
Programming in Modern C++

Professor. Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture No. 06

Arrays and Strings

Welcome to Programming in Modern C++, we are in week 1, module 3.

(Refer Slide Time: 00:34)

In the last module, we started taking a look at how to write equivalent C++ programs for

simple C programs. We took examples which involved IOs, variable declarations, standard

library, and bool, and so on. And observed that most of the times, C++ gives us more

flexibility in terms of the declaration, input output as well as typing and things start getting

simplified to read as well as write.

(Refer Slide Time: 01:19)

So, we will continue that study in this module as well, looking into the next two important

things all of us need to know in programming that is arrays and strings.

(Refer Slide Time: 01:36)

So, this is a outline, which will be there on the left always.

(Refer Slide Time: 01:42)

So, let us talk about arrays and well, vectors. So, first, arrays, so here is a program, which

defines an array of length 4, that is four elements and of type short, so every number is short.

And then it assigns values to different array locations and prints them one after the other.

Now, this is a program, which is if write in C++, it remains the same. I mean, there is

nothing, no difference of using fixed size array, between C and C++ is the same.

(Refer Slide Time: 02:29)

Now, let us say this fixed size array could be a large one. And it is possible that it is fixed

size, because we do not know what the maximum size should be, so we just make it large. So

here is one way of writing it, where we make it, we use the constant size of the array right

into the code. And then add the elements and so on, assign some element add them, that is

just for illustration.

The other option is to put a manifest constant, defining the size and then use that manifest

constant. This is what I mean here, both are C, it is not, you do not need C++ yet, they both

are C. Now we often preferred this, because if we in future, need to change the size, either

increase it or decrease it, then it becomes quite an exercise to deep inside the code and find

out where this size has been defined.

Because it is not going to be as simple a program like what you see here, it could be a couple

of 1000 lines that you have in the file. And finding out exactly this dimension, size dimension

of this array has to change is a huge problem. Whereas, if we do a manifest constant, you can

just simply change it here. And it also gives another advantage that often maybe number of

different arrays may have their size related.

I am reading two vectors and adding them in a third vector, I have 3 arrays, and all of them

must have the same maximum size. So, if I had code, I have to do the changes in three places,

I might miss that out. But if I put the manifest constant and use it the change is only at one

place and things solutions are simpler. So, this is just talking about how to keep things better

in C itself.

(Refer Slide Time: 04:55)

And so, let us say now, we want an arbitrary sized array because we do not know how big it

should be, I mean should I unnecessarily keep it 10,000, 100,000, how much I have no idea.

So, the one option is to declare a size in array large enough, which is greater than all possible

size that can have and that can be hard-code as a maximum size as we have seen or declared

to it manifest constant.

Now, as we have learned in C that this is not often a preferred approach, if you do not really

know what is going to be the size. So, what you can do you can use a dynamic allocation

using malloc, there is a C equivalent of that called new which you will learn later on, but

know that there is an equivalent of this, malloc itself will also work in C++. This will be help

to dynamically allocate space at the runtime.

So, at the runtime you may be able to figure out that you need this much of space. So, you

allocate that sized array and proceed, but this will still not allow you to change the size while

once you have allocated it. Once you have allocated it is kind of frozen. So, that is a available

approach that you have. So, with that let us see how things go.

(Refer Slide Time: 06:31)

So, now in C you have this manifest constant and this. In C++ what I do is I include a new

thing called vector, vector is a type defined in the library not in the language, but in the

library therefore, I need to include the library component vector. Then I write this where arr

is the name of the array.

Vector is what I want, vector is like a one-dimensional consecutive location, I want those

locations to be of int type and at the time of declaration, at the time of definition, I want the

size or the number of such ints as MAX. So, you can relate that int comes here, array name is

here, the size is here. And instead of this built-in array, I do this vector stuff, a particular

notation.

(Refer Slide Time: 07:59)

So, if I do that, then once I have declared that, then I can use it exactly in the same way, there

is no difference, I use it in the, I have not declared it with this array notation, but I can use it

in the array notation. So, nothing else changes, is just the declaration that step and the same

program works. So, MAX is the declared size of the array, MAX here is a declared size of the

vector, there is no header included here the vector header is required, here you declare it as

you know, and here you have to declare it as vector int.

So, kind of you can see that the type of the array and the type of the vector maps syntactically

in this way. So, your question as to as to what great thing we have done. I mean, it is the

same thing same index of notation. To see the advantages, we will now have to take the next

example where we actually dynamically allocate an array.

(Refer Slide Time: 09:07)

So, look at the C site included this to get malloc and this is what you know we have to do is

we have to call malloc passing the size, the total size in bytes. So, where count is the number

of elements that I get at the runtime, size of int is the size of every location. So, I multiply

them to get the total number of bytes in the array. And the array actually is defined as a

pointed to integer, because I could not have defined it as an array because I did not know the

size.

But as you know due to pointer and array duality, I can use this in the array notation. Coming

to C++, you do the same thing. It declares now you are not making it explicit dynamic

allocation; you just declare the array. And unlike the previous time, we have not even

provided a size MAX as we did earlier. Because if I do not provide, then it takes a default

size, whatever the default size is.

Now, what I can do once I have got this count, which says how many elements I want, I can

resize the array, I can resize the array, this is something which is very, very important that I

can change the size. So, the default says, count here is 10, say suppose my default was 5, then

the vector arr will be resized to fit 10 elements. It can be resized, suppose I started with a

default of 1000 and my value is 10.

As I resize this 1000 will be reduced to 10 size vector and the remaining 990 elements will be

released, because I do not need them, rest of the code remains the same. So, couple of

advantages, one is for using malloc you have to do the size of and, its complicated syntax, a

lot of things to be written. And then, you have to do a kind of a bypass by taking a pointer

and then interpreting it is an array, here it is a straightforward, simple to write.

Second and most important thing is you can set the size by malloc only once because this is

the time that you are allocating and getting space whereas here, you have first got there and

then you are resizing it. So, it is possible that even going forward, if you decide to have more

elements, or if you decide that, no, I do not need that much of it, you can again resize. So, at

the runtime, you can change the size of the array as you need.

Those who have done dynamic arrays well, we will also say well, that is possible in C as

well, I can do a realloc and so on. And but if you do that, yes, you can do that reallocation

more or less, but then you will have to manage the entire thing of copying the original array

into the relocated array and manage the pointers everything you have to do, here nothing you

need to do. You say, it is a vector and resize. So, it resizes at runtime and makes your coding

much easier.

So, whether it is a fixed size array, whether it is a array which is fixed size by manifest

constants, or whether it could be potentially a dynamically managed array size, all of that can

be handled by just this vector definition, which naturally makes arrays much easier or array

like things much easier in C++. So very often, unless it is absolutely known that this array has

this much of fixed size and so on, we will be using vector to make things much easier to deal

with.

And mind you, the vector is as efficient as arrays are, there is hardly any overhead of using a

vector over using traditional language defined array. So that is a big point to note, that is a big

thing to learn that I can actually do all of these in terms of C++ and make any program

because most programs will have arrays and we can make them simpler to read, write, and

manage by using the vectors that are available in the standard library.

(Refer Slide Time: 14:50)

Next, move on to the next. Now move on to the next type which is string, string we all know

are heavily, I am sorry.

(Refer Slide Time: 15:00)

So, strings will be manipulated in C and in C++ for in C as you know we have string.h, all of

you know this, I am sure. And what is a C string, it is an array of character, array of character

which is terminated by null which actually is defined to be 0. So, after 0 whatever is there

will not be considered. And how does it become a string, it is not a string by type, it is just an

array of characters. And by convention, you are saying that somewhere it will have a null

character and that means, the end of this stream of characters as a string.

So, how does it become a string, it becomes a string by the way the different functions in

string.h standard library component interprets it. So, you often do strlen to find out the length.

What it does? It start from the index 0 of this array keeps on going till it finds the null

character and as many characters are crossed over is returned as the value of the length.

Similar things are done in strcpy, strcat, strdup, and so on.

So, the language does not have any support for string nor does the library has a support, as a

string type as such, it just provides you a few functions and a convention of storing characters

with a null termination which makes the whole story of string which is heavily, heavily used.

Now, similar thing is provided in C++ in terms of a type which is still not in the language, but

in the C++ standard library.

The standard library components string defines a string type, it is a type, and it is a type with

very convenient operators like you can have + operator to concatenate two strings, its kind of

equivalent of strcat, you have an assignment operator to do an strcpy and so on. In addition,

in addition to that, you can use the C standard library string.h functions in C++ by including

C string as in the std namespace. So, this is the overall story of strings between C and C++.

(Refer Slide Time: 17:52)

Now, let us go with concatenation of strings that is. So, in C you have string.h here you have

only string not C string, if I have hash include C string, then I will actually include the C

standard library header which is strcat, strcpy, and all that, I do not want that, what I want is

the C++ standard library string type, so I just include string.

Now, here I have initialized an array with these characters, initialized another array with

these characters up just for the purpose of illustration I have shown two ways of initialization

both of which are available in C++ as well. And then I want to, I declare an array which

should be the concatenation of this HELLO followed by WORLD. So, to get there what do I

do, I copy the string one into str which overrides everything in str and make it str1.

And then I do strcat, str2 which means after str1, remove the null terminator put the

characters of str2 with the null terminator so that you get the whole string. Very simple

algorithm, you all have written this, you know. In C++ this reduces to simply saying this str1

+ str2 means concatenation. And then what you achieved in terms of strcpy and strcat is

putting the values in that target array str, that is simply done by another operator assignment.

A string is a type here, so it supports + to mean concatenation, it supports assignment to mean

overwriting a string and the name of the type of string. So, it is a huge advantage in terms of

using this. So, if you compare there is a need for string.h in C, there is a need for string, again

mind do not C string, C string is an array of characters, whereas string is a data type, which

internally may keep a C string, we will talk about that later.

But so far as use is concerned, you can just treat it as a data type. String concatenation is done

with strcat, need to copy into str, and str must be large enough to fit the size and the user has

to take care of all of that. Here, all that you need is like addition of int, you do not have to

bother what is the size of str and so on, str after the concatenation str is being initialized with

that concatenated value.

So, it will be initialized with the proper size, everything is taken care of one line. So, you can

see, when you have programs where you will have to do a lot of string manipulation, how

easy it becomes when you deal with this string type. So that is a big plus so for as C++ is

concerned.

(Refer Slide Time: 21:51)

Now, besides this + you obviously, we have talked about the assignment operator, which is

the string copy, and you can compare using less than or equal to, less than, greater than or

equal to, greater than and so on operators, which are equivalent of strcmp in C. So, several of

these can be done as a part of the type itself.

(Refer Slide Time: 22:17)

So, here, I mean this is not for kind of memorizing but this is just to highlight to connect you

to what are we talking about, this is your string.h standard library in C. So, these are the

different functions and on the rightmost column I have put yes to mark that these are the

functions which are more commonly used and as a C, C++ programmer, you must be familiar

with those.

So, for example, you have things like memcopy, which is very common; memmove, these are

these are actually not exactly string operations, but very useful, you can copy any chunk of

memory buffer and so on. Then you have strcpy which you have you concatenate. Then you

have comparison, you have strchr, finding out a character, finding out a token, the null macro

itself which sets to 0, size t, which talks about integer size and so on.

Other functions are also important here, but these are some of the commonly used, frequently

used functions which your kind of must know by use, others you can look up further as and

when needed from the user documentation. I need to erase this.

(Refer Slide Time: 23:47)

Now, I am showing you the string in the C++ string library. Now, as we will see that this is a

type, so it will have a constructor destructor which will understand over a period of time, but

it is just to say that you can take a C string kind of string and initialize to create a string

object. It does support assignment and it gives certain things called iterators they are nothing

but, iterators are nothing but ways to go over the string.

So, if you have a string here and so, these are the different locations in the string, you can say

that I put a marker here and I can say I can put a marker here. So, this is the beginning and

this is the end of a simple iterator. So, I can say that I want to iterate from begin to end, which

means exclude the end, but start from begin and go up to but not including the end.

So, this gives you, I mean it is kind of a higher level for loop you can think of, we will

certainly explain this more, but these are common structures that you have in C++ standard

library. So, you have varied forms of these iterators on the type, you can begin, go from begin

to end you can come a form reverse that is left to right, right to left, you can do it for constant

arrays, you can do constant strings, you can do it for non-constant strings and so on so forth.

(Refer Slide Time: 25:58)

So, there are some more of what the string type has, and on the rightmost column, and this is

something which you will typically not find in regular documentation. In the rightmost

column, I have tried to define map the corresponding C function in this string.h, wherever it

is there. In some cases, it is there, in some cases, it is not there, because you can do things

which are not, like resize, you cannot resize a string, but you can resize a string object. So, I

have tried to map, give those mapping, these are for your references.

Again, not to memorize right away, but as and when you will start using lot of strings, you

can find this. But the entire thing that I am trying to show is a string is a type in C++, which

is not only easy to use, very powerful and it has features which go way beyond what your

typical C string in string.h with its functions can do, but you can still free to use some of

those functions if you really need to.

(Refer Slide Time: 27:08)

This is continuation of that same list. And you can do a lot of things like appending, like

putting a character at the end, so on so forth, a lot of stuff.

(Refer Slide Time: 27:24)

So, this brings us to the end of this module, where we have primarily focused on handling of

arrays and the convenience of using vectors in C++, which is equally efficient and can be

seamlessly used in the same form, whether it is fixed size, whether it is small, whether it is

large, or whether it is dynamically runtime resized, all of these can be handled in the same

syntax in the same structure using vectors which is not so in C, you have to keep track of the

size from the static time or do a explicit complicated dynamic allocation using malloc and all

that.

And further, we took a look at the string type or string operations in C and C++ when we saw

that C++ standard library defines a string type as string component in the standard library,

which is very, very useful and lot more compact than our C string equivalent in the string.h.

Thank you very much for your attention, and we will meet in the next module.

