] - L i |

o |t is possible to make 3 function | zoaxcept. For example. an algorithm <an be
specified to be noexcept iff the operations it uses om a template argument are nosxcept ‘

tasplateccians T

int §; i<v.mizel
r.atll) = v,

o Here, we use NOEXCEpt as an operator

o noexcept(f(v.at(0))) w true if £{v.at(0)) cannot throw, that =

o i the f(

and at() used are noexcept

¢ The ncezcept () operater is a

and

.+ € o |

Now, the interesting fact is many a times the noexcept can be used as a conditionally and that
becomes particularly useful for templates. So, what we want to say is suppose | have a
function do_f templatized by the type t and that type could be kind of anything. So, what |
want to say is this needs to use f(v.at(i)). At i is basically accessing a vector location and so it

is accessing the ith location of the vector and then using f.

So, there are two function calls involved here, so the guarantee that we want to say, we
cannot say it is noexcept, if we give noexcept then you are saying that it cannot handle
anything. But what we want to say is this will be noexcept provided this expression that is the

call to at and call to f, they do not throw, if they are noexcept.

So, it is kind of a conditional specification where as you can see easily that noexcept instead
of just being used as a qualifying keyword it is being used kind of as a compile time operator.
So, what does this operator do? It says that this will be true if f(v.at(0)) cannot throw, that is

if f as well as at are used as noexcept.

So, it will check that because do not know for what f is, | do not know for that vector type
what at, oe might have been. So, this will give me a conditional, so provided if this is
noexcept, if this is true, then this is, then this becomes noexcept(true), that means this

function is noexcept. But if this is false, then then this does not hold any good.

So, the interesting factor about noexcept is it is a constant expression, that it is evaluated at
the compiled time, that is the reason | need at 0 and it does not evaluate its operand, it does
not evaluate that, but it just checks the behavior, checks the specification of the

corresponding functions and they are noexcept status.

(Refer Slide Time: 16:15)

o The general form of 2 noexcepy declaration is
o noexcept{expressica)

t is smply 3 shorthand for noaxcept{trug)

o Al declarations of a function mest have compatible noexcept specifications
o A destructor should not throw
o a generated destructor is implicitly zoexcept (independently of what code is in its body) if
all of the members of its class have ncexcept destructors (which they too will have by
default)
o It s typcally 3 bad idea to have 2
o declare those noexcept wherever possible
o A : tioo i implicitly noexcapt if all of the copy or move
operations it uses on members of its class have zoexcept destructors

® noexcept s t used n the standard library to

So, noexcept declaration would typically be in the form of noexcept followed by an
expression and this will be true or false and the plane noexcept is just a short form of
noexcept true. Now, normally destructors should not throw, because then the cleanup

becomes a mess, so any destructor that is, that you write, you should write it as noexcept.

If the compiler provides the destructor, then it will be implicitly noexcept provided all objects
being destroyed in that destructor, the member variables are also have destructors which are
noexcept. Similarly, the move operations must not throw, they should typically be noexcept,
we will talk about the move expression very soon, but not in this module. So, noexcept is
widely and systematically used in the standard library to improve performance and to clarify
the requirements of where do you really need to do checks for the exception handling and

where you can skip those.

(Refer Slide Time: 17:27)

PP ANl Lt

nullptr: null Pointer Literal

nullptr: null Pointer Literal

Sewrces.

L] S0P, ofF

. Scort Meyers Training Courses

® NULL, cpprefesence coex (€]

. cppreference com (C+4)

Pragramming & Madery Co s Farts Prom I -

¢ nullper is a literal dencting the nell pointer
o Literal of type std: :nullper.t in <cstddef>
o Comvertible to any pointer type and to bool, but nothing else
o It is not an integer and cannot be used as 2o integral value

o nullptr is prowided to replace the macro WILL
o C Implementations (<stddef.h>, and others)

$define NULL O

Sdefize WULL (1002 - 20) + .:’.::.:'..:.n'/
S et
$defize NILL T(voide)C v+ facompatible v
- L —)
o C++ Implementations (<cstddef>, and cthers)
Sdefize NULL 0 * oL

$defize NULL muliper
o NULL or O causes confusion in following cases that aullptr can resoive:
o Function Overload Resolution
o Forwarding Templates
¢ o€] -~ e “

The next feature is a null pointer. You will wonder as to why do we need null pointer, we
already had null pointer. So, this is a new keyword and a literal. nullptr is a new keyword and
a literal of a new type called new ptr_t, and this type is defined in stddef in C standard library
so cstddef is where you will get it. So, this is a literal which is convertible to any pointer type

and to bool but nothing else.

Now, if you look at the typical use of capital NULL as a null pointer, you will typically have
a macro somewhere in stddef.h or cstddef, which is defined as a 0. So, that basically tells you
that it is an integer 0, which is defined as a null. Now, some C, so this is what how C

implements it, so which is compatible to C++.

Some C plus, C compilers do some, try to do something more intelligent like specifying this
as an integer expression, making sure that you get the proper integer type. Some write it as a
void* null pointer and so on, note that these are not compatible to C++. C++ typically will
implement this as NULL 0 or in C++ 11 NULL will be defined as nullptr. So, what is the
advantage of having this nullptr? It solves basically two problems, one is a function overload

resolution and one is of forwarding templates.

(Refer Slide Time: 19:24)

eudte .40

r‘"‘ Pt
’ﬁi nullptr: Function Overload Resolution & Forwarding

void biote b

texplateciyparane F, typeome P

void leghodtalllF faac, P paras) |
hoc(paran)

I

loghadCally, 0J;

Fa PPl any
kﬁi nullptr: Function Overload Re

f, typrome P
uc, P parwl |

e u Fam
|
loghadCally, 0); ey B ot alist)

loghsdCall(y, MLL} erree: B loag ist kllong 18
sullste): ’ i cenllatr ¢ biatd: czellptsr ¢

@ 4] . — . |

L B ‘o °

R : e
iﬁi nullptr: Function Overload Resolution & Forwarding

So, let us look at these with through some examples. So, first let us have some examples of
the nullptr. So, | have a integer pointer q initialized to nullptr. The character pointed p
initialized to nullptr initialize to 0, initialize to null, p, p1, p2 all of these we will work. Now,
if 1 check p it will compile but obviously it will fail because p is a nullptr. So, you can see
that nullptr, though is of nullptr_t type it will get converted to bool for this if check.

I can compare it with another pointer, p can be equated to with p1, where p is initialized with
nullptr and p one is initialized with 0, so this will compile and fail, this will compile as well
as succeed because both of them are actually null. But if | try to do compare g with p2, g is
int*, p2 is char*, both are null but their types are different, so that conversion will not be

allowed, conversion between distinct pointer types are not allowed so therefore it will fail.

Similarly, if we have a function g which takes a parameter of type int and you try to call it
with nullptr you will get an error because as we said nullptr cannot be converted to int. If you
try to initialize an int value with nullptr you will also get an error, with capital NULL, both of
these will actually work. Now, let us come to the function overload resolution. What is the

problem? Suppose, | have a function f with two overloads, one is int, another is int*.

Now, often it becomes difficult to resolve a call to, for these overloads of the function. For
example, if | write it say f(0) in C++ 11 it will call the int version, if I write it as nullptr it will
write, it will get me the int* version, because 0 is a literal of int type, so f(0) is called to f(int),

nullptr is of type nullptr_t, so f(nullptr) is a pointer type so it will be, give me f(int*).

(Refer Slide Time: 22:01)

o

loghsdCall(y, MLL}
loghsdfall (s, sullptr);

| . 2

iﬁ‘l nullptr: Fun*t on Ov"' uad Pv.:uh. ion & Forwarding

pPolsanste . L

r: Function O olution & Forwarding

mullgtr

ervor: pullptr 1s pot ae ot

Yol f(iene);

Farm
iot)
loag it hkllomg 12
blatd: czel)

chate pl -

P Rl &

chare 2
iy ..
11 (p w= pi)

i

iate ST

"o

fiweLL et

|

loghadCallh
loghsdCall(y
logh: 105 ° 4 ullgte, |
€ [} + L i ."

chare p »

chate p) « 8 Pl p=p
chate p2 e WL, /) 2
1 p ...

i1 (p

rror; aullptr is o i
rror: puliptr 1s im
2
T RLL 2t ate

axplatectyparane ¥

void logho
e (p

|

loghadCallh

loghsdCall(y

loghsdlall (s

¢ e

el v“

Now, if I had done f(null) then which function would get called? The problem is that the
compiler will say | am confused, because null is actually a value 0. So, considering null to be
a value 0, this function should get called, but a value 0 can also be interpreted as a null void
pointer. So, this value should get called. This function should get called, so both of these
overloads have equal weightage and therefore, it cannot be resolved, so using null this kind of

a function overload resolution was not possible.

But with null pointer this will now be possible because you are specifically saying that | want
the pointer version, when you use 0 you specifically say that | want the integer version. This
gets more involved in a forwarding template. So, let us consider what it talks about. We need
a function h, which takes an integer pointer. So, you can, as you can easily understand h(0)

and h(null pointer) both are okay.

Now, | have a template of 2 type parameters f and p, and with that | templatize a function log
and call, where f is actually a function parameter and p is the parameter to that function. So, it
is kind of an application function, which takes a function pointer, it takes a parameter and
applies that function on the function parameter. So, it tries to make this call. So, it is probably
is doing some log entries and then it invokes this func on the parameter.

Now, what will happen if you call this with h(0)? Now, with h(0) the h is the func and the
parameter is passed as 0, so you want a template deduction to happen. By template deduction
this is int, 0 is int, so it will be deduced as int and you are expecting a call to h int which does

not exist, h is int*, so this fails. The same thing happens with null.

If you pass it as null, then whatever is the type of #define null 0, maybe it is int, maybe it is
defined as 0 I, in which case it is long end, so the compiler that | was using, the g's online gcc
as | talked of, it takes it as long int the null, so p is deduced as long int and h long int is
searched, it does not exist and therefore, it fails.

But if | call this with null pointer, nullptr, then it correctly succeeds because then param is
deduced as nullptr_t type and therefore, h is of this std::nullptr_t type that you are trying to
call and you have int* which said can automatically convert, so this function matches and the
template will get forwarded easily. So, these are the two problems that nullptr, introduction of

nullptr solves in terms of function overload resolution and in terms of forwarding template.

(Refer Slide Time: 25:41)

PPLANI L. 2D

o . bl
iﬁi Inline namespaces: Efficient Version Management

Inline namespaces: Efficient Version Management

¢ nocpp g
{ the N 3), Scoet Meyers Traising Counses
X geeksiongesss org, 201

ooy @ Machrs (o Pt Frem Im - i

L

vBd: Inline namespaces
LY

o The inlize namespace mechanism s intended to support library evolution by
providing 3 mecharism that supports a form of versiceing. Consider

L

nasespace 192 |
Void 1Uist);

|

pamespace Nize {

#inclode *799.1"°

#include *195.1"

}

¢ ¢€ o B |

The next that we talk of is inline namespaces which is primarily for version management.
Think about this, this is very simple. You have seen namespaces, so the use cases, a company
is regularly releasing libraries of different versions. So, it had a version 98, say V98.h and in

that it defined a name space v 98 where the function is there.

Now, what it has done? It is releasing the next version VV99.h and it has defined a namespace
V99 where the function f(int) has been improved possibly and another functionality f(double)
has been introduced and so on. The question is in the application code how do you manage
this? So, you have both of these. Now, what the company wants is, company wants you to
move to V99 by default. But it, company also wants to give you the ability that if you want to
stay with the older version you should be able to make small changes in your code and be

with that. So, how do you take care of that?

(Refer Slide Time: 27:04)

tB@: Inline namespaces
=X

L S O

o We here have 2 namespace Mine with both the latest release (V29) and the previous

one (V38). If we want to be specific, we can

#include "Mine.}"

using namespace Mize;

—

ves::4{1) &

V99::4(1);

1{1);

-—
o Theboint & that the inline specifier makes the declarations from the nested

namespace appear exactly as if they had been declared m the enclosing namespace.
o This is 3 very static and ement te fv in that the inline specifier has to
be placed by the designer of the namespaces ~ thus making the chaice for all users

o It s not possible for 3 user of Mine 1o say

o The inline namespace mechanism & intended to support library evolution by
providing a mechanism that supports a form of versiong. Consider

ialing namespace V90 |
{ void {#{int);
z void f(double);
v
.

razsapace Y98 |

void I(int);
|
ranespace Nl |
#inclods "V9O. 0
#inclode “TE.L*

|

k. 3] B .v‘

That is very simply in Mine.h, where you have included both these headers, you say you are
using this Mine namespace and you say that if you want the old version you say V98::f1, if
you say the new version, then you say V99::f1, no surprise till, but if you just say f1, that is if
you do not make any changes, then it defaults to V99. Why? Why does it default to VV99?

Because V99 is inline.

So, that means that anything that is inline is available in the enclosing namespace, enclosing
namespace is global, so these are available in the enclosing namespace, unless you
specifically use some other namespace. So, this default behavior is what is critical of the

inline namespace feature. So, the company not only can provide the versions but also can, is

enforcing that if you are not consciously using the older version, then you will get

automatically defaulted to the newer version.

(Refer Slide Time: 28:32)

ﬁ Inline nam rspayt;
P nan

v

<+ 1azas7aces inline zamespaces
$izclude <lostrean> #inclade clostrean>
using nasespace std; usiag nasespace std;

ime damespace ns

space sl { in \
rasespace 252 { ia \
mazespace n3d | i \
}
} }
ot zaie{) { int zain() {
cout << palivl « ' coyt << 331 <«
ut << ngliias2:iv2 <« ut << 331092 «
———y cout << 3s%:ing2::93 << '
cogt << asl:iins?::nsd::v3 << andl; cout << 231:i73 <« e2dl;

® Note [the the outermost samespace (ns1) & 1alize, thes the symbols w h m 35! are avadable in the
gobal namespace. For ex rok nsl:ons2::253::v3 can be accessed 35 ¥3 in maiz() besides as
nsl:ins2::vd and 281::%3. This property is used & Control

¢ o€ o . ..

You can see the comparison of the inline namespace between C++ 03 and C++ 11. | have

three namespaces with three variables and | have to give complete qualification of these

variables to be accessed properly. Whereas if | inline the inner two namespaces, if I inline

name space ns3, then every symbol in ns3 is automatically available in the enclosing name

space ns2. If we inline ns2, all are available in nsl.

So, actually using nsl | can use, refer any of these variables implicitly. In addition, if | had

done an inline of the outermost namespace, then the symbols would be available globally also

the feature that we are using in version control. The question would be could we not have

done this in C++ 03 we have using.

(Refer Slide Time: 29:30)

r:'1 - sl and te . LR
ﬁ Inline namespaces.
p=2{ inline namespace effects by usin

3a3especes
tiaclade <lostrean> #iscicde Costresm>
Griag sasespace std: uaiag maseszace std:

casespace 21! |
3a3eepaTe 222 |

aasespace 21 { fe vl e 3
saseszece 052 | in

uaisg pamespece as) ——
} ‘/
ising sasespace 22,V

et .] L2

cost 2sl::n90: 283 1} ' comt - il 5
| } —_— L/
¢ Note 'With wsing nasespace 2sl befors zatn(} the symbols within 2s1 wil be i the global

namespace. Like ns]::za2 73 can be accessed 35 28] :0s2::v3 251::93, 3ad v3
® However, 2sing nasespace sl bekongs 1o the ap ence, the choice of putting it
befongs to the user and default version cansct be forced. 1211ine nsnespace addresses this

for Ve 1 Contre |

C o€ l . DL s |

So, here is a comparison of the C++ 03 namespaces the same code as before on the left-hand
side and here | have introduced two using, which gives you the same effect. You can use, like
you can use everything from nsl because using namespace ns3 as a part of ns2 says that
anything in ns3 is available in ns2, and so similarly for here goes to nsl. Well, if I do that

then till up to this point things are comparable.

Now, how do I make this available in global by default? What | will need to do is to put using
name space nsl. If | put using name space nsl, then even simply writing v3 will mean this
variable, because using, using, using everything is globally available. But that does not
address the basic question, because this using namespace nsl is in the code of the application,
so it is up to the choice of the user to put it or not put it. Whereas when you do inline
namespace, it is in the space of the library, so it is the choice of the library designer. That is
the subtle difference for which the inline namespace feature is very important for proper

version control.

(Refer Slide Time: 30:57)

pPsandte . N

Fa : — |
iﬁi User-defined Literals: UDTs closer to Built-in Types

User-defined Literals: UDTs closer to Built-in Types

Sources
vali, BOCPP O
gesiforgets arg, 2018
raks, microsoft com, 2021
A Scoet Meyers Training Courses
w2s Pratem T -

o C++ has aways provided literals for a varsety of bult-m types

123 izt

double
1L.2F float
2’ char
1oL uzsigned lozg long
0xD0 hexadecizal uzsigned
fas* striag

o However, in (++03 there are no literals for user-defined types. This violates the principle that
UDTs should be supported as well as buit-in types are. Common requests imclude

std::string

BE01234567T8301 2345678901 234557830z

Prgrammeg & Madees £ v Parss Prem T EE e

The next feature is user defined literals where the concern is very simple that we say that user
defined types, | mean, in C++ we are building user defined types, but we cannot have literals
of the types that we build. We can have only the literals of types that are already given, some
examples are given here. Even if | want to have, take certain values and want to give them a

specific meaning, say 123s, | want to mean that 123s is 123 seconds, | cannot do that.

(Refer Slide Time: 31:29)

pPsand te .

User-defined Literals: Literal Operators

o (=411 supports s through the notion of literal operators that
tera For example
constexpr cosplex<double> sparator ** _il{lozg double d) |
return ::cp‘.uw:;:lomf:‘.ust(::u':In»:d: b
] L ccastexpr
o Literal operator has the syntax: <GeturaType> operator " <Suffix> (Paraseters>)
© ReturaType can be anything ncluding void
© Suffix must start with an underscore (). Only the Standard Library is allowed to define
Iterals without the underscore. Suffixes will tend to be short (ke _s for string, 1 for
, 8 for meter, and x for), so different wses could easily clash. Use
namespaces to prevent dashes
o Parameters can be any one of four kinds of fiterals
unsigned long long int v’

long dosdl

(coast chare, size.t), (comst wchar te, size.t), (coast
charif.se, size.t), (ccost char32.te, size.t), of (char conste)
- char, wchar_t, chari6.t, or char32.e
¢ e] |

So, user defined literal does that by introducing a new literal operator, which is written in this
form, that is operator keyword followed by a pair of double quotes. And then a suffix to be
used with the literal conversion. So, in general this operator, so this is a computation, so this
operator will have this, then a suffix to actually, which is the name of the user defined literal
operator, then it will have parameters of what you are converting from and the return type.

The restrictions are that the suffix has to start with an underscore otherwise non-underscore
names are reserved for the standard library and parameters can be of certain types only, either
an a integer literal or a floating-point literal or a string literal or a character literal, but the
return type could be anything you can take any of these and convert to a return type literal of

your choice. So, let us see what it does.

(Refer Slide Time: 32:35)

pPsand e LR

P : , .
iﬁi User-defined Literals: std::string Literals

tiaclode <lestreasy
#iaclode <string>
using zamespace sid; / /

s(coast chare p, size t n) { // sd::strisg literal

teoplate<class T> void f{const Tk) {
cost << a << edl;

Say, | define a string, operator literal for the string, so _s, all that I do is I just construct a
string and pass on. | have a pointer to the character array. | need to pass the size because
otherwise | will not be able to do the conversion. So, if | do that and call this templatize
function f with just the double quote, it is a pointer to character. It is an array of character, so
it takes as const char reference size 6, 5, characters for hello and the terminator, but if I write
it as _s, then it takes as a std::string object, it constructs an std::string object by calling this
literal operator function.

(Refer Slide Time: 33:32)

L R

ﬁ User-defined Literals: std::
134

#izclode <iostrean>
#iaclude <compler>
using :amespace sud;

s

oy %, P 4
retura cosplex<double>{{ 0.9, jstass 5T lex(d));
I

int main() {

auto z = 3.0 + §.0_4;
e —t
auto y = 2.3 + 5.0

COBt << "z + ¥ = T << 247 << andl z+y= (539

Coat << "z ey w T << 2oy < qedl

cost << "abs(z) = * << abs(z) << @ndl; abe(z) = §

L € 8 . BT S "1

Similar thing can be done for say a complex, so | am using an _i, the value is taken as long
double and I construct a complex object of the standard library, so and then | use it like this.
So, | am assuming that the real part is 0 and the imaginary part is provided by this literal
conversion, so this literal conversion 3 + 4.0 i gives me a complex number, 3.0 plus, 3.0, 4.0
because 4.0 _i literal gives me 0, 4.0, then that is added to 3.00, and I get that.

(Refer Slide Time: 34:21)

pPosand e LR

tﬁ‘ User-defined Literals: Metric Weight Literals

tiaclodeciontres
#izclode<iosanip>
using zamespace siud;

lozg deuble operater™” ,ki{leng doble V/
yeturn 3 ¢ 1000;% v

loag dzuble oparater”™ _glloag double x) |
returs X;

loag dzuble oparater”* ,ag(lcag dochl
yoturn 3 / 1000;

int sain{

.gda le weight = 3.6 kg

ot << velght << LZ'_"

3t << setprecision(8) << {wwight + 2.3 ag) << epdl;
} 2.0.¢) < wxdl;

st << (32.3.2g * 2.0) <C wd];

ga88sg
i & o

¢ ee 8 LS s |

Conversions can be done with meaningful extension symbols like kg, | say okay. | have to
deal with the kilogram, gram, milligram, so | have literals of every kind and I will put a value
and put the literal operator. So, the basic representation is in gram. For kilogram we multiply

that value by thousand, for milligram I divide it by 1000. So, | say 3.6 underscore kg is my

literal, so that means 3600, because it will call this literal operator and convert into grams
which is 3600 grams and similar for milligrams and all those, so this makes the code

naturally lot more readable and understandable.

(Refer Slide Time: 35:04)

sazh, yexr |

B :1

And you can actually use this to convert to user defined types like here run this example and
check for yourself, | have defined a Date type, date, month, year and | want that this kind of a
date literal 1 would have dd slash yy slash mm slash yyyy and convert it directly to date
object. This conversion function, the operator literal conversion function allows me to do
that. Just go through this carefully it has a lot of parsing from the string, it takes it as a string,
does a parsing, take out different parts, convert them into integer and finally, it constructs the

date object as a literal.

(Refer Slide Time: 35:49)

PP A=t .

P
B User-defined Literals
iﬁl

o The basic (implementation) idea is

o After parsing what could be 2 f1eral the compier abways checks for 2
o The user-defined Steral mechanism simply 5 ¢ fix and what
s to be done with the literal before it

o A literal operator can request to get its (preceding) fiteral passed
> as cooked (with the valoe it would have had if the new suffx had not been defined) or
> as ked (a8 a string) by simply requesting 2 sngle const chare argument
Bigmaa operater™* x(comst chare p) |
returz Sigea(p);
}
votd {(Bignm);

1(1 2345678001 23456TB901 23456

£7890z)
Here the C-style string * 456789012345678301234567330" is passed to
cperator*® x(). Note that we did mot explicitly put those digits into a string

L T Prs Prem T -

So, user defined literal is a very, very powerful mechanism, there are ways to either take the
converted literal form or the raw string form in which it is provided, all of these examples are

given here.

(Refer Slide Time: 36:05)

Raw String Literals

L in, s0pong
 the M 4). Scott Meyers Training Counses

Pragtammng & Mades € - Parts Proe T wa

r"" L
t®d: Raw String Literals
i

o String literals where characters are nat spe

L

o For example, escaped charactars and double gootes
std::strizg aofevlizes(R*{\n\nl*);
¥ e T —— .
std::istrizg cad(R*(ls /bone/docs | prep *.pdf*)*

o For example, newines ‘\l
std::strizg withBewlizes(R* \
Lize 1 of the string...
Line 2. \
\
Lioe 3}*);
./ may be added to any string encoding

itar

o Raw text delimiters may be customized

o Useful when J" is in raw text, for example, in regular expressions

s3d: iregex rel(R
std: :regex re2{R*zyzzy(*\((A-2a-2.] \v o\)")xyzzy™);

Before | end the last feature, | would like to mention is raw string, you know that ¢ strings
have lot of escape characters, like \t is written to mean tab, \n is written to mean new line, and
so on. C++ allows you to define a raw string. It is written with a prefix capital R before the

double quotes, which means that the escape characters will not be interpreted, they will not

be treated as special.

So, this will be \n and \n not to new line. Similarly, 1 can write a string like this, which
spreads over multiple lines. There are new lines inside. If you try to do this in a normal string
you will have error, but here you will be able to do that because everything is being taken just

as the character is without any special interpretation being given to that. So, this becomes

useful in some of the standard library features as we will see later on.

(Refer Slide Time: 37:06)

PP s A=t

Module Summary

o Introduced following C++11 general features:
o constexpr
o noexcept
o nullptr
o Infine namespace
o User-defined Lizerals
o Raw String Literals

So, we have introduced a number of general features, these six, so please practice them
through programming. Thank you very much for your attention and we will meet in the next

module.

