Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 46
C++ 11 and beyond: General Features: Part 1

Welcome to Programming in Modern C++. We are going to start week 10 with module 46.

(Refer Slide Time: 0:36)

’ : VVeekly necap
=

o Familianzed with 1/0 libearies in C and C++

o Learnt Genenc Programming
o FamiBiarized with C+= Standard Library with specific focus to STL

o Familiarized with containers, iterators and algorithms

In the last week we have spent the time on standard library. We are familiarized with 1/0
libraries both in C as well as C++. We discussed C because those can also be used in C++.
We learnt about generic programming, which is a very great style to adopt in terms of C++,
and then we have familiarized with C++ standard library with specific focus to Standard

Template Library or STL and familiarized with containers, iterators and algorithms.

(Refer Slide Time: 1:13)

8 o
tld: Module Objectives
==

o Getting familiar with C++11 and beyond: C++14, C++17, C++20

¢ Introducng follsmng C++11 genenal features
o aute
o decitype
o suffix return type

Going forward from this week, from this module and for the remaining part of the course that
is the three weeks, we will primarily focus on the modern part of C++. So, far we have been
discussing about C++ 03 primarily. Now, we will start getting familiar with C++ 11 and
beyond. These discussions will be primarily on C++, but we will keep on mentioning
additional features that came in the subsequent versions, in 14, 17, and 20. In this module we

will introduce few general features of C++ auto, decltype and suffix return type.

(Refer Slide Time: 1:59)

So, this is the outline which will be available on the left panel as usual.

(Refer Slide Time: 2:04)

rﬁ" h' C 1] F :
4 : .v,aJ‘S-v’ —+11 reatures
==

Major C++11 Features

Sources

. age & . B0 og

L] Cppeaference com

P h

L Quorz, 2019

. ghb

gt sy & Macvrs -~ - ('Y

C+498 | Ca+1l | 14 | 17 | (4420

Terglates 1M Serastcy :ﬁraa- Woter Locks :‘od(vnua-n Corosion
ST with Contamen :.h‘rd advation :";nen: Lambda Sconmtenge 4 :m
'
and Ngorehen 1 :in:m H :
' '
Shings 1950 and deckyoe : :y.-u-.m Bndeg :(o'«r.l
/0 Srearny ;.m;nxm : fa%d: -".:,:_r.-,-':ﬂr'uz-n
1] ' '
1 ' 1 '
iLomn | Paraled Agortiben of |
| | \ '
1 | e 3L '
1 ' 1 '
Vs Sreedegand | tiie Sytem Library
) 1 ' |
1Mernory Model!] ' l
1 ' t
theguler Expreviions | ' |
1 | ' |
{ ' ' |
' ' ' '
1 \ \ \
) ! L] !
Srnart Pomtery] 1]
' ' 1 '
1Manh Tables | ' |
' ' ' '
(%4 lazTey | i |
Foos o Coa88 Contt =
stve Yovien = o oy
gy & W o - 14

So, first let us look at the major C++ features. And just to remind you these are the different
standards that we have been talking about; C++ 98 or its corrected version C++ 03 has been
in our discussion for all the time. C++ 11 is what we are going to discuss now with references
to 14, 17 and 20, the latest version.

(Refer Slide Time: 2:31)

PP Al te

Fe ~
iﬁi Major C++11 Features: Core language

o auto and decltype o rvalue references

o trailing (suffix) return type * move constructors and

o list initiafization move assignment operators
(initializer list) ¢ lambda expressions

o uniform initialization: brace-or-equal + multithreaded memory model
initakzers o thread-local storage

o enum class: scoped enums o GCinterface (removed in C++23)

e constexpr and literal types o long long, chari6.t and chard2 s

e noexcept specifier and operator o {inal and override

o nuliptr o type aliases

o defaulted and deleted functions o vanadic templates

¢ delegating and inhenited constructors o generalized (non-trivial} unions

o range-for (based on Boost) o generalized PODs (trivial types and

o static assert (based on Boost) standard-layout types)

o Unicode string literals o attributes

o user-defined literals o alignof and alignas

Frgrommeg & Mades (v Prmsrem ta

In C++ 11 several core language features have been added onto C++ 03. Some of them were
like to make it a better C++, like when we studied, started studying C++ 03 we noticed that
there are quite a few features which just made C++ a better language over C. Similarly, C++

11 also has a number of features which make it a better C++.

But there are number of features which are fundamentally very different, fundamentally, |
should say very significant and some of those | have shown in terms of the bold, the rvalue
reference, move constructor and move assignment operator semantics, the lambda

expressions, multithreaded memory model, concurrency support and so on.

And there are several others which are either convenience features that make C++ more
amenable to generic programming and easier to write correct code or they are features that
are required for these advanced semantics to be provided in C++ 11. We will go over, not
necessarily each one of the features, but we will take up most the major features when we

discuss.

(Refer Slide Time: 3:54)

PP AnS St

+11 Features: Library features

@ Jisenic operations ey

fereeces thessghout 3l parts of the xisting iy |

drms e D e

Besides the core language there have been significant additions to the C++ standard library.
So, if we look at standard library, on the left column there is a list of headers which have
been added to C++ 11 standard library. And naturally they have lot of different concepts
added, so some of the important features are of the library as added to C++ have been given

on the right column. We will discuss some of them as we discuss the different features.

(Refer Slide Time: 4:30)

auto & decltype

Sources
® suto and dectype isocpp ong
. 4 ' r nd ® e Cppreference COM
.

Pragtsmmeg ® Madwes C -~ Pams e Dm

Now, to start with C++ general features, we start with auto and decltype for type deduction.

(Refer Slide Time: 4:38)

o In C++03, auto designated aa object with automatic storage type. That is now deprecated
We must specify the type of an object at declaration though the declaration may inclede an
initalizer with type

varables get the type from their ing

LG expression

t, std::string> B

1 = 3. beginl); £1: std::mapcis

o const/volatile and reference /pomter adomments may be added
const auto *x2 = ξ 12: coust inte

td: mag<int, std::strizgot

o To get a const.iterator, use chegis (or cend, crbegiz. and crend) comtainer function:

¢i: std::mapcist, std::string>::ccast iterator

auto is akin to that for template parameters

Wi t“

o In C++403, auto designated 3a object with automatic storage type, That is now degrecated
We must specify the type of an object at declaration though the declaration may include an
Initalizer with type

® In C4++11 aute variables get the type from their intializing expression

mate xt = 10;

1 ix
std::sapcist, std::string> :;‘/ /_._M

i
Mt i1 = 8, beginl) i1 ‘etd: imapsing, std ng? ar

o =
o const/volatile and reference)pointer adormments may be added

C20AT auTo *x7 = kxi 131 const inte
const autok 32 = m; 2 atd::map<int, std::etrizg’d

o To get 2 const_iterator, wse cbegan (or cend, crosgaa. and crend) container function:

wte of = w, chaginl) ¢d: wtd:imapciat, std::string::const. itarator

o Type deduction for auto is akin to that for template parameters

tasplatectypename T> void (T t);

wpe)| e T aye

Mt v 8 anpr; I ¥

o€ 0B W

o In C+403, auto designated 3o object with automatic storage type, That is now deprecated
We must specify the type of an object at declaration though the declaration may include an
Initalizer with type

o |n C4+11 aute varables get the type from their ntializing expression

zt = 10; 11 fat

—

std:isapcint, std::stying” ®;
Mte i1« 8, begini); il std:isapdint, std:istring?i:iterat

const/volatile and reference) pomter adomments may be added
i | e S

m——

Censt anto *x3 = &xl L ¥) 5T Ante

T autol 32 » 3 §2: Tonet atd: -mag<i

T —— bty

¢ To get 3 const.

i::etrizg>d

e N
TAtor, wse C (or cend, crbegia, and crezd) container functicn:

Mto ¢l = . cheginl) ¢i: wtd:imapc<inst, stdiiRtring coast Atarator

Type deduction for auto 15 akin 1o that for template parameters

tasplate<typensme T> void £(T t);

£uxpe); elute T g
Mo v e apr, 4 L

ok el | W

o In C+403, auto designated 3a object with automatic storage type, That is now degrecated
We must specify the type of an object at declaration though the declaration may include an
Initalizer with type

In C4++11 aute vanables get the type from their intializing expression

mite xt = 10; 11 fat

std::sapdist, std::string’ ®;
mte 11 * a.beginl)) il std:imapdint, std:istring?icitarator

2 _,_4
const/volatile and reference/pomter adomments may be added

C208T auto *x7 = kxi ¥

2! const Ante
const autok 32 = m; 12:

atd::map<iot, std::etrizgk

¢ To get 3 const_iterator, wse cbegan (or cend, croegaa. and crend) container function:

Mo clsn

gial) ¢i: wtd::mapciat, std::

ring::const

ap——— ye
Type deduction for suto is akin 1o that for template parameters

tasplatectypensse T> void £(T t);

tluxpe); g
Mte v = anpr; far v
e B el

o In C++403, auto designated aa object with automatic storage type. That is now degrecated

We must specify the type of an object at declaration though the declaration may include an
Int:alizer with type
In C++11 aute varables get the type from thelr intializing expression

mte xt = 10; 11 fat

std::sapcint, std::string® ®;
mite i1 = 8. beginl}) i stdiimapding, std

const/volatile and reference pomter adomments may be added

CS08T uto *x7 = kxi |

2! const Ante
const autok 32 = m; 12:

atd::map<iot, std::etrizgk

¢ To get 3 const_iterator, wse cbegan (or cend, croegia. and crend) container function:

Mto ¢l = cheginl) ¢i: wtd:imapcint, stdiistring::ceastitarator

Type deduction for auto is akin 1o that for template parameters
tasplatectypensss T> void £(T t);
" ' r e/

WMt v = ampr; fur v
el

e B il

Auto as you know was a keyword in C++ 03, it used to mean automatic storage type. This is
one of the very few rare features which have been deprecated from C++ 03 to C++ 11, so that
meaning of automatic storage type is no more applicable in C++ 11. In C++ 03 while we are
specifying an object if it is necessary to declare its type, that we know.

It is a strongly typed language, so we must declare the type and we may include an
initialization with the type as well. In C++ 11 there is some liberation being given from that
requirement if a variable has an initializing expression which usually most variables will
have, recommendedly all variables must have, then it is possible to just write auto in the place

of the type specifier.

And the type will be deduced by the compiler from the initial, type of the initializing
expression. So, we see the simplest example here, 1 am just writing auto at this point and my
initializing expression is a integer literal, int literal, therefore, I am not writing explicitly. So,
this is equivalent to writing int X initialize 10, but I am not writing this int, instead | am just

writing auto and the compiler will be able to deduce this.

So, this deduction is very similar to template parameter deduction that we had talked about
earlier. And we will soon see, here actually it does not show a great advantage, but soon we
can see that it has several advantages. For example, consider this map. We have just studied
map in the, in terms of the containers, so it is a map whose key value type is int and value

type is string, the map m, so as a map it will always have an iterator.

So, you know that map contain a type has an iterator type, we have discussed this while
discussing map. Now, this is a long expression and it is quite possible that while writing this
you will forget some details and the compilation will fail. So, what we can do? We can

simply write auto for this. So, what it will do?

You are writing m.begin, m.begin returns an iterator, so the type of m.begin is the iterator of
the map type that you have given here and the compiler will deduce the entire type expression
on the right from this auto, so that is a big convenience to really have. You can also have
constant and volatile or reference or pointer adornments that you may add, so you can say

const auto* &x.

Where x1 has a auto type to 10, so x1 is int, so when you do this, you are basically taking the

address of an int, so you have int* and then you are adorning with const, so you have a const

int* as a type of x2. Similarly, you can do a const reference in this way to the entire map,

which becomes a convenience.

So, you can have const iterator types done as auto in the similar way except that you have to
remember in place of begin, you have to begin, you have to use the iterator member function
for constant iterator which is cbegin or cend, any one of those you can use, or creverse begin

or creverse end, both of, all of them have const iterator type so...

You can use it simply in terms of the way the template type deduction is done, so given a
template function f with type parameter T, f expression will deduce the type of T from the
type of expression. This is the template type deduction and exactly the similar thing will be
done by auto. So, auto in most, most, most of the cases is very simply template type

deduction given to any normal part of the declaration code.

(Refer Slide Time: 9:17)

o For variadles not expiicitly declared to be a reference
o Top-level comsts | voratiles in the initiaizng type are \gnoved
o Amay and function names m"i/".mlizing types decay 1o povnters
corst std::list<iar> 1]

s vl = 14 vl: sid l.z!<.n“’/
B

otk v2 = 13 v2: coost std: l:;:c:nm
— S of,
tloat data(BufSiae)

auta 73 = data 73: floate

witok 4 = dase; vé: float (R)[BufSize)

o Both direct and copy imtialization syntar are permitted

wito vi{expr); t

%0 v2 = oxpr)

Fer auto, both syntaxes have the same meaning
¢ auto is dosely related to decltype and has extensive use in templates and generic imbdas
templatecclass T, class ¥ woid sultiply{const vector<D>k vt, copst wector<iDE vu) |

anto top = wefi]ave(1]; i {

Cee D wm |

o For varisdles not expiicitly declared to be a refersnce
o Top-level consts | volatiles in the initiaizng type are gnoved
o Aray and function names in intialzing types decay to pointers
conat std::list<iato ii;
vl stdiilisn<ine>

v2: coost std:ilist<int™

#3: floate s

witok 4 = date; vé: floasUd)[BufSize)
o Both direct and copy imtiakization syntax 3re permitted
wito vilexpr); t
%0 v2 = oxpr)
For auto, both syntaxes have the same meaning
¢ auto is dosely related to decltype and has extensive use in templates and generic limbdas
templatecclass T, class ¥ woid moltiply{cozst wector<D>k vt, copst wector<iDE vu) |

¢ve 0D |

o For variables not explicitly declared to be 3 reference
o Top-level consts | volatiles in the initiaSzing type are ignored
o Array and function names in initialzing types decay to pointers
const std::listcize> 1i;

For auto, both syntaxes have the same meaning
¢ auto is closely related to decitype and has extensive use in templates and generic Jr:ﬁas

templatecciass T, class © vwoid sultiply{const vector<T>k ¥t, comst vector<iDR wu) |
— ——

——
auto tap = viii]eve[s]; : tp T
—
]
e B . DRI it |

So, variables, for variables that are not explicitly declared to be a reference, the top-level
constant volatile in the initialization are ignored, and array and function names, when they are
being initialized, used in initialization will decay to corresponding pointer type. So, this is,
auto will take the basic type that it has. So, | have a const list of int, but when | do auto v1 of

that, I actually get just the list of int, | do not get the const part of it, so that is stripped off.

Similarly, if I, but if | do a reference which is, that is why it is not explicitly declared to be
reference, but when it is explicitly declared to be reference it will take the entire type and
then add the reference to it. So, this is the basic connotation of or the way auto puts the type.

Another example, there is a array of size, BufSize of elements type float.

If you just do auto it will decay to pointer. So, element type is, it is an array of float, so it will
become float* as you know. But if you use a reference, then it will preserve the entire type
and give a reference to that. So, the type is float, array BufSize and you are doing a reference
S0 you get a reference here, so this is the type that will get deduced.

Using auto, you can use both the direct initialization as well as copy initialization as you
know, and in auto both these syntaxes would have the same meaning. We will see in some
other context, slowly things will become different. Now, auto is related to another feature
called decltype, which has extensive use in templates.

Just to start you know introducing the problem, suppose | have a multiply function, which
takes elements of two different types T and U, | do not know what these T and U are and
multiply takes, for these two types it takes two references of constant vectors of T type and
constant vectors of U type. So, basically, possibly | am trying to do a inner product of two

vectors and so on whatever.

Now, the question is what is the type of the product of the elements of vt and vu, so an
element of vt is vt[i], an element of vu is vu[i] and | am multiplying them as | am doing here.
The question is what is the type of this product? That depends on the type T and U and the
question is how do you express that. And this is, | mean, this use of auto here can be a big
convenience because otherwise you will have to spend a lot of effort to really write a type

expression which will work for any type T and any type U.

(Refer Slide Time: 12:43)

o For variadles not expiicitly declared to be a reference
o Top-level comsts | volatiles in the initiaizng type are \gnoved

mes in intializing types decay to pomters

const otd::1listciaey 1i;

wmto vl = 14 vl stdiilisn<int>

autck vi = 11, v2: const std::list<intN

o Aray and function

tloat data(BufSize)
auta 73 = data 73: floate
witok 4 = dats; vé: floay (k) [BufSize)
o Both direct and copy imtia\zation syntax are permitted
wite vi{expr); ./ t
%o v2 = oxpr) \/
For auto, both syntaxes have the same meaning
¢ auto is cosely related to decitype and has extansive wse in templates and generic imbdas
templatecclass T, class ¥> woid multiplylconst wectordT>k vt, comst vector<iDé wu) |

anto op = veii]ove(1]; W w

ST S e

Fairly intuitive, but some quirks. for example, parentheses can matter

stract § | double d; |;

conet 3 p;
citypeip->4) x1;

ol (p

ceast dozblek

Quirks rarely relevant (and can be locked up when necessary)

Can simplify complex type expressions

Tor<int>d 8, vector<floatae b) |
typedef decitypola T
for (it 1e0; {<®.xizel); ++1) |

Tzpe 2

void f(ceast v

izt o flcat

o decltype yields the type of an exres

iat x, ‘¢

T WEhout evatuatng it

11
1

ity ptz) pi; P it
std::size_t 52 » sizeof(de r;e@)‘; 5

ptr{dd)
o Fairly intuitive, but some qu . parenthesss can matter:
double
o((p-2d)) 22; ceast dozblek

o Quirks rarely rebevant (and can be locked up when necessary)
Can simplify complex type expressions

#(ccast vector<int>t s, vector<floatrd b) |

typedef do Tep; I it o flcat

for (imt | 1. 51000 +1) |

P
2 » sizeof (dacltypelptr(dd]));

Fairly ntuitive, but some quirks. for example, parenthesss can matter:
stract § | double d; |;

conet 3 p;

->4) x1; deubile

of ‘f‘_'jlt\' 12; ceast dozblek

Quirks ravely relevant (and can be locked up when necessary)
Can simpiify complex type expressions

#(ccast vector<int>t s, vector<floatae b) |

typedef dacity izt o float
for (st LeQ;

B~ 2ev Toplalil

 ui—

Pl
ﬁi decltyy

» sizeof (dacltype(ptr{dd]));

o Fairy ituitive, bt some quirks. for example, parentheses can matter

double

coast dozblek

o Quirks rarely relevant (3nd can be loch T’ up when necessary|

o Can ampiify complex ty 4&&-;4&5901:5 —~
ar<fuf>t s, vu::orqaijj’k b |
wolBi0ebi0)) D D;

i / {

Tspe g = 2ev Toplafi]ebit]);

TraiShasony

So, let us see what you can do? You can use decltype in this context. Decltype is the type of
an expression, sorry, decltype is the type of an expression without actually evaluating it. So,
it just, like something similar you will remember is available for sizeof, sizeof also does not
takes a type or an expression. If you give it an expression it does not evaluate the expression,

but gets the size of the type of value that the expression actually represents.

So, let us say in decltype what you can get? So, | have a declaration for an int x and a pointer
to int ptr. Now, if | put decltype x it will take the alias type and make it int. If | take decltype
ptr it will make the type of pl as int*. Similarly, if | take say something like deckltype
ptr[44]. Now, what is ptr[44]? ptr is a pointer. So, when | write ptr[44] | am thinking of it as

an array of element, so this is one element in that, so it has to be of the integer type.

Now, this ptr[44], | have neither allocated nor done anything so I cannot do an evaluation of
this, but without evaluating the decltype will find out the type for this. So, it sees, | mean, it
looks like it is something similar to auto, but we will soon see what the advantages are. There
are certain specific differences in terms of how you parenthesize but these are rare exceptions

and you can always look up the manual for that.

Now, we get back to the example of that multiplication kind that we were doing. So, | want to
find out the type of a[i] times b[i], where a is a constant reference to a vector of type int, b is
a vector of type float and so what will be their product type. You can, looking at this you can
easily say that it is int times the type denoted by int times float, so whatever questions and all
that will happen, but how do you write that.

You will be able to write that by decltype a[0] into decltype b[0]. Now, here | have taken the
example of int and float just to make it easy for you to understand, but this could have been a
type T and this could have been a type U. Even then the type a[0] will be of type T and type
b[0] will be of type U, so their product has an expression and you can do a decltype on that to

find out the type.

Mind you, we are not again doing any evaluation, so the difference with auto is, auto we will
need to have a specific variable for which it is finding the type, but here you are just taking
the expression and finding a type without associating it to with any other variable. And that
comes pretty handy in terms of doing the expression. So, let us see how does auto and

decltype kind of are similar as well as they are somewhat semantically different.

(Refer Slide Time: 16:34)

\]

PP Qs te 0

K " Sy
Lﬁ;{ auto | decltype: Semantic Differences

® auto and decityps both infer types from expressions; but they semantically differ
Heclode ostrean>

1o matad) | ‘|

o

A

r""‘ prisand te
Lﬁ;i auto / decltype: Semantic Differe

ences

¢ auto and decltype both infer types from expressions; but they semantically differ
Heclode <lostrean>

& auto and decltype both infer types from expressions; but they semantically differ
Hnclade ostrean>

s satsl) |

iata=§

So, first consider a set of declarations there int a int reference, const int const int reference, so
if you check the type of all these variables a, b, ¢, d, you will get the corresponding types as
written. Now, if you do an auto using these respective variables, whether the variable is of
type int or of int reference or const int or const int reference, auto will always, what it will do,
it will strip off the const, it will strip off the reference, it will just give you the basic type. So,

all of these will be int.

So, if you have to put the CV qualifier or reference you have to add that explicitly. So, if you
do that a using a which is of type int and you say auto&, this will become int&. Similarly, if
you do, take a and use const auto, then it will become const int, so you have to explicitly put
that. In contrast if you use this, if you do this with decltype, then you can simply write

decltype a.

What does decltype take? It takes an expression. So, a is an expression, it is a variable so it is
an expression, so it will give you the type of a, which int, this part is same. But if you do
decltype b, you will get int&, which was the actual type of b. Auto was giving you just the
int, so decltype differs from the auto is that it does not do the strip off of reference pointer or

const volatile, etcetera, it gives you the actual type that you have.

Now, in C++ 14 you have another version of decltype, we just uses the word auto in place of
the expression. So, what this means is this auto relates to the initializing expression. So, when
do decltype(auto) a_dt_auto, it initialized with a, it will take the type from a, similarly, here it
will take the type from b and correspondingly it follows the decltype semantics and it will

give you the corresponding types. So, this part is just that you need to learn and remember.

(Refer Slide Time: 19:05)

pPb ANl te . LR

K Ao
‘kﬁi‘ auto | decltype: Determining compiler-deduced types

o Compiler deduces types of expressions in vancus contexts
o In C++03. types are inferred for impliat conversicns, templates, etc
o In C+=11. in addition, types are inferred for auto and decitype

o How can we know the type deduced by the compiler?
6 In C++ type s infarred at compiler time' - no support to know the mierred type
o Debug in 2e IDE and check the type This is possible anly if the pragram '.Cf.‘3|3
o Use compler ermors: Eman shown for [Progran Yo T

» Incomplete template: [Detsrmivia

tesplatectyparase T> class KamType;

int [3)
KeawType<dacltypafarr)® arr_type eror: aggregate

das 1ccaplete Type A

» Incomplete type: |
int (3)

decltypadiarr)::,

C++ s statically typed |escept for dynamic polymorphiam where there is typeid sspport for type)

€ ! L u—— .!‘

r"" prlband te . LR
kﬁi auto | decltype: Determining compiler-deduced types &

o Compiler deduces types of expressions in vancus contexts

o In C++03, types are inferred for impliat conversions, templates, etc
o In C+=11, in addition, types are inferred for auto and declitype
o How can we know the type deduced by the compiler?
o In C++ type s infarred at compiler time' - no support to know the miermed type
o Debug in ae IDE and check the type This is possible only if the program comgiles
o Use compler ermors Evons shown for [Progrinr v]

» Incomplete template: [Detsrmiring types dadocef by t
> class KamsType; /

:uplau/t;lm.%
/ \, int f.!]»/

KeovType<dacltypafare)® arr_type
_— — 18 1coaplete TYDR AL

» Incomplete type: |

int {3)
decltypadarr) i ; arror: decltype evaluates to ‘Int [3]', which |

=+ 15 statically typed [escept for dynamic polymorphiam where there is typeid support for type)

0 el | wwe |

o Compiler deduces types of expressions in vanous contexts
o In C++03, types are inferred for implicit conversions, templates, etc
o In C==11, in addition, types are inferred for auto and decltype

o How can we know the type deduced by the compiler?

o In C+=+ type is inferred at compiler time' - 20 support to know the inferred type

o Debug in an IDE and check the type. This is possible only if the program compies

o Use compder errors: Emon shown for [Pragra Tder]
> lecomplete template: [Deswrr

tesplate<typezase T> class EaosType;

EzouType<dacitype(arr)

> lecomplete type: |

decltypelasr)::_; ecror: decltype ¢

P

—————
C=+ is stancally typed {except for dynamic polymorphism where there & typeid support for type)

Cee B - R |

Now, the question certainly you might come to is well, if you have, | mean, as a programmer
how do you know using auto or decltype, what type actually the compiler is inferring. This is
happening at the compile time, so at the run time you have no way of, you have no way of
executing and knowing that, so C++ also does, C++ 03 also does lot of inferences in terms of

implicit conversion, templates and so on.

C++ 11 in addition is inferring for auto and decltype, the question is how do you get to know
that. Unfortunately, the compiler does do the inference but there is no support to let that infer
type known to you, for the simple reason that the compiler's job is to translate it to a program
which you will execute. Compiler is like a service provider, it is not supposed to give its

internals to you. So, how do you actually know the type that has been inferred?

One way could be you can use your IDE, the debugger, particularly run the program and do a
break point and at the debugger you can see what is the type, debuggers usually give that
information. This is clumsy, as well as the difficulty is you will be able to do this only when
your program compiles. Suppose you need to know the type that has been found by auto; that

has been inferred by auto or decltype.

And because your program is not compiling, it is saying that there is some error, so how do
you get to know that? So, there is no standard way, but | have given you here two possible
hacks that you can use and | have given the references software, these are been discussed at
greater length, one is you can just declare a template, but not define it. So, it is like a forward

declaration.

You say knowledge type is a template of with the type parameter T, but you have not said
what is that class is. Then suppose you have an array int arr, how do you get to know its type,
its type is int [3]. So, what you can do is you try to instantiate the template with the decltype
of arr. So, arr is an expression because it is a variable, it is an array of size 3 of int, you do try

to do a decltype of that. This type you are trying to pass as T.

As you do that so you are trying to instantiate that template, but that template has not been
defined, so the compiler will not be able to instantiate the template. So, what will do? The
compiler will give a error. So, for example, this is, this error message is particularly from this

online compiler, you can try this out.

So, in the error message you will see that the type inferred is embedded because compiler is
trying to tell you that this is something which is wrong, so it cannot be, it is an incomplete
type it cannot be defined. Other, even simpler way to do this is not even trying to do a
template, but just do decltype(arr)::, say underscore, underscore is a name of a variable, any

variable name can start with an underscore.

Now, what will this, what does this mean? This, you are doing decltype(arr)::, which means
this is a type, so it is saying type :: something, so it is expected to give you a class or an
enumeration type, type :: syntax basically means that, but there is nothing that actual type is
int [3] and it is not a class, it is not an enumerated type, so the compiler will not be able to

interpret this particular statement that you have written.

So, the compiler gives you an error, it says, ‘decltype evaluates to’ and that is what you
wanted, to know what is the type that decltype is inferring, which is not a class or of
enumeration type, which is a very quick way | always use it to know what is the type of an
expression that is being inferred. You can use it in any context, it is a very nice one-line hack,

which will give you the information through compiler messages.

(Refer Slide Time: 23:30)

sl and te . N

decltype: Determining compiler-deduced types

o We may akso use typeid operator to know the type
o Not a good idea as typeid is meant for dynamic type
o The name of type retured by typeid s encoded

#lacisde Gitsfstdcse >
O MT 3SE
usisg sasespece 8td;

Of course, you can use typeid operators, operator also, we have talked about typeid operator
during dynamic polymorphism, but it is not a good thing to do because it is meant for
dynamic type, but you can still apply typeid on anything. So, if you do that on a, so this is
your original variables, so what you need to do is typeid pass the expression variable name
and then do dot name typeid returns your structure so dot name has the name.

So, for x which is an integer you get as i, c. Now, if you try to do this on vector which are
basically having these types you get these kind of strings, which are compilers own internal
representation of the type that the entire thing it means. So, by the typeid you can get the
type, but it is in a format that is very, very difficult to decode and it is compiler dependent,
use a different compiler you will get a different coding. So, typeid method to know, type is

not actually useful, you have to use one of the two hacks that | have just discussed.

(Refer Slide Time: 24:52)

PP ANl te

rqjs! Suffix / Trailing R T
: + duifix [Trailing Return Type
==

Suffix / Trailing Return Type

L Jeclaration, cpprelerence con
® Want t aato”, cplasplus com

Now, let us using auto and decl, let us look at a very interesting feature that C++ 11 has

introduced called the suffix or trailing return type.

(Refer Slide Time: 25:00)

PPt andte . v

',é" Suffix / Trailing R T
: + Suffix / Trailing Return Type
L3

o Wo really need decltyps if we nead 3 type for somathing that & not a variable, such s 3

return type Consider

/f?luv\':luu T, class @ "/\
{777 el { rwturn(xey) }
_/

o How to write the return type? It is the cv;\gc\@— but how can we say that? Use decltype?
tasplatecclangs T, class
decitypolxey) maliT z, Uy) { return xvy; | 5 £ x

o That won't work because x and y are nat in scope So

tesplatecclaza T, clas: ©
oo {Ue) (0}) mal(T 1, Uy) | return xey; |}

{docitypes(Te)

¢ Put the return type where @ belongs, after the arguments

template<class T, clas: @
wato ml(T 2, Uy) -> dacleypelzsy) { returz xoy;)

We use the notation a0 to mean return type to be deduced or specified Later

€ B i .‘i

LS /

alling Return Type

o Wo really nead decltyps if we need 3 type for somathing that % not a variable, such 25 3
return type. Consider
tesplate<class T, class ™
1{%

177 muldT x, U y) [retum zoy; }

o How to write the retum type? It is the type of xoy — but how can we say that? Use decltype?

TR
Uy {rnum xvy; | e t t X mady
o That won't werk because x and y are oot in scope So

{decltypes(Te) 1, Uy) | return xey; |
¢ Put the return type where 2 belongs, after the arguments

tesplate<class T, clase ¥
wavo ml(T x, U y) -> dacleypelzey) { returz yoy;)

>

We use the notaticn sato to mean return type to be deduced or specified Later

ko 3 4] I

| L B /

alling Return Type

Wo really need decityps if we need 3 type for somathing that % not a varabie, such 25 3
return type Consider

tesplatecciass T, class @

177 muliT x, U y) [retum zoy; }

How to write the returm type? It is the type of xoy — but how can we say that? Use decltype?

tasplatecclngs T, class
3 (T x, Uy) { roturn xvy; | ? t ¢ fxmdy

That won't werk because x and y are oot in scope So

tasplatecclas

1, Uy) | retum xey; |
e

Put the return type where & belongs, after the arguments

tesplate<class T, clase ¥
waze ml(Y 2, U y) -> dacleypelzey) { returz xoy;)

>

We use the notation sato to meas return type to be deduced or specified Later

ko, 3 4] W

PPl sand te

alling Return Type

We really need decityps if we need 3 type for scmathing that i not a variable, such 25 3
return type. Consider
tesplate<class T, class ©

suliT 2, U 7) [retumm zoy; }

How to write the retum type? It is the type of xoy — but how can we say that”? Use decltype?

tasplateccing T,
decitypolxey) mliT z, Uy) { return xvy; | P ¢ f.xmdy

That won't werk because x and y are oot in scope So
tesplatocclazs T, clas: ©
types T}

Put the return type where bel after the arguments

{dec J(O)) ml(T 1, Uy) | return xey; }

tesplate<cldss T) cla
wite ml(T x, U yX -> daclcypelney

{ returz 1oy;)

W& use the notaticn 3uto to mean return type to be deduced or specified Later

.. 9§ i} .

The question is when do we need a decltype? When we have a variable we can do auto on for
that, but when we do not have a variable, then I need to use decltype. | cannot do an auto. So,
what is that, when we need a type where there is no variable, when that variable is

temporary?

For example, in a return type. So, let us say | am trying to define a multiply function of
template type parameters being T and U, the expression is x times y, the question is what do |
write here. In terms of T and U | have to be able to write the return type, but I do not know
what to write, so | know the type to be returned is the type of x times y, type of x times y.

So, | say, ok, not a problem, | will just use decltype on this. decltype should tell me the type,
so | will do decltype x times y and | will write the function. This will not compile. Why will
it not compile because the compiler takes the code from left to right, so it comes across x
before the scope of x has actually started, scope of x starts, type is defined here and the scope

starts here. But you need to know X at this point, similarly you need to know y at this point.

You cannot know that, there is no way to know this, so because of the scope problem you
cannot use decltype directly there. So, if you are a very, very smart programmer you might
want to do something smart to get there. What you said ok, | can always use O, it is a
constant, stands for the null pointer and cast it to, decltype cast it to T*, so | take 0, which is,

which does not have a type or it is an integer type, | cast it to T*.

So, | get a pointer of T type, similarly, | get a pointer of U type. | dereference | will get a
object of U type, | dereference T type I will get an, | dereference the second one | get a object
of U type, so if | mark it well then this is an object of T type, this is an object of U type. | am
doing the same thing as this, but | am not using the name x and y, and then | multiply, this is

a multiplication, this star is a binary multiplication.

If 1 do that, certainly I will be able to get what is the type of x times y, but certainly as you
can see this is a very, very clumsy and error prone way of doing it and in general it is difficult
to write this kind of expression. So, what suffix return type, a trailing return type does, it

pushes the return type to the place where it actually belongs, that is after the function.

So, what it does is in the usual traditional return type position you just write auto that it will
be deduced, and then after the function header and before the function body with an arrow

you put the return type. This is available in general. And in that you say that the return type is

decltype of x into y. Now, the advantage is X is already in the scope, Yy is already in the scope,

so x and y are defined symbols their types, so you can deduce.

The compiler can deduce the decltype, the only thing is you are placing the return type after
the header, not before the header, before the header you just have a placeholder to say that |
want the compiler to deduce this. So, this is what is called the suffix or trailing return type

mechanism by which you can let the compiler deduce that.

(Refer Slide Time: 29:29)

L /

'ré" Suffix / Trailing R T
: « Suffix / Trailing Return Type
=

o The suffx syntax is not prmariy about templates sad type decction, it is mally about scope

Frect u;l

struct Liak . T |
Linke erase(Links pi; t P]

wite List:zerase(Linke p) -> Linke | /» |] Link

o To declare objects, decitype can replace auto, but mors verbossly

o Only dacltype solves the template-return-type problem im C+411 (by Perfect Fornarding)
o suto is for everybody decltype is primarily for template authers

pPolsanste . L

Suffix / Trailing Return Type

¢ The suffx syntax is sot prmariy about templates sad type deciction, it is mally about scope
strect List |
struct Liak { /+ o |
Linke erase(Links p) t 4 P

List: :Lizke List::erase(Licke p) | /» o)
o The frst List:: is macessary only because the scope of Liat s not entered until the second
List:!, Batter
wizo List:zerase(Linke p)'-> Linke | /o o) fla Link
Pt~ el i e s
o To declare objects, decitype can replace auto, but mors verboszly
prd:vectorcetd: iatring vs;
Mo § o= ve bagind)
secitypelve.bagind)) § = vs.bagial);
o Only decltype solves the template-return-type prodlem im C-411 (by Perfect Forwarding)
o auto is for everybody decltype is pimarily for template authers

o€ 4] Wi 1

And actually if you think of it this syntax, this suffix syntax is not necessarily about templates
it is about scoping. It is type deduction in a scope rule, because scope is what you are not

getting, for example, if you have a list of link elements and if you have a member function

erase that takes a link pointer and returns you a link pointer then outside of the class, if you

outline the body of this function, then you have to write it like this.

You will have to write List::Link*, and then List::erase. Now, this List::Link* is required
because you get to know that this is a member function of erase, the member function of List
only after you have come to this point, but you need to know about Link* before that, so you

need to write it twice.

Now, what you can do, you can just write an auto here that is you are not writing this, you are
just directly writing the member function. So, you write auto, because this is necessarily the
return type and then you put the return type as a suffix pointer Link*. So, there is no specific
qualification for the Link that you need because you will be able to deduce, compiler will be
able to deduce that from the suffix notation itself in the auto. So, this is how the decltype
specifically help you in doing variety of different deduction.

(Refer Slide Time: 31:17)

B B N BN A BERR S O

Fa , ‘ 4
:ﬁ: Suffix / Trailing Return Type: C++14

==

o In C4411, we use suffix return fype to specify retum type of templates to be inferred

tesplatecclaza T, ¢ — FE0

wite ml(T x, U y)[-> decltype(asy) { returs xey;)
This is unclean because the return expression has to be repeated within decitype
o In C4414, suffix type can be skipped and the retum type i deduced dirsctly

tasplatecclass T, class ©
stto mul(T x, Uy) { seturn xoy; |

Fer compatibility, it still supperts the suffx retum type, Hence, the following is stil vabd

tesplatecclses T, clase @
wito ml(T x, U y) -> declegpe(zey) { retura xoy;)
R ——tig -

o C4++14, further introduces decltype| suto) for deducing the rutuen type by the semantics of
decltype and not the semantics of auto. Mo suffy retwrn type 5 allowed fere

tesplatedciaes T, clase ©
Sacitypelantol sul(T x, ¥ y) (returs zoy;)

o We peasent an exampde to highlight the differences between auto 3nd decitype| auto)

X X3 4] , i ﬁ‘

PRolsanste . L

Suffix / Trailing Return Type: C

o In C4411, we use suffix return type to specify retum type of templates to be inferred
tesplatecclaza T, clas: ©
Mite ml(T x, U y) => decltype(aey) { returs xoy; |
This is unclean because the return expression has to be repeated within decitype

o In C4414, st type can be skipped and the retum type is deduced dirsctly

tasplatocciass T, class ©

sato mul(T x, Uy) { seturn xoy; |

vy -,
For compatibility, it still supperts the suffix retum type, Hence, the following is stil walid
tesplatecclses T, clase ©
wito sul(T x, U y) -> declegpe(zey) { retura xoy;)

o C++18, further introduces decltype(auto) for deducing the ruturn type by the semantics of
decltype and not the semantics of auto. Mo suffy retwn type s allowed here
tesplatedciasa T,
gacitypelanto) sul(T x, ¥ y) (returs xoy;)

class ©

o We present an exampde to highlight the differences between auto 3nd decitype| auto)

9 D |

And you can, as you can see we can use it in C++ 11 as we have seen this, we can use it in
this form. When you come to C++ 14, you get something which is even more interesting.
You can, the suffix type, this suffix type specification if you see, the only problem is it has to
write the return expression twice, but then the compiler knows the return expression. Why do

| have to write it twice? The compiler can generate this entire part itself.

That is a simple common sense. So, C++11 just allows you to write auto, it is like any other
function that you write, just you can write auto, of course, for backward compatibility with
C++ 11 it will also allow you to use the suffix return type. C++ 11 introduces another, which
is decltype(auto). So, you can write decltype(auto) also in place of just auto. But if you use
decltype(auto) then you will not be able to write the suffix return type because it does not

need a backward compatibility, decltype(auto) was not there in C++ 11.

(Refer Slide Time: 32:36)

)

teaplatetypasane T decitypel

template<iypasane T> decitypelanto) fochar(Tk §) { returs t.valuel); }
—_— e T

PPt and te . L0

Trailing Return Type: C

ase T> actok BariTe t

{ retezn t.oalsa(}

groadoe o t.valae()

Iraies tonlu()

doc

) feckar(Tk t) (¢

t sadnl) (/ /
strace A (p bank valend) [returs 8)) o

2 !
struct B § tvalael) [recuma 2 ;)}) 9
——

23; // e ervor: expressice

taeln) =

foalh)}

*er QrTor

i

| L B /

Trailing Return Type

{ sotazs v
B r——.

soe T> actok BariTe 1) { retess t.madw(}; |

Samzlataciyy
T —
groadoe (0 tovalual) valus
Lrales Lol Sealue

ypelaztol has & .

iot sainl) |

-

nruce

{ i) (st)]
strece B |

o)) [retum s ;)) ¥

faela) = N *ev qrvur: expressice evaliates

foalh) |

pPolsanste . L

Trailing Return Type: C

aCtypetase T> actok BariTe 1) | retess t.oadw(}; |
arialoe t.valsal)
Coanluel) sl

valaad)

pateciypesane D

iat saini) |
atract A (lon s

{1

SO0 QUTUrT eIpressice en

*er qrvor

inde

peveloe

€ 1] |

Pl anye

Trailing Return Type: C

eylatec
terplate

taspiatactypessoe T> actod SaciTe t) | retess t.oadw(}; |
groadoe (0 t.valual) valus

Lealue

2120

1

templatetypasane T :rlw}ql; 10) focher(Tk 1) { rw

ist saini) |

strace A (ot b .) [eeurss |)]

fimt [rettma s ; })
faela) = 0 #e0 qryar: expressice evaleates tu pevalis of tppe 1o
foalh)} proalce 1at

\/<uilv -N Ivalae of iny

‘S.h’,ti. SOF QITOTI ARRO
v

fostaria
fostarih)

€ 4] D ieed -“

Polsanste . L

Suffix / Trailing Return Type: C

proaloe

tsplatectysasane T auto F2e(T8 t) { retaen toalsel);)

tamzlatactypetsoe T> astok BaciTe t) | retess tooad(); |

t.valael) alue

tonluel) anlue

decl

' J daclispe
tesplate<iypasane T decltypelu

iat saini) |

oor qrror: actod alveye dednces ti & reference

! L Wi ﬁ‘

So, we will present a simple example to show what is the difference, here you have, | have
defined three functions foo, bar and foobar. Now, if you see here, then, first let us look at the
parameters, parameters are going to be struct a or struct b, both of which have a member
function value, this returns by reference and this returns by value. Now, the question is so in

each of this function | take t as a reference of type T and return this.

So, basically the body is the same. Now, how does the semantic differ? If | write auto& and if
| write decltype(auto), if I write auto what will happen, auto strips off all reference and all
that. So, if | try to do foo(a), foo(a) should return you a reference and therefore, you will

think that since it is a reference | can make an assignment to it, so | can say foo(a) assign 20.

But this is, this will be an error because auto will strip off the ampersand, will strip of the
reference it will just return a type int which is an rvalue to which you cannot make an
assignment, whereas if you do foo(b) which is doing, not trying to assign, foo(b) simply has

an int type, it applies that and forgets the temporary result, it is fine.

Similarly, if you try to do it on bar where auto has an ampersand, then auto will necessarily
put the reference in every case. So, now if | do foo bar(a) | will get a reference to int, | value
will be type of int& and it will be fine. But if | try to do foo bar(b), then | have a reference
and a reference without an initialization is not allowed, so | will have an error. In terms of
decl auto, decltype(auto), it will figure out what is the actual type. So, if you call it with a it
knows that the type is int reference, so it will allow it int reference, if you call it with b it will
figure out that the type is int, it will give you a type int and both of these will be correct. So,

that is the difference between using auto and using decltype(auto).

(Refer Slide Time: 35:26)

PP ANl te

BR < i
eW: oSuifix / lraling Return Type: auto
=

¢ Recommendations
O auto
> Use auto to retum 3 prvaive
> Use autok or const autok to reterm an Malue

¢ declspec(auto)

> Use declspec(auto) to wrte /

> Using decltype(auto), the return type is as what would be obtained if the expression
used in the f decltype

> Without decitypelauto), the deduction follows rules of ten

o Summary
[l {s 1
it wun T valie
|
ecliypeiant ar 1
iat x = 0; return (2); by refarence Tesuble
|
Sowrcn
Programmey & U 72 Frem In e

So, here are some common recommendations that | have put, you can go through that.

(Refer Slide Time: 35:32)

o Introduced following C++11 géneral features

> 3uto
o decitype
o suffix return type

And, so this brings us to the end of this module and we have introduced three general C++
features of auto, decltype and suffix return type. Thank you very much for your attention, we

meet in the next module.

