Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 47
C++ 11 and beyond: General Features: Part 2

Welcome to Programming in Modern C++. We are in week 10 and we are going to discuss

module 47.

(Refer Slide Time: 0:35)

PPRB ANt

[ﬁ:} Module Recap

o Introduced following C+-+11 general features:
o auto
o decltype
o suffix return type

pPRL ATl SO

g}} Module Objectives

Fa
L

o Introducing following C++11 general features:
o Initializer List
o Uniform Initialization
o Range for Statement
o enum class

Programming in Moder C++ Partha Pratim Das Ma7.3

In the last module we have introduced the overall features of C++11 and talked specifically

about auto, decltype and suffix return type. We will continue on that and introduce these four

general features in this module.

(Refer Slide Time: 0:53)

Naturally this outline will be available on your left all the time.

(Refer Slide Time: 0:57)

R R AL SR) -
)
!

Initializer Lists

Sources.

® Initializer lists, isocpp.org

e s on

Ll ¢ C++11) and Constructors and member Initializer lists, cppreference.com

Programming In Modern C+4-+ Partha Pratim Das NS

So, we start with initializer_list. The whole idea is how do you initialize a particular variable
in C++11.

(Refer Slide Time: 1:07)

o Consider:

vector<double> v = { 1, 2, 3.456, 99.99 }; // 1 f doubles

list<pair<string,string>> languages = { of pairs of strings
{"Nygaard", "Simula"}, {"Richards", "BCPL"}, {"Ritchie", "C"}

b)

map<vector<string>,vector<int>> years = { // list of vector<string>s and vector<int>s

{ {"Maurice", "Vincent", "Wilkes"}, {1913, 1945, 1951, 1967, 2000} },
T [Partin", "Ritchards"}, {1982, 2003, 2007} J,

{ T"David", "John", "Wheeler™}, {1927, 1947, 1951, 2004} }
b

Initializer lists are not just for arrays. The mechanism for accepting a {}-list (braced list) is a
function (often a constructor) accepting an argument of type std: : initializer 1ist<T>:

void f(initializer_list<int>);

£({1,2});

£({23, 345, 4567, 56789});

{CHH the list

£{1,2}; // error: function call () missing

years. insert ({{"Bjarne", "Stroustrup"}, {1950, 1975, 1985}});

3

ceeom ; o B

o Consider:

vector<double> v = { 1, 2, 3.456, 99.99 }; // list of doubles
list<pair<string,string>> languages = { // list of pairs of strings
{"Nygaard", "Simula"}, {"Richards", "BCPL"}, {"Ritchie", "C"}

map<vector<string>,vector<int>> years = { // list of vector<string>s and vector<int>s
{ {"Maurice", "Vincent", "Wilkes"}, {1913, 1945, 1951, 1967, 2000} },
{ {"Martin", "Ritchards"}, {1982, 2003, 2007} },
{ {*David", "John", "Wheeler"}, {1927, 1947, 1951, 2004} }

b

Initializer lists are not just for arrays. The mechanism for accepting a {}-list (braced /ist) is a

function (often a constructor) accepting an argument of type std: :initializer 1ist<T>:

———————
void f(initializer_list<int>); -

1({1,2});

£({23, 345, 4567, 56789});

£({}); // the empty list

£{1,2}; // error: function call () missing

years. insert({{"Bjarne", "Stroustrup"}, {1950, 1975, 1985}});

e 0 ; —C .

PPl eaElte

[ﬁ} [nitializer Lists

o Consider:

vector<double> v = { 1, 2, 3.456, 99.99 }; list of doubles
list<pair<string,string>> languages = { list of pairs of strings
{"Nygaard", "Simula"}, {"Richards", "BCPL"}, {"Ritchie", "C"}

map<vector<string>,vector<int>> years = { list of vector<string>s and vector<int>s
{ {"Maurice", "Vincent", "Wilkes"}, {1913, 1945, 1951, 1967, 2000} },
{ {"Martin", "Ritchards"}, {1982, 2003, 2007} }, /
{ {"David", "John", "Wheeler"}, {1927, 1947, 1951, 2004} }
b
o Initializer lists are not just for arrays. The mechanism for accepting a {}-list (braced list) is a
function (often a constructor) accepting an argument of type std: :initializer 1ist<T>:

void f(inyalizer_lisﬂinv);

1({1,2}); /
£({23, 345, 4567, 56789});
SR lz:"\/
£{1,2}; // error: function call () missing v
"years-insert ({{"Bjarne", "Stroustrup"}, {1950, 1975, 1985}});
eCweT® WY

So, let us look at some of the initialization styles that we already know. We can initialize a
vector by putting the values like this, we can initialize a list of pairs of strings, so this each
one gives you a kind of a literal which is a pair of strings and then you have a list of them, so
this is a list. You can do it for a map, which is just to declutter, do it for a map which has a

key which is a vector of string and value which is a vector of int.

So, what you have, in each case is the vector of string, vector of int paired together, vector of
string, vector of int paired together. So, these are some of the ways that you initialize and you
can see that in every case that, | mean, for these kind of vectors and arrays you have a nice
curly brace or braced initializer syntax. But initializers list is not just for is, it kind of tries to
generalize and it is often actually a function, it is often actually, a constructor hidden behind

it which accepts arguments of this type.

So, this is provided by a new component in C++11 standard library that gives you an
initializer_list. So, we will see what that initializer_list is, so with that you can just define a
function with initializer_list of type int, which means that you will have braced initialization
of integer values or you can directly then call this function like this or like this or like this
that is an empty list, but you cannot call it without the parentheses. This is missing. You can
use it say in insert, we did insert earlier and, for example, for this vector, map I can do an

insert of this form, so that is what the initializer_list is about.

(Refer Slide Time: 3:37)

® The initializer list can be of arbitrary length, but must be homogeneous (all elements must be of the
mplate argument type, T, or o T). An initializer-list constructor may be implemented as:
template(classp class vector { public: /
vector(std: unuahzer list<E> s) {
reserve(s.size()); &
uninitialized_copy(s.begin(), s.end(), elem);
sz = s.size();

ter

elex;l[l):s.slze())

4
The distinction between direct and copy initialization is maintained for {}-initialization, but is less
relevant. For std: :vector with an explicit ctor from int and an initializer list ctor:

vector<double> vi(7); vl has 7

vi=9; eITor: no conversion from int to vector

vector<double> v2 = 9; error: no conversion from int to vector

void f(const vector<doubledt);

£(9); error: no conversion from int to vector

vector<double> v1{7}; vi t (vith its value 7.0
= {9}; vi 1€

vector<double> v2 = {9}; kay: v2

({9 okay: f i

vector<vector<double>> vs = {
vector<double>(10), explicit 10
vector<double>{10}, explicit ¢ n (1 e the value 10.0
10 error: vector’s constructor is eXpllClt

1 ==

¢ B - B

template argument t

template<class E> class vector { publi

vector(std: : inifializer list<E> s) {
reserve(s.§ize());

relevant. For st: veCfr with an expllcn ctor from int and an initializer list ctor

vector<double> vii(7) s 7 elements
vi= error: no conversion from int to vector
vector<double> v3 = 9; error: no conversion from int to vector

void f(const vectpr<double>k); v
1(9);%

error: no conversion from int to vector
vector<double> vi 3 t (wit v

);\/ kay: vi b

vi= {3 kay v1 now h .0
vector<double> v2 = {9}; v2
£({9}); f is
vector<vector<double>> vs = {
vector<double>(10), explicit construction e
vector<double>{10}, y explicit con: tion (1 elem ;ith the value 10.0
10 error: vector’s constructor is eXpllClt

e @ IRy

list can be of arbitrary length, but must be homogeneous (all elements must be of the
emplate argument type, T, or convertible to T). An initializer-list constructor may be implemented as:
template<class E> class vector { public:
vector (std: :initializer_1ist<E> s) {
reserve(s.size());
uninitialized_copy(s.begin(), s.end(), elem);
sz = s.size();

}

o The distinction between direct and copy initialization is maintained for {}-initialization, but is less
relevant. For std: :vector with an explicit ctor from int and an initializer_list ctor:
vector<double> v1(7); kay: vl has 7 elements

(i ‘ele.;n[o':s‘.sne())

vl = 9; error: no conversion from int to vector
yector<double> v2 = 9; error: no conversion from int to vector
oid f(const vector<double>);

£(9); error: no co n from int to vector

vector<doublg> v1{7}; kay: vl has alue 7.0,
vi = {9}; kay v1 now s value 9.0
vector<doyble> v2 = {9};\/ kay: v2 has its value 9.0
£({9}); kay: f is called w list { 9}
vector<vector<double> vs = {
vector<double>(10), kay: explicit cons i nts
VectoraomIe (157, kay explicit construction (1 element with the value 10.0
10 error: vector’s constructor is explicit
2 ==
. 9¢cevCc B o

Initializer Lists

t be of the

® The initializer list can be of arbitrary length, but must be homogeneous (all elements must
template argument type, T, or convertible to T). An initializer-list constructor may be implemented as:
template<class E> class vector { public:
vector (std: :initializer_1ist<E> s) {
reserve(s.size());
uninitialized_copy(s.begin(), s.end(), elem);
sz = s.size();

ir ele;n[O:é.SJZe())

}
Y
o The distinction between direct and copy initialization is maintained for {}-initialization, but is less
relevant. For std: :vector with an exglicit ctor from int and an initializer.list ctor:

vector<double> vi(7); Ray: v1 has 7 elements

vi=9; error: no conversion from int to vector

vector<double> v2 = 9; error: no conversion from int to vector

void f(const vector<double>t);

£(9); error: no conversion from int to vector

vector<double> v1{7}; kay: v1 has 1 element (with its value 7.0,

vi = {9}; kay v1 now th its value 9.0

vector<double> v2 = {9}; kay: v2 has 1 alue 9.0,

£({9}); kay: £ is call

vector<vector<double>> vs = {
vector<double>(10), kay: explicit cons n
vector(double)ﬁ&f, kay explicit construction e value 10.0
10 e error: vector’s constructor is explicit

1 o

N S s | L s

So, an initializer_list can be of arbitrary length 0, 1, anything, but the key point is it has to be
homogeneous, which means that each element you use in the initializer_list must be of the
same type, initializer_list has a type t, so it must be of the same type, t or something which is
convertible to t. So, with that I can write a constructor of vector which takes an initializer_list

of underlying type E. So, it is a vector of E.

So, that list is s, so 1, internally | reserve that much of space for, that is required for s and then
| do a uninitialized_copy is an algorithm available, so | do a copy of from iterating from
s.begin to s.end into elem which is the element array set the size. So, this is a typical way an
initializer_list can be used. Now, the distinction between direct and copy initialization is there

for braced initialization, but it is less relevant | should say.

So, if | say v1 within parentheses 7, then v1 has 7 elements, | cannot use this because there is
no conversion from int to vector. | cannot use this again for the same reason there is no
conversion, if | have this function I cannot use this because again there is no conversion from
int to vector, but I can use this. What it does? | am doing an initializer_list of length one
having the value 7, so this will invoke the initializer_list constructor and create a vector
having the value 7, | have given the type, underlying type as double, so this will implicitly

convert that to 7.0, so that is the use of the initializer_list in construction.

So, similarly, this will give a vector with value, with one element value 9.0, similarly here,
this will call f(), this f() with the list containing 9 and now if | want to see the subtle
difference, suppose | am trying to define a vector of vector of double. So, | have a vector of
double and I have a vector of that. So, every element, the initializing element for vs has to be
a vector of double because that is element type.

So, | define vector<double> within parentheses 10. What does that mean? That means an
explicit construction of 10 elements, whereas if | use curly brace, it means an initializer_list,
so it means a list containing one element 10, so it is a explicit construction of a vector having

one element with the value 10.0, 10.0 because its double.

If I try to use 10, I will get an error, because there is no implicit construction available, you
can see that. We have said that the constructor is explicit, which means that unless you
specify the constructor will not be invoked, here it was specified so it was got invoked. So,
that is the property of the initializer_list.

(Refer Slide Time: 7:48)

[ﬁi Initializer Lists

o The function can access the initializer list as an immutable sequence. For example:

void f(initializer_list<int> args) {
for (auto p = args.begin(); p != args.end(); +4p) cout << #p << "\n";

}

o std::initializer list stores initializer values in an array and offers these member functions:

0 size
© begin // ptr ¢
0 end ptr to one-beyond-last array element

o A constructor that takes a single argument of type std::initializer 1ist is called an
initializer-list constructor

o The STL containers, string, and regex have initializer-list constructors, assignment, etc. An
initializer-list can be used as a range, for example, in a range for statement (TBD later).

o The initializer lists are part of the scheme for uniform and general initialization. They also
prevent narrowing

o Usually initializing using {} is preferred instead of () unless:
0 The code is shared with a C++98 compiler or
o There is a need to use () to call a non-initializer.1ist overloaded constructor (rare)

Programming In Modern 4+ Partha Pratis Doy MaTE

So, it is an immutable sequence that means that you cannot change it, everything is a constant
there and it gives you three functions to know the size, the number of elements in the
initializer_list array and a begin() and end() to do iteration for that. Now, the constructor of
the kind we just saw where there is only one parameter which is a initializer_list type is

called an initializer_list constructor.

Like we had default constructor, we had copy constructor, now we have a new kind of
constructor called initializer_list constructor. So, several STL components now have
initializer_list constructor as well. So they are a way to have uniform initialization across

various different kinds of objects.

(Refer Slide Time: 8:48)

PP QE Lt EN

[ég [nitializer Lists: std::initializer list

L

o std::initializer_1list looks something like: [Initializer Lists in C++ - std:initializer list]

typedef unsigned int size_t;
namespace std {
template<class _E> class initializer list {
public: —_
typedef _E value_type;
typedef const _Ek reference;

typedef const _Ek const_refeyence;
typedef size_t size_type; \(/
typedef const _E# iterator;
typedef const _E# const_iterator;
private:
iterator _M_array;
size_type _M_len;

Ccnstexpr defines mpile-time nstant expressions - 1bU later
constexpr initializer_ list(const_iterator __a, size_type __1): M_array(__a), M_len(_1) { }
pwlfcr— % ~—m™ — L —————— —_—
constexpr initializer_list() noexcept: M_array(0), .M_len(0) { }
constexpr size_type size() const noexcept { return M_len; }
constexpr const_iterator begin() const noexcept { return M _array; }
constexpr const_iterator end() const noexcept { return begin()+size(); }

}:
b e
9o¢cwecc® - |

r"‘"! PP QMg te . N
iﬁl [nitializer Lists: std::initializer list

¢ std::initializer list looks something like: [Initializer Lists in (stdinitializer Jist)

typedef unsigned int size.t; //#
namespace std {
tezplate<class _E> class initializer_ list {
public:
typedef _E value_type;
typedef const _ER reference;
typedef const _Ek const_reference;
typedef size.t size type;
typedef const _Ee iterator;
typedef const _Ee const_iterator;
private:
iterator M. array;
size_type N len;

CC-M\!'XP]’ L t L T L
stoNr :nx'.:altznyxnt(conn'._n'r.\tor .8, size_type _.1): Marray(_.a), Mlen(.1) { }
fc:

constexpr|initializer 1ist() noexcept: M array(0), M len(0) {)/
constexpr (size_type size() const noexcept { return M len; } /
constexprconst_iterator begin() const noexcept { return M array; }
constexpy const_iterator end() const noexcept { return begin()+size(); }

pub;

peweon —

Now, if you just wonder as to how does the initializer_list look like in the std, the standard
library namespace, so here is how it goes, this is underlying type and this is the class, these
are the different types, so you can say, see that | said that initializer_list will actually keep it
as an array, it will have to remember the initialization values, so it will keep it as an array. So,

it is kind of a container.

So, you can see all different types that we had seen in the container are also defined for the
initializer_list, beautiful uniformity as you see. And it has certainly private members to store
the values and the size and it has a constructor which takes the iteration over __a and the size
__| to actually do the construction, the constructor is made private because we do not expect

to call it explicitly from the user code.

The compiler will call it and compiler can always call the private member and this actually is
a constant expression. We will talk about constant expression later on, what it in general
means is, a constant expression is one that can be evaluated at the compilation type and will
not change after that, it becomes immutable after that. So, with that what you have in the

public is a constructor, a default constructor which just constructs a null list.

You have (a size operator) a size() member function, a begin iterator and an end iterator, all
of them are constant expression because it is, initialization is with constant so everything is
computable at the compile time as a constant expression. So, this is what your basic

initializer_list internally looks like. So, knowing that really helps.

(Refer Slide Time: 10:51)

r"" B R EREERAE RN
iﬁi Initializer Lists: initializer-list constructor %

#include <iostream>
#include <string>

#include <vector>

#include <initializer_listd>

tezplate <typenaze T> // T the t { initializer list
class Hzclaaa {_std: :vector<T> elems; /+ I to kee t +/ public:
7 Py
MyClass(): elems({-1}) { std::cout << "Default Ctor: "; ShovElesents(); }
MyClasa(int b): elems({b}) { std::cout << *Parametrized Ctor: *; ShovElements();
(— —

MyClass(std::initializer liat<T> init_list): elems({init list}) {
v init_list ve QT
std::cout << "Initializer List Ctor: "; ShowElements();

}
tructor] 4
MyClass(int i, std::initializer 1ist<T> init_list): elems{init_list} {
std: TTout < TNIXEICLOYT T XCTCR *, *; ShouElementstl;
}
void ShowElements() /¢ the ¢ te of o/ { std:icout << *{ *
for (auto it = elems.begin(); it != elems.end(); ++it) std::cout << sit <<’ '}
std::cout << "}\n*;

: ¢ 0B s

So, with that let us take an example with different variants. So, | am trying to define MyClass
with a vector of T elements, my class is templatized by T, | have a default constructor, so if |
have a default constructor then I just initialize it with some arbitrary default value list of -1. |
have a parameterized construction, which takes b, the list containing, | have a initializer_list

construction which takes an initializer_list and copies it to elem.

| can have a mixed constructor also, which takes an integer and an initialization list and
copies it, you can see that using this brace is, using this parenthesis is optional here. So, the
four types of different constructors | have defined and | have given a ShowElements()

function to really iterate over what | have initialized.

(Refer Slide Time: 12:07)

pPRBQE Lt 0N

@ Initializer Lists: initializer-list constructor
i

template <typename T> class MyClass { std::vect
MyClass()
MyClass(int b)
HyClass(std: :initializer_list<T> init_list)
MyClass(int i, std::initializer 1ist<T> init_list);

int main() { A
MyClass<int> my_obj; + my_obj{} * Default Ctor: { -1} Ve
MyClass<int> my_obj_i = MyClass<int>(500); /+ my_obj_i(500) * Parametrized Ctor: { 500 }
MyClass<int> my_obj_il = HyClass(mU{SOO; * my_obj_i1{500} Initializer List Ctor: { 500 }

e SN —_—
er_li ts: std::initializer list<int>
auto m)t_hst (1,2,3,458);
ay use init_list for { init_list }
MyClass<int> my_obj_il_int = { init_list }; // Initializer List Ctor: { 12345 }
std::mitializér,lxst(std::stnng) il = { "Hello", "from", "PPD" };
use i1 for { il }
MyClass<std: :string> my_obj_il_string = { il }; Initializer List Ctor: { Hello from PPD }
MyClass<std: :string> my_obj_m = { 5, { "Thank", "You" } }; // Mixed Ctor: 5, { Thank You }

}

N % S e} e

PP Mg te . U

[nitializer Lists: initializer-list constructor

template <typename T> class MyClass
MyClass()

MyClass(int b)
MyClass(std::initializer_1ist<T> {nit_list)
MyClass(int 1, std::initializer list<T> init list)

int main() (

MyClass<int> my_obf; + my.obj{}
MyClass<int> my_obj.i = MyClass<int>(500);)/+ my.obj_1(600) *
MyClass<int> my_obj. il = MyClass<int>{500};)/+ my.obj.11{500} »

std::initjmlizer_list<int>

auto init list = { 1,:2,:3:4;
init_l1st { init hst }
MyClass<int> my_obj_ il int = { init_ list }; Initializer List Ctor: { 12346}

std: :initializer_list<std::string> i1 = { *Hello", “from*, "PPD* };
11 for (

MyClass<std::string> my.obj.il.string = { i1 }; Initializer List Ctor: { Hello from PPD)
o e——————
MyClass<std::string> my_obj.m = { 5, { *Thank", *You* } }; // Mixed Ctor: 6, { T ou }
———————————ee
e 08 T

So, now if I try to use these constructors, this different construction | have repeated again
here for your quick reference, so if I just do my_obj, it must construct things by default, so it
default constructs and it has a list containing -1 that we did. If 1 do it with my int within

parentheses 500, it picks the parameterized constructor and puts 500 as a list.

If I do class my int with braced initialization, so | have an initializer_list containing 500 that
is b, that will call certainly my initializer_list constructor, it calls the initializer_list
construction. So, you can see that you know both of these give me finally the same object or
same, the object containing the same value, but use different constructors. You can also do it

by separately creating the initializer_list.

So, what auto deduces (is it deduces) this type from the actual initializer_list and then you
can use that to initialize the my object, the initializer_list constructor will be used. Similarly,
you can do it for a string, again the initializer_list constructor is used, you can do it for a pair
of integers and an initializer_list of string, so you will get mixed constructor called. So, this is

how the constructors will map to the respective type and will be called.

(Refer Slide Time: 13:59)

pYRs ANl e

Eéé} Initializer Lists; Overload Resolution

o Constructor with std::initializer_1ist parameter prefers {}-delimited arguments

class Widget { public: \/

Widget(std::initializer _list<double> values); u
Widget(double value, double uncertainty);

b
double d1, d2;
Widget wi { di, d2 }; F] \/
Widget w2(d1, d2); alls # \/
TR T PIRTCIN 1) .
o Choose carefully between {} and () when initializing objects!
template <class T, class Allocator = allocator<T> >

class vector { public: ..

vector(size_type n, const Tk value, const Allocatork = Allocator());

Yetor (Initializer_1ist<T>, const Allocatork = Allocator());
}; 7~

std: :vector<int> v1(10, 5);
std: :vector<int> v2{10, 5};

Cwe B . 3 WO

1 [8 BN RN AR A RIS
@ Initializer Lists: Overload Resolution g

Fa
L

o Constructor with std: :initializer 1ist parameter prefers {}-delimited arguments
class Widget { public:
Widget(std::initializer_list<double> values); // #1
Widget (double value, double uncertainty);

double di, d2;

Widget wi { di, d2 }; calls #1
Widget w2(d1, d2); calls #2
o Choose carefully between {} and () when initializing objects!
template <class T, class Allocator = allocator<T> > // from the C++11 standard
class vector { public: ...
vector(size_type n, const T& value, const Allocatorg = Allocator());
vector(initializer_list<T>, const Allocator& = Allocator());

&
std: :vector<int> vi(10, 5); vi.size() == 10, all values == 5
std: :vector<int> v2{10, 5};7/ v2.size() == 2, values == {1

S 9ewe dB T

Now, naturally, since you have multiple constructors there will be overload issues. What do
you, overload, so you must have understood this now, that if | have curly braces, then the
initializer_list constructor if it is there will be preferred, so here | have one which is
initializer_list constructor and one which is simple parameterize constructor. So, for the same

di, d2 if I define w1l as with curly braces, it will call 1, but with parentheses it will call 2.

Similarly, if I look at ah the vector class in the standard it has one parameterized constructor
which takes the size and the default value, it says that construct a vector of size n each should
be filled up with value and other takes just the initializer constructor, so if you call v1, if you
construct v1 with 10 and 5 given in parentheses, this will take likeness of the first constructor.

And therefore, what you will get?

10 will be considered as n, 5 will be considered as value, so you will get a vector of 10
elements each initialized with 5, whereas if you use curly braces, then your initializer_list
constructor will be preferred. So, you will get a, consider this as a list containing 10 and 5, so
your vector of int will now have two elements, size is 2, one is first, one is 10, second one is
05. So, there are, in terms of overload there are subtle differences, in terms of using

parentheses and using curly brace, so be careful about that.

(Refer Slide Time: 15:58)

pPRBAEL e

W [nitializer Lists: Overload Resolution
il

o Given multiple std::initialization list candidates, best match is determined by worst
element conversion:
class Widget { public: /
Widget(std::initializer_ list<int>); /
Widget(std::initializer_list<double>);
Widget(std::initializer_list<std::string>);

I N
\z{idget vi{1,20,3}; int => double same
Widget w2 { 1.0f, 2.0, 3.0 }; float => double be
std::strings

Widget w3 { s, "Init", "Lists" }; // calls #3 V(

o |f best match nvolves a narrowing conversion, call is invalid:

class Widget { public:
Widget(std: :initializer_list<int>);
Widget(int, int, int);

as double => int, so ambiguous
han float => int, so calls #2°

¥
Widget wi { 1, 2.0, 3 }; // Matches #1: error! double => int narrows
Widget w2 (1, 2.0, 3); // Matches #2: double => int

e wedm

ol gt

PRl te

ﬁ Initializer Lists: Overload Resolution
o Given multiple std::initialization list candidates, best match is determined by worst
element conversion:
class Widget { public:
Widget(std::initializer_list<int>);

Widget(std: :initializer_list<double>); #2
Widget(std::initializer_list<std::string>);

)

Widget w1 { 1, 2.0, 3 }; int => double sam
Widget w2 { 1.0f, 2.0, 3.0 }; // float => double better than
std::string s

Widget w3 { s, "Init", "Lists" }; // calls #3

double => int, so ambiguous
float => int, so calls #2

o |f best match involves a narrowing conversion, call is invalid:
class Widget { public: /

Widget(std::initializeg list<int>); // #1
Uidgetw 182V,

Widget w1 {1, 2.0, 3 }; // M #1: error! double => int narrowd<
Widget w2 (1, 2.0, 3); // Mat double => int

A

So¢cweco B

ol gt

pYPRsQEgste

ﬁ Initializer Lists: Overload Resolution
o Given multiple std::initialization list candidates, best match is determined by worst
element conversion:
class Widget { public:
Widget(std: :initializer_list<int>);

Widget(std: :initializer_list<double>); #2
Widget(std::initializer_list<std::string>);

Widget w1 { 1, 2.0, 3 }; int => double same rank as double => int, so ambiguous
Widget w2 { 1:0f, 2.0,-3.0 }; float => double better than float => int, so calls #2
std::string s
Widget w3 { s, "Init", "Lists" }; // calls #3
o |f best match involves a narrowing conversion, call is invalid:
class Widget { public:
Widget(std::initializer_ list<int>);
Widget(int, int, int); :;\//
b
Widget w1 { 1, 2.0, 3 };
Widget w2 (1, 2.0, 3); // M

n

. 9¢cwe B

#1: error! double => int narrows
double => int

ol gt |

This, some more on this, like these are three initializer_list constructors are overloaded with
different element types. Now, what will happen if | try to call construct w1 with this, it is all
are initializer_list, so the choice is to be between them, so if | want to do w1, where the
second element is 2.0, it has two choices, one is to convert 2.0 to 2 and call the first one. Or it

can convert 1 and 3, to 1.0 and 3.0 and call 2.

So, it is either int to double conversion or double to int conversion, both of these conversions
of the same rank, remember the overload resolution strategy we had. So, this kind of a
construction will be ambiguous. It will not compile. If you do this, so then also you have
conversion issues because the first element is a float where the other two are of, type 2.0 and

3.0 are double that is C++ default type mechanism.

So, if we have to, so the only candidate is this one here where you need to do a float to
double or if you have to do this then you have to do a float to int, double to int. Now, float to
double has a better rank than float to int, so what will happen, it will call the constructor

number 2, and if you just use strings, then it will call constructor number 3, obviously.

Now, let us say | do a overloading with some twist, | have an initializer_list and | have
another constructor with 3 int parameterized, |1 am calling it with 1, 2.0 and 3. Now, what will
this mean? This will mean that the only constructor to call is this, which means the double

value will have to be converted to int, which is narrowing.

So, here we learnt a golden rule that initializer_list does not allow narrowing, does not allow
narrowing implicitly, so this double to int will not be allowed and there will be an error,
whereas if you use three values within curly brace, within parentheses, then you are actually
by overload you are binding to the second constructor where the narrowing is allowed and
that will compile and w2 will get constructed. So, this is the difference, you have to

remember that narrowing is not allowed for braced initializer.

(Refer Slide Time: 19:10)

pPRsQEd to L EN

W Initializer Lists: Braced Initializers and auto
12

o auto deduces std: :initializer list for braced initializers:
auto i ={2,4,6,8}; i is std::initializer_list<int>
o In general, templates deduce no type for braced initializers:

template<typename T> void f(T param) { ... }
£({ 2, 4, 6, 8}); // error! no type deduced for { 2, 4, 6, 8 }

o Unly way that auto type deduction # template type deduction
o Especially for single-element braced initializers, this can confuse: *

auto i1 = 10; i1 is int

auto i2(10); i2 is int

auto i3 {10}; i3 is std::initializer_list<int>
o Particularly when such variables interact with overload resolution:

std: :vector<int> vi(i1); // vi.size() == 10, values == 0

std: :vector<int> v2(i2); // vi.size() == 10, values == 0

std: :vector<int> v3(i3); vi.size() == 1, value == 10

o Use care when initializing auto variables with braced initializers!

S 9cC e =) T

PP ans e N

Eﬁé} Initializer Lists: Braced Initializers and auto

¢ auto deduces std: :initializer list for braced initializers:
auto i ={24,6,8}; i std::initializer_list<int>
o In general, templates deduce no type for braced initializers:
template<typename T> void £(T paras) { ... }
1({ 2, 4, 6, 8}); error! no type deduced for { 2, 4, 6, 8 }
© Only way that auto type deduction # template type deduction
o Especially for single-element braced initializers, this can confuse:
auto i1 = 10;} i1 is int

auto 12(10); \{/ i2 is int

auto 13 {10}; i3 is std::initializer_list<int>

o Particularly when such variables interact with overload resolution:

std: ivector<int> vi(i1); // vi.size() == 10, values == 0
std: :vector<int> v2(i2); vi.size() == 10, values == 0
std: :vector<int> v3(13); // vi.size() = 1, value == 10

o Use care when initializing auto variables with braced initializers!

Cwe OB - Sl o

So, if you look at it with auto, this auto we have seen earlier also will deduce a initializer_list
of int, you cannot directly use it in place of a template parameter. You would have expected
to do that, but this is only one place where auto can go ahead with the type deduction, but

template type deduction does not work.

So, auto can do more, template type detection will not be able to deduce, the T has a type,
std::initializer_list, but of int but auto would be able to do that. So, with that there are more
examples that you can use, you can use a single element with initialization, a parenthesized
initialization, initializer_list and you can see what the effects would be. The first two will
necessarily mean vectors of size 10 initialized with default value 0, and the last one will mean

a vector of size one with value 10.

(Refer Slide Time: 20:25)

PPRB ANl L

‘i Uniform Initialization: Syntax and Semantics

.

Uniform Initialization: Syntax and Semantics

tion syntax and semantics, isocpp.org

lon and Constructors and member initializer lists, cppreference.com

Programming in Modern C 4+ Partha Pratim Do MAT1S

pPRBQEl tO U

g;] Uniform Initialization Syntax

Fa
L

o C++03 offers multiple initialization forms

o Initialization # assignment. For example, const objects can be initialized, not assigned

o Examples:

const int y(5);

const int x = 5;

int arr(] = { 5, 10, 15 };
struct Pointl { int x, y; };
const Pointl p1 = { 10, 20 }; brac
class Point2 { public: Point2(int x, int
const Point2 p2(10, 20); f

Containers require another container:

int vals(] = { 10, 20, 30 };
const std::vector<int> cv(vals, vals+3); init from an
3

Member and heap arrays are impossible:

class Widget {

public: Widget(): data(??7?) {}

private: const int data[5]; not initializable
const float # pData = new const float[4]; // not initializable

i .

PP anste .

[ﬁ;} Uniform Initialization Syntax

o C++03 offers multiple initialization forms

o Initialization # assignment. For example, const objects can be initialized, not assigned

o Examples:

const int y(5);

const int x = 5;

int arr() = { 6, 10, 15 };

struct Pointl { int x, y; };

const Pointl p1 » { 10, 20 }; r
class Point2 { public: Point2(int x, int y); };
const Point2 p2(10, 20); funct

Containers require another container:
int vals() = { 10, 20, 30 };

const std::vector<int> cv(vals, vals+3);
Member and heap arrays are impossible:

class Widget {
public: Widget(): data(???) {}
private: const int data(6); not initializable
b ~—
const float ¢ pData = new const float(4); // not initializable
—

¢ 0B DI it

So, this was the initializer_list. The question is why are we trying to do that because what we
want is we want to make initialization uniform, initialization syntax and semantics uniform.
So, is it non-uniform? The answer is yes. If you look at C++03 there are multiple ways to do
initialization. And remind you initialization is not same as assignment, like constant objects

can be initialized, they cannot be assigned.

Initialization is something which happens when you are defining the variable, so these are the
choices you have in C++03, 98. This is you can have a direct initialization syntax by
parentheses, by using initialization symbol you can have copy initialization, you can have
braced initialization for array, you can have braced initialization for a structure, you can have

a function called syntax for calling the constructor.

You can also initialize one container from another. So, these are all different types and
depending on the context we have got used to different types of syntax, somewhere it is
braced, somewhere it is not braced, but that still lives out certain things which we cannot
initialize. For example, if your object has a ..., you want to have a array of ..., array data of

size 5 containing constant integers.

Now, there is no way to initialize this. There is no way to initialize arrays in this context
where it is const. You cannot do this. Similarly, if you are trying to dynamically allocate an
array you cannot initialize that, so we say that if | have to dynamically allocate a objects,
array of the objects of a user defined type, then that type must provide default construction so
that I do not need to do an initialization.

(Refer Slide Time: 22:52)

pPR2s ANl te .

Eﬁi Uniform Initialization Syntax

o Brace initialization synt/ax now allowed everywhere:

const int vall {5};

const int val2 (5};\/ /
int a 1, 2, vall, valieval2 };
struct Point!l { int x, y;\);/-

const Pointl p1 {10, 20};
class Point2 { public: Point2(int x, int y); };
const Point2 p2 {10, 20);\/ ls Point2 ctor
const std::vector<int> cv { a(0], 20, val2 }; \/
class Widget {
public: Widget(): data {1, 2, a[3], 4, 5} {}
private: const int datalb);
}i
const float * pData = new const float(4) { 1.5, vall-val2, 3.5, 4.5 };
AT S N O

—_—
o Really, everywhere:

Point2, makePoint() { return { 0, 0 }; } roturn expression; calls Point2 ctor
[

—

void f(const std::vector<int>k v);
£({ vali, val2, 10, 20, 30 });

e 0B R, b

Now, this is in terms of syntax, the braced initialization is now allowed everywhere, so you
can use it simply like this or you can use it in the way you are doing in terms of the array.
You can obviously, you have to make sure that every element of the initializer_list is
homogeneous and is a constant expression, so this is a constant variable vall, constant

variable, so | am using those in the initialization of the array.

| can use this as it is for a structure, | can use it for calling a constructor, 1 can use it to
initialize vector, everywhere, braced initialization can be used, and the interesting thing is it
can be used now even if | have a constant integer array or something like that, | can just do a

braced initialization here. | can also do braced initialization with dynamic allocation.

So, it can be used really everywhere, for example, I can return a braced initialized value from
a function, so this is in the context of say class Point2, this will call the constructor of the
class, | can pass it to a function, so everywhere braced initialization can be used, so that

makes things really uniform.

(Refer Slide Time: 24:27)

PP ANl te

v 13
[ﬁé} Uniform Initialization Semantics]

o Semantics differ for aggregates and non-aggregates:
o Aggregates (for example, arrays and structs):
b Initialize members/elements beginning-to-end
o Non-aggregates:
> Invoke a constructor

Programming In Modern €4+ Partha Pratim Das MAT18

Ul te . N

> setines P B-9
r'::,‘ Uniform Initializauon oeianucs.

L.‘ {}-Initializing Aggregates & Non-Aggregates

o Aggregates: Initialize members/elements beginning-to-end
o Too many initializers = error
o Too few initializers = remaining objects are value-initialized
b Built-in types initialized to 0
> UDTs with constructors are default-constructed
> UDTs without constructo:s):}nmbers are value-initialized

struct Pointl { dnt x, y; };

const Pointl pl = { 10 }; {10,0}

const Pofnti p2 = {1, 2,3 }; \/ error! too many initializers
b std: :array is also an aggregate:

long 1();

std::arrayc<long, 3> arr = { 1, 2, £(), 4, 6§ }; // error! too many initializers

o Non-Aggregates: Invoke a constructor
class Point2 { public: Point2(int x, int y); }; short a, b;

const Point2 pi {a, b);\/ pila, b)

const Point2 p2 {10}; \)(\}{ error! too few ctor args
const Point2 p3 {5, 10, 20}; error! too many ctor args
std::vector<int> v { 1, 3,2, b, 3 }; r vector ctor
:‘..d::u‘naxdercd.:ntdlnnv s{0, 153} alls an unordered set, ctor

B L

Now, that was about the syntax, in terms of semantics what we have, we have some
difference between aggregate types and non-aggregate type. If it is an aggregate type, like it
is an array or that kind of a container something then you have to provide the initialization
and those will be initialized member by member. If you have too many initializers, then you

will have an error, if you have too few, then you will have default values.

And for built-in types that is 0. So, you can see that | have a structure x, y here, so if |
initialize it with 10 the second value will be taken as 0O, if I try to initialize with 1, 2, 3 it will
give me an error, similar thing for an array, std::array also we have not done it yet. It is pretty

much similar to array but it is a new container here.

But if it, if | have a non-aggregate type that is which is not an array, then | can have not an
array or a structure so to say, then it will invoke the constructor, so in all these cases it will
try to invoke the constructor. In this case it will go through fine and in this cases this will not
work because the number of parameters do not match. So, this is a construction process, this
is not just the initialization, therefore, for non-aggregates the number of parameters have to

match which was not a requirement right here.

(Refer Slide Time: 26:17)

r"" pPRsand te .
iﬁi‘ Uniform Initialization Semantics

¢ Brace-initialized variables may use =:

const int vall = {5};

const int val2 = {6};

int a[) = { 1, 2, vall, valisval2 };

struct Pointl { ... };

const Pointl p1 = {10, 20};

class Point2 { ... };

const Point2 p2 = {10, 20};

const std::vector<int> cv = { a[0], 20, val2 };

Other uses of brace initialization cannot:

class Widget {
public: Widget(): data = {1, 2, a(3), 4, 6} {} error!
private: const int datT5);

b

const float *pData = new const float(4) ={ 1.5, vali-val2, 3.5, 4.5 }; error!

Point2 makePoint() { return -’.(0, 0 }i orror!

void f(const std::vector<int>t v);
1(= { vall, val2, 10, 20, 30 }); error!

¢Cewe 0B Lt

So, there are several places where you can also use the equality symbol, the initialization
symbol as in these cases. | will not go through each one of them with a minus syntax issues,
but these are places where you cannot use the initialization symbol equal to, so these are

error.

(Refer Slide Time: 26:47)

pPPR2senlte.

{ﬁ} Uniform Initialization Semantics

¢ And T var = expr syntax cannot call explicit constructors:

class Widget {

public:

explicit Widget(int); a
b
Widget w1(10);
Widget w2{10}; I plici allable
Widget w3 = 10; error! copy init: explicit ctor not callable
Widget w4 = {10}; error! copy init: explicit ctor not callable

o Develop the habit of using brace initialization without =
¢ Uniform initialization syntax a feature addition, not a replacement

o Almost all initialization code valid in C++03 remains valid
b Rarely a need to modify existing code

¢Cwe 8 i

So, basically the core idea is as you get used to this, do not, I mean, learn not to use the
initialization symbol anymore, just use the braced initializer or the parentheses if you have to
do that, so this is small examples of that.

(Refer Slide Time: 27:08)

R E=-F AL RERR"

: s -8
r’@ Umform Initializauon oemanus.

LLH {}-Initialization and Implicit Narrowing

o Sole exception: implicit narrowing
o C++03 allows it via brace initialization, C++11 does not

struct Point { int x, y; };
Point p1 = { 1, 2.5 };

implicit double => int conversion
error in C++11

Point p2 = { 1, static_cast<int>(2.5) }; both C
o Direct constructor calls and brace initialization thus differ subtly:

class Widget {
public: Widget(unsigned u);

5

int i;

Widget wi(i); okay, implicit int => unsigned
Widget w2{i}; error! int => unsigned narrows
unsigned u;

Widget w3(u); fine

Widget w4{u}; also fine, same as ¥3’s init

Programming in Moden C++ Partha Pratim Das w72

So, the implicit narrowing, there is another example on implicit narrowing. | will leave it for

your self-study.

(Refer Slide Time: 27:19)

PPNl te

[ﬁéj Uniform Initialization Summary

o Brace initialization syntax now available everywhere

o Aggregates initialized top-to-bottom / front-to-back
o Non-aggregates initialized via constructor
o Implicit narrowing not allowed.
e std::initializer_list parameters allow initialization lists to be passed to functions
o Not actually limited to initialization (for example, std: :vector::insert)
o Choose carefully between {} and () when initializing objects
o Remember that auto + { expr } yields std::initializer 1ist

AT 2Y

Programming In Moder 4+ Partha Pratim Das

In summary braced initialization is available everywhere, aggregates will initialize top to
bottom, front to back, non-aggregates will initialize via constructor and implicit narrowing is
not allowed and initializer_list parameters will allow the initialization list to be passed to

functions.

(Refer Slide Time: 27:42)

Range-for Statement

nt, iSOCPp.org

Parths Pratim Das AT 24

! pPRsQEd tO 5 EN
E‘?‘é} Ways of traversing a vector: Recap (Module 44)

o Let us revisit ways for the traversal of a vector as a sample container:

vector<int> v;

for(int i = 0; 1 < v.size(); ++i) { /+ use v[i] #/ } // native int for size
for(vector<T>::size_type i = 0; i < v.size(); ++i) { /* use v[i] #/ } correct size_type
——

for(vector<T>::iterator p = v.begin(); p != v.end(); ++p) { /* use #p +/ }
for(vector<T>::value_type x : v) { e x redaonly * rang
for(autok x : v) { /% use x read- }

o Comparing subscript and iterator styles:
o The subscript style is used in essentially every language
o The subscript style does not work for lists and non-linear data structures (in C++ and in
most languages)
o The iterator style is used in C (pointers only) and C++
o The iterator style is used for standard library algorithms
o While both styles work for vectors, iterator style is more generic — works for all sequences

SeC e OB —C

'1 [- R AR A RS R

[ﬁ?j Ways of traversing a vector: Recap (Module 44)

o Let us revisit ways for the traversal of a vector as a sample container:

vector<int> v;

for(int i = 0; 1 < v.size(); ++i) { /# use v[i] #/ } // native int for size

for(vector<T>::size_type i = 0; i < v.size(); ++i) { /* use v[i] #/ } rrect size_type
for(vector<T>: :iterator p = v.begin(); p != v.end(); ++p) { /* use #p +/ } // verbose v

for(vector<>: :value_t eQ: v) { /# use x redaonl }// x for
/for(auml X : V) { /% use' reli-urites } range for

o Comparing subscript and iterator styles:
o The subscript style is used in essentially every language
o The subscript style does not work for lists and non-linear data structures (in C++ and in
most languages)
o The iterator style is used in C (pointers only) and C++
o The iterator style is used for standard library algorithms
o While both styles work for vectors, iterator style is more generic — works for all sequences

S 9Cwe ——r

PP angste . U

Eﬁi Ways of traversing a vector: Recap (Module 44)

o Let us revisit ways for the traversal of a vector as a sample container:

vector<int> v;

for(int 4 = 0; 4 < v.size(); +44) { /» v(i] +/ } int for
for(vector<T>::size_type { = 0; 1 < v.size(); ++1) { /+ v(1) +/ } t size_type

for(vector<T>::

iterator p = v.begin(); p != v.end(); ++p) { /¢ %/}
for(vector<T>::value_type x : v) { /¢ x o/} for
for(autok x : v) { /+ X vrites/ } ge for
————

Comparing subscript and iterator styles:

o The subscript style is used in essentially every language

o The subscript style does not work for lists and non-linear data structures (in C++ and in
most languages)

o The iterator style is used in C (pointers only) and C++

o The iterator style is used for standard library algorithms

o While both styles work for vectors, iterator style is more generic - works for all sequences

Cee 0B . T

Now, with this let us look at some of the other related features, one is range-for. We have
seen this in module 44, when we are discussing about vector. Range-for talks about how to
iterate over an entire data structure. So, we saw different styles that we could use a subscript
style for a vector, either using the native int for size or the actual size type of the vector or we

can use the iterator style, which is the verbose actual iterated style.

But C++11 allows us to do short forms of this. What were you saying in this one? We are
saying that the value type, take the value type as x and : v, it means, this means this, so it will
allow you to go over this, only thing is this will be read only. You can even use a shorter

form, you can just say auto& x or auto Xx.

If you do auto& x this will be a reference, so it will, that reference will allow you to also
make changes to the elements of the vector. The subscript style is common but the iterator
style has power because it can be used not only in vectors, but in any other container which

has support for iterators.

(Refer Slide Time: 29:36)

PP eEd te .

E@] Range-for Statement

o A range for statement allows us to iterate through a range, which is anything we can iterate
through like an STL-sequence defined by a begin() and end()

o All standard containers can be used as a range, as can a std: :string, an initializer list, an
array, a valarray, and any UDT that supports begin() and end(), for example, an istream:

void f(vector<double>t v) {
for (auto x : v) cout << x << endl; // auto is vector<double>::value_type
for (autok x : v) ++x; // using a reference to allow us to change the value
} _———=
o A range for is read as for all x in v going through starting with v.begin() and iterating
to v.end():
for (const auto x : {1, 2, 3, 5, 8, 13, 21, 34 })
cout << x << endl;
¢ volatile may also be used:
for (volatile int i : v) someOtherFunc(i); r volatile auto i
¢ The begin() (and end()) can be a member to be called as x.begin() or a free-standing
function to be called as begin(x). The member version takes precedence

9 ee @

5l R

YEr D

q

v | 3 B Y
[ﬁé} Range-for Statement

o A range for statement allows us to iterate through a range, which is anything we can iterate
through like an STL-sequence defined by a begin() and end()

o All standard containers can be used as a range, as can a std: :string, an initializer list, an
array, a valarray, and any UDT that supports begin() and end(), for example, an istream:
void f(vector<double>k v) {

for (auto X cout << x << eondl; auto vector<double>::value_type
for (autok X :™V) ++x; ng a reference t to change ti
}

o A range for is read as for all x in v going through starting with v.begin() and iterating
to v,end():
for (const auto x : {1, 2, 3, 5, 8, 13, 21, 4 })

cout << x << endl;
¢ volatile may also be used:

for (volatile int i : v) someOtherFunc(i); r volatile auto i

o The begin() (and end()) can be a member to be called as x.begin() or a free-standing
function to be called as begin(x). The member version takes precedence

e 08 " oL e

So, some, so this range statement basically allows you to do this. These are the, this is just
that what you need to learn is you can use auto x : the container you want to traverse or
auto& that and auto& that will allow you to write, auto will only be read. And this is
possible, this range-for, this is possible provided the element on which you are trying to go

over supports begin and end either as member function or as free-standing function.

Without that this will not be possible to perform this. It is a very convenient way to write
very, very compact and uniform code and makes more code generic in that way, because now
you are not even having to write what is the type of that iterator at all. You can, not begin,

end, anything, of course, it works only when you have to iterate the entire data structure.

(Refer Slide Time: 30:45)

487 20

v
[ﬁ] Range-for Statement: Example

L

#include <iostream>
#include <vector>
#include <map>

int main() {

std::vector<int> v= { 0,1, 2,3,4, 5 }; v
for (auto § : v) std::cout << § << ' '; std:icout << std::endl;
for (Iatn: {0,1,2, 3,4, 5)) std:icout << n <<’ *; std:icout << std::endl;

intall={0,1,23,4,5}; g
for (int n : a) std:icout << n << ' '; stdiicout << std:iendl;
for (int n : a) std:iicout << "In loop" << ' ' stdi:icout << std:iendl;

std::string str = "PPD"; g g
for (char ¢ : str) std::cout << ¢ << ' 7; stdiicout << std::endl;

std::map <int, int> MAP({{1, 1}, {2, 4}, {3, 9}
for (auto 1 : MAP) std::cout << ' ' << {.first << ", * << {.second << std:iendl;

Programming In Modern C 4+ Partha Pratim Do a1

And, so this is, there are, these are some examples for you to study at home and get
conversant with the use of range and with that we will we will close on the discussion of this

module.

(Refer Slide Time: 31:05)

L

[ﬂ% Module Summary

o Introduced following C+-+11 general features:
o Initializer List
o Uniform Initialization
o Range for Statement
o enum class

Programming In Moder C 4+ Partha Pratim Doy AT

In this we have introduced three C++ general features, initializer_list, uniform initialization
and range-for statement. Thank you very much for your attention and will meet in the next

module.

