
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 46

C++ 11 and beyond: General Features: Part 1

Welcome to Programming in Modern C++. We are going to start week 10 with module 46.

(Refer Slide Time: 0:36)

In the last week we have spent the time on standard library. We are familiarized with I/O

libraries both in C as well as C++. We discussed C because those can also be used in C++.

We learnt about generic programming, which is a very great style to adopt in terms of C++,

and then we have familiarized with C++ standard library with specific focus to Standard

Template Library or STL and familiarized with containers, iterators and algorithms.

(Refer Slide Time: 1:13)

Going forward from this week, from this module and for the remaining part of the course that

is the three weeks, we will primarily focus on the modern part of C++. So, far we have been

discussing about C++ 03 primarily. Now, we will start getting familiar with C++ 11 and

beyond. These discussions will be primarily on C++, but we will keep on mentioning

additional features that came in the subsequent versions, in 14, 17, and 20. In this module we

will introduce few general features of C++ auto, decltype and suffix return type.

(Refer Slide Time: 1:59)

So, this is the outline which will be available on the left panel as usual.

(Refer Slide Time: 2:04)

So, first let us look at the major C++ features. And just to remind you these are the different

standards that we have been talking about; C++ 98 or its corrected version C++ 03 has been

in our discussion for all the time. C++ 11 is what we are going to discuss now with references

to 14, 17 and 20, the latest version.

(Refer Slide Time: 2:31)

In C++ 11 several core language features have been added onto C++ 03. Some of them were

like to make it a better C++, like when we studied, started studying C++ 03 we noticed that

there are quite a few features which just made C++ a better language over C. Similarly, C++

11 also has a number of features which make it a better C++.

But there are number of features which are fundamentally very different, fundamentally, I

should say very significant and some of those I have shown in terms of the bold, the rvalue

reference, move constructor and move assignment operator semantics, the lambda

expressions, multithreaded memory model, concurrency support and so on.

And there are several others which are either convenience features that make C++ more

amenable to generic programming and easier to write correct code or they are features that

are required for these advanced semantics to be provided in C++ 11. We will go over, not

necessarily each one of the features, but we will take up most the major features when we

discuss.

(Refer Slide Time: 3:54)

Besides the core language there have been significant additions to the C++ standard library.

So, if we look at standard library, on the left column there is a list of headers which have

been added to C++ 11 standard library. And naturally they have lot of different concepts

added, so some of the important features are of the library as added to C++ have been given

on the right column. We will discuss some of them as we discuss the different features.

(Refer Slide Time: 4:30)

Now, to start with C++ general features, we start with auto and decltype for type deduction.

(Refer Slide Time: 4:38)

Auto as you know was a keyword in C++ 03, it used to mean automatic storage type. This is

one of the very few rare features which have been deprecated from C++ 03 to C++ 11, so that

meaning of automatic storage type is no more applicable in C++ 11. In C++ 03 while we are

specifying an object if it is necessary to declare its type, that we know.

It is a strongly typed language, so we must declare the type and we may include an

initialization with the type as well. In C++ 11 there is some liberation being given from that

requirement if a variable has an initializing expression which usually most variables will

have, recommendedly all variables must have, then it is possible to just write auto in the place

of the type specifier.

And the type will be deduced by the compiler from the initial, type of the initializing

expression. So, we see the simplest example here, I am just writing auto at this point and my

initializing expression is a integer literal, int literal, therefore, I am not writing explicitly. So,

this is equivalent to writing int x initialize 10, but I am not writing this int, instead I am just

writing auto and the compiler will be able to deduce this.

So, this deduction is very similar to template parameter deduction that we had talked about

earlier. And we will soon see, here actually it does not show a great advantage, but soon we

can see that it has several advantages. For example, consider this map. We have just studied

map in the, in terms of the containers, so it is a map whose key value type is int and value

type is string, the map m, so as a map it will always have an iterator.

So, you know that map contain a type has an iterator type, we have discussed this while

discussing map. Now, this is a long expression and it is quite possible that while writing this

you will forget some details and the compilation will fail. So, what we can do? We can

simply write auto for this. So, what it will do?

You are writing m.begin, m.begin returns an iterator, so the type of m.begin is the iterator of

the map type that you have given here and the compiler will deduce the entire type expression

on the right from this auto, so that is a big convenience to really have. You can also have

constant and volatile or reference or pointer adornments that you may add, so you can say

const auto* &x.

Where x1 has a auto type to 10, so x1 is int, so when you do this, you are basically taking the

address of an int, so you have int* and then you are adorning with const, so you have a const

int* as a type of x2. Similarly, you can do a const reference in this way to the entire map,

which becomes a convenience.

So, you can have const iterator types done as auto in the similar way except that you have to

remember in place of begin, you have to begin, you have to use the iterator member function

for constant iterator which is cbegin or cend, any one of those you can use, or creverse begin

or creverse end, both of, all of them have const iterator type so…

You can use it simply in terms of the way the template type deduction is done, so given a

template function f with type parameter T, f expression will deduce the type of T from the

type of expression. This is the template type deduction and exactly the similar thing will be

done by auto. So, auto in most, most, most of the cases is very simply template type

deduction given to any normal part of the declaration code.

(Refer Slide Time: 9:17)

So, variables, for variables that are not explicitly declared to be a reference, the top-level

constant volatile in the initialization are ignored, and array and function names, when they are

being initialized, used in initialization will decay to corresponding pointer type. So, this is,

auto will take the basic type that it has. So, I have a const list of int, but when I do auto v1 of

that, I actually get just the list of int, I do not get the const part of it, so that is stripped off.

Similarly, if I, but if I do a reference which is, that is why it is not explicitly declared to be

reference, but when it is explicitly declared to be reference it will take the entire type and

then add the reference to it. So, this is the basic connotation of or the way auto puts the type.

Another example, there is a array of size, BufSize of elements type float.

If you just do auto it will decay to pointer. So, element type is, it is an array of float, so it will

become float* as you know. But if you use a reference, then it will preserve the entire type

and give a reference to that. So, the type is float, array BufSize and you are doing a reference

so you get a reference here, so this is the type that will get deduced.

Using auto, you can use both the direct initialization as well as copy initialization as you

know, and in auto both these syntaxes would have the same meaning. We will see in some

other context, slowly things will become different. Now, auto is related to another feature

called decltype, which has extensive use in templates.

Just to start you know introducing the problem, suppose I have a multiply function, which

takes elements of two different types T and U, I do not know what these T and U are and

multiply takes, for these two types it takes two references of constant vectors of T type and

constant vectors of U type. So, basically, possibly I am trying to do a inner product of two

vectors and so on whatever.

Now, the question is what is the type of the product of the elements of vt and vu, so an

element of vt is vt[i], an element of vu is vu[i] and I am multiplying them as I am doing here.

The question is what is the type of this product? That depends on the type T and U and the

question is how do you express that. And this is, I mean, this use of auto here can be a big

convenience because otherwise you will have to spend a lot of effort to really write a type

expression which will work for any type T and any type U.

(Refer Slide Time: 12:43)

So, let us see what you can do? You can use decltype in this context. Decltype is the type of

an expression, sorry, decltype is the type of an expression without actually evaluating it. So,

it just, like something similar you will remember is available for sizeof, sizeof also does not

takes a type or an expression. If you give it an expression it does not evaluate the expression,

but gets the size of the type of value that the expression actually represents.

So, let us say in decltype what you can get? So, I have a declaration for an int x and a pointer

to int ptr. Now, if I put decltype x it will take the alias type and make it int. If I take decltype

ptr it will make the type of p1 as int*. Similarly, if I take say something like deckltype

ptr[44]. Now, what is ptr[44]? ptr is a pointer. So, when I write ptr[44] I am thinking of it as

an array of element, so this is one element in that, so it has to be of the integer type.

Now, this ptr[44], I have neither allocated nor done anything so I cannot do an evaluation of

this, but without evaluating the decltype will find out the type for this. So, it sees, I mean, it

looks like it is something similar to auto, but we will soon see what the advantages are. There

are certain specific differences in terms of how you parenthesize but these are rare exceptions

and you can always look up the manual for that.

Now, we get back to the example of that multiplication kind that we were doing. So, I want to

find out the type of a[i] times b[i], where a is a constant reference to a vector of type int, b is

a vector of type float and so what will be their product type. You can, looking at this you can

easily say that it is int times the type denoted by int times float, so whatever questions and all

that will happen, but how do you write that.

You will be able to write that by decltype a[0] into decltype b[0]. Now, here I have taken the

example of int and float just to make it easy for you to understand, but this could have been a

type T and this could have been a type U. Even then the type a[0] will be of type T and type

b[0] will be of type U, so their product has an expression and you can do a decltype on that to

find out the type.

Mind you, we are not again doing any evaluation, so the difference with auto is, auto we will

need to have a specific variable for which it is finding the type, but here you are just taking

the expression and finding a type without associating it to with any other variable. And that

comes pretty handy in terms of doing the expression. So, let us see how does auto and

decltype kind of are similar as well as they are somewhat semantically different.

(Refer Slide Time: 16:34)

So, first consider a set of declarations there int a int reference, const int const int reference, so

if you check the type of all these variables a, b, c, d, you will get the corresponding types as

written. Now, if you do an auto using these respective variables, whether the variable is of

type int or of int reference or const int or const int reference, auto will always, what it will do,

it will strip off the const, it will strip off the reference, it will just give you the basic type. So,

all of these will be int.

So, if you have to put the CV qualifier or reference you have to add that explicitly. So, if you

do that a using a which is of type int and you say auto&, this will become int&. Similarly, if

you do, take a and use const auto, then it will become const int, so you have to explicitly put

that. In contrast if you use this, if you do this with decltype, then you can simply write

decltype a.

What does decltype take? It takes an expression. So, a is an expression, it is a variable so it is

an expression, so it will give you the type of a, which int, this part is same. But if you do

decltype b, you will get int&, which was the actual type of b. Auto was giving you just the

int, so decltype differs from the auto is that it does not do the strip off of reference pointer or

const volatile, etcetera, it gives you the actual type that you have.

Now, in C++ 14 you have another version of decltype, we just uses the word auto in place of

the expression. So, what this means is this auto relates to the initializing expression. So, when

do decltype(auto) a_dt_auto, it initialized with a, it will take the type from a, similarly, here it

will take the type from b and correspondingly it follows the decltype semantics and it will

give you the corresponding types. So, this part is just that you need to learn and remember.

(Refer Slide Time: 19:05)

Now, the question certainly you might come to is well, if you have, I mean, as a programmer

how do you know using auto or decltype, what type actually the compiler is inferring. This is

happening at the compile time, so at the run time you have no way of, you have no way of

executing and knowing that, so C++ also does, C++ 03 also does lot of inferences in terms of

implicit conversion, templates and so on.

C++ 11 in addition is inferring for auto and decltype, the question is how do you get to know

that. Unfortunately, the compiler does do the inference but there is no support to let that infer

type known to you, for the simple reason that the compiler's job is to translate it to a program

which you will execute. Compiler is like a service provider, it is not supposed to give its

internals to you. So, how do you actually know the type that has been inferred?

One way could be you can use your IDE, the debugger, particularly run the program and do a

break point and at the debugger you can see what is the type, debuggers usually give that

information. This is clumsy, as well as the difficulty is you will be able to do this only when

your program compiles. Suppose you need to know the type that has been found by auto; that

has been inferred by auto or decltype.

And because your program is not compiling, it is saying that there is some error, so how do

you get to know that? So, there is no standard way, but I have given you here two possible

hacks that you can use and I have given the references software, these are been discussed at

greater length, one is you can just declare a template, but not define it. So, it is like a forward

declaration.

You say knowledge type is a template of with the type parameter T, but you have not said

what is that class is. Then suppose you have an array int arr, how do you get to know its type,

its type is int [3]. So, what you can do is you try to instantiate the template with the decltype

of arr. So, arr is an expression because it is a variable, it is an array of size 3 of int, you do try

to do a decltype of that. This type you are trying to pass as T.

As you do that so you are trying to instantiate that template, but that template has not been

defined, so the compiler will not be able to instantiate the template. So, what will do? The

compiler will give a error. So, for example, this is, this error message is particularly from this

online compiler, you can try this out.

So, in the error message you will see that the type inferred is embedded because compiler is

trying to tell you that this is something which is wrong, so it cannot be, it is an incomplete

type it cannot be defined. Other, even simpler way to do this is not even trying to do a

template, but just do decltype(arr)::, say underscore, underscore is a name of a variable, any

variable name can start with an underscore.

Now, what will this, what does this mean? This, you are doing decltype(arr)::, which means

this is a type, so it is saying type :: something, so it is expected to give you a class or an

enumeration type, type :: syntax basically means that, but there is nothing that actual type is

int [3] and it is not a class, it is not an enumerated type, so the compiler will not be able to

interpret this particular statement that you have written.

So, the compiler gives you an error, it says, ‘decltype evaluates to’ and that is what you

wanted, to know what is the type that decltype is inferring, which is not a class or of

enumeration type, which is a very quick way I always use it to know what is the type of an

expression that is being inferred. You can use it in any context, it is a very nice one-line hack,

which will give you the information through compiler messages.

(Refer Slide Time: 23:30)

Of course, you can use typeid operators, operator also, we have talked about typeid operator

during dynamic polymorphism, but it is not a good thing to do because it is meant for

dynamic type, but you can still apply typeid on anything. So, if you do that on a, so this is

your original variables, so what you need to do is typeid pass the expression variable name

and then do dot name typeid returns your structure so dot name has the name.

So, for x which is an integer you get as i, c. Now, if you try to do this on vector which are

basically having these types you get these kind of strings, which are compilers own internal

representation of the type that the entire thing it means. So, by the typeid you can get the

type, but it is in a format that is very, very difficult to decode and it is compiler dependent,

use a different compiler you will get a different coding. So, typeid method to know, type is

not actually useful, you have to use one of the two hacks that I have just discussed.

(Refer Slide Time: 24:52)

Now, let us using auto and decl, let us look at a very interesting feature that C++ 11 has

introduced called the suffix or trailing return type.

(Refer Slide Time: 25:00)

The question is when do we need a decltype? When we have a variable we can do auto on for

that, but when we do not have a variable, then I need to use decltype. I cannot do an auto. So,

what is that, when we need a type where there is no variable, when that variable is

temporary?

For example, in a return type. So, let us say I am trying to define a multiply function of

template type parameters being T and U, the expression is x times y, the question is what do I

write here. In terms of T and U I have to be able to write the return type, but I do not know

what to write, so I know the type to be returned is the type of x times y, type of x times y.

So, I say, ok, not a problem, I will just use decltype on this. decltype should tell me the type,

so I will do decltype x times y and I will write the function. This will not compile. Why will

it not compile because the compiler takes the code from left to right, so it comes across x

before the scope of x has actually started, scope of x starts, type is defined here and the scope

starts here. But you need to know x at this point, similarly you need to know y at this point.

You cannot know that, there is no way to know this, so because of the scope problem you

cannot use decltype directly there. So, if you are a very, very smart programmer you might

want to do something smart to get there. What you said ok, I can always use 0, it is a

constant, stands for the null pointer and cast it to, decltype cast it to T*, so I take 0, which is,

which does not have a type or it is an integer type, I cast it to T*.

So, I get a pointer of T type, similarly, I get a pointer of U type. I dereference I will get a

object of U type, I dereference T type I will get an, I dereference the second one I get a object

of U type, so if I mark it well then this is an object of T type, this is an object of U type. I am

doing the same thing as this, but I am not using the name x and y, and then I multiply, this is

a multiplication, this star is a binary multiplication.

If I do that, certainly I will be able to get what is the type of x times y, but certainly as you

can see this is a very, very clumsy and error prone way of doing it and in general it is difficult

to write this kind of expression. So, what suffix return type, a trailing return type does, it

pushes the return type to the place where it actually belongs, that is after the function.

So, what it does is in the usual traditional return type position you just write auto that it will

be deduced, and then after the function header and before the function body with an arrow

you put the return type. This is available in general. And in that you say that the return type is

decltype of x into y. Now, the advantage is x is already in the scope, y is already in the scope,

so x and y are defined symbols their types, so you can deduce.

The compiler can deduce the decltype, the only thing is you are placing the return type after

the header, not before the header, before the header you just have a placeholder to say that I

want the compiler to deduce this. So, this is what is called the suffix or trailing return type

mechanism by which you can let the compiler deduce that.

(Refer Slide Time: 29:29)

And actually if you think of it this syntax, this suffix syntax is not necessarily about templates

it is about scoping. It is type deduction in a scope rule, because scope is what you are not

getting, for example, if you have a list of link elements and if you have a member function

erase that takes a link pointer and returns you a link pointer then outside of the class, if you

outline the body of this function, then you have to write it like this.

You will have to write List::Link*, and then List::erase. Now, this List::Link* is required

because you get to know that this is a member function of erase, the member function of List

only after you have come to this point, but you need to know about Link* before that, so you

need to write it twice.

Now, what you can do, you can just write an auto here that is you are not writing this, you are

just directly writing the member function. So, you write auto, because this is necessarily the

return type and then you put the return type as a suffix pointer Link*. So, there is no specific

qualification for the Link that you need because you will be able to deduce, compiler will be

able to deduce that from the suffix notation itself in the auto. So, this is how the decltype

specifically help you in doing variety of different deduction.

(Refer Slide Time: 31:17)

And you can, as you can see we can use it in C++ 11 as we have seen this, we can use it in

this form. When you come to C++ 14, you get something which is even more interesting.

You can, the suffix type, this suffix type specification if you see, the only problem is it has to

write the return expression twice, but then the compiler knows the return expression. Why do

I have to write it twice? The compiler can generate this entire part itself.

That is a simple common sense. So, C++11 just allows you to write auto, it is like any other

function that you write, just you can write auto, of course, for backward compatibility with

C++ 11 it will also allow you to use the suffix return type. C++ 11 introduces another, which

is decltype(auto). So, you can write decltype(auto) also in place of just auto. But if you use

decltype(auto) then you will not be able to write the suffix return type because it does not

need a backward compatibility, decltype(auto) was not there in C++ 11.

(Refer Slide Time: 32:36)

So, we will present a simple example to show what is the difference, here you have, I have

defined three functions foo, bar and foobar. Now, if you see here, then, first let us look at the

parameters, parameters are going to be struct a or struct b, both of which have a member

function value, this returns by reference and this returns by value. Now, the question is so in

each of this function I take t as a reference of type T and return this.

So, basically the body is the same. Now, how does the semantic differ? If I write auto& and if

I write decltype(auto), if I write auto what will happen, auto strips off all reference and all

that. So, if I try to do foo(a), foo(a) should return you a reference and therefore, you will

think that since it is a reference I can make an assignment to it, so I can say foo(a) assign 20.

But this is, this will be an error because auto will strip off the ampersand, will strip of the

reference it will just return a type int which is an rvalue to which you cannot make an

assignment, whereas if you do foo(b) which is doing, not trying to assign, foo(b) simply has

an int type, it applies that and forgets the temporary result, it is fine.

Similarly, if you try to do it on bar where auto has an ampersand, then auto will necessarily

put the reference in every case. So, now if I do foo bar(a) I will get a reference to int, l value

will be type of int& and it will be fine. But if I try to do foo bar(b), then I have a reference

and a reference without an initialization is not allowed, so I will have an error. In terms of

decl auto, decltype(auto), it will figure out what is the actual type. So, if you call it with a it

knows that the type is int reference, so it will allow it int reference, if you call it with b it will

figure out that the type is int, it will give you a type int and both of these will be correct. So,

that is the difference between using auto and using decltype(auto).

(Refer Slide Time: 35:26)

So, here are some common recommendations that I have put, you can go through that.

(Refer Slide Time: 35:32)

And, so this brings us to the end of this module and we have introduced three general C++

features of auto, decltype and suffix return type. Thank you very much for your attention, we

meet in the next module.

