Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 45
C++ Standard Library: Part 3 (STL)

Welcome to Programming in Modern C++. We are in week 9 and | am going to discuss

Module 45.

(Refer Slide Time: 00:37)

Fa
- s+ Module Recap
1

o Learnt Standard Template Libeary (STL) with commoa components

o Learnt useful contasners and their use

In the last two modules, we have been discussing about C++ standard library. Specifically,
we took a look at generic programming. And in the last module we discussed about certain

common properties of STL and its use in terms of the containers, useful containers that we

have.

(Refer Slide Time: 01:01)

o Summarize containers in STL

o To take a look at a few important fibrary components

In the present module, we will summarize the containers in STL. Certainly, we are not going
to discuss each container at a depth as we did for vector or map, but we will summarize and
show you the commonality between them. And we also take a look at few important other

library components, we are associated for the use with the containers and even otherwise.

(Refer Slide Time: 01:29)

4

Here is the outline which will be available on left.

(Refer Slide Time: 01:35)

1 + Data Structures
i

L B O B AR B

Containers in C4

“
»
"o
el

Data Structures / Containers in C++

rP Al e

BB s inas ot
1 s Data Structures ontamners in C+
=

o L Svack, several other data structures are available in C++ standard library
o They are ready-made and work fike 2 data type

o Vored

types of slements can be used for C++ data structures
o Data Structures in C++ are commonly called Container
o A container is a halder object that stores a callaction of other objects (its elements)
> They are implemented as class templates aowing great flexbility in the types
supported as elements
o The contamer
manages the storage space for its elements
» provides member functions to access them
> QUPPONS iteratars - reference objects with smilar properties to ponters
o Many containers have several member functions in common, and share
functicnalities - easy to learn and remember

So, let us try to take an overall view on the data structures or containers in C++. So,
containers are data structures in C++ standard library. They are readymade and they will
work completely as a data type. That is a very very important thing that they are not just data

structures as in C but they are data types.

So, anywhere you can use a built in data type, you can use a container. So, that is the kind of
parallel that happens and the varied element types can be really varied, including of course,
user-defined types, built in types and so on. So, a container is a holder of object that stores

the collection of other objects, depending on the underlying type.

And they are typically implemented as class templates which allow the great flexibility of
types that are supported as element. It manages the storage space, it provides member
functions to access and it supports iterators. Now, you know that supporting iterator is very
very important to use the container because that is the only way you can write algorithms for

the different containers, ok.

(Refer Slide Time: 03:03)

PP ANl e

Fanl 4 '
iﬁ‘i Data Structures / Containers in C4

o Data Structures in C++ are commonly called Containes
vector, 1ist and degue are Sequence Containers

o map,

unordared.nap {hash table) and une

array (language feature), string, stack, queue, priority.queue, and bitset

multinap, and nultiset are Associative Containers. Also

d_sat in

are almost Comtainers has array too
¢ %ack, queue and priority queue are implemented as Container Adaptors

» Container adaptors are not full container classes, but classes that provide a
specific interface relying an an object of ane of the container classes (such as
deque or 1ist) to handie the elements

» The underlying container is encapsuslated i such a way that its elements are
accessed by the members of the contsiner adaptor independently of the
underlying container class used

Now, there are containers are kind of classified in certain sub classified in certain ways.
vector, list and deque are known as sequence containers. vector you know, list is doubly
linked list. deque is double-ended queue; typically, I mean many people pronounce it as deck.
So, as in a queue, you can add at one end and remove element from the other, in stack you

add and remove elements from the same end.

In deque you can add and remove elements at both ends, so that is that is why it is called
doubly ended queue. But they keep the elements in a physical sequence. So, they are called
sequence containers. Then we have associative containers associative containers are those
like a map, where you have a key and a value associated with it. So, here in a sequence
container, you find out the value based on certain position in the sequence, either through
indexing or by traversing the list or by taking adding and taking out elements from deque and

SO on.

But in associative container, there is an association between a pair of values. So, given one

you find the other, so that is why it is called the associative container. And map is the most

useful associative container or the most useful container after vector which can associate any

key type with any value type.

Set is another which is a collection of value items which are unique. So, it just allows you to
have unique set of elements which is very important and you can do typical set algebra with
that. multimap and multiset are relaxations on the map and set where you have allowed
duplication of elements, like map will not allow duplication of key, but if you want duplicate

keys with different values associated with them to be present then you can use a multi map.

Similarly, you can use a multiset. In C++ we will see there is also things like or unordered
map which is basically hash table or unordered set because even though we do not say in
terms of the associative container, the underlying implementation of these containers do need
an ordering. And since they do need an ordering, the element type should be such that the
ordering should be possible, they should be comparable.

But in unordered cases you would not require that. And many are called almost containers.
So, primary of them are container adapters which are not total implementation of containers
but those are implemented on other containers with certain additional property. So, you have
stack in that, you have queue in that and you have priority queue in that.

These are container adapters. So, they have an underlying container which is not necessarily
always specified. And based on that, so that container gives you the basic container support.
But there are specific functionality that you implement in terms of the member functions in
the STL that gives you the stack component, queue component and priority queue
component. So, these are called almost containers, so is string. Because it is kind of a vector

but its element type is always character. So, it is a kind of almost container.

General arrays that we have in the language is almost container. bitset is where we keep the
bits is an almost container and so on. And in C++ 11, we will see that the standard library
will also have a component called array other than the language array. And that array is

different from the vector, we will see that one.

(Refer Slide Time: 7:29)

L 420 . 41

L

Containers in C4

IO 10 & SIIKT Semasrcs

aConind By Thar ponlice 1 The wegeence

Arrey s 2 10 ares of forndaire
Vetty / | ar
Douthe srded qonse”] D
) Fooward 3¢/

[T

e that can chaope v K¢

| comnacind on both sed

e, cone 25 3@y bowe! sty

VT [etase Jrawhare. Betation i Doth (irections

sdapted wih spaciSc protocoy of 2icem

T OF wack 7 [Uhderhing cortamer Is Gagee [O=at] of a8 spectind
AFO quese 7 Underhing cortarer is Gegas |dofauit) o 36 speched
Tty quam 7| URSarhiag Corarar 1y ywbar [SRAIL] o 3% Spacmd

wricrenced by thar key 5nd nat by ther sbsckite postico

TNy Jeach troes ax) canparable

| Unordeved et Jtores angae senerts I8 no PatiRar oroe
) | Unordened Mustiaar | Stoms elrments I 00 o with iy

| | Urordered Map | Steres < Ao valw> I o ander wie
lnordered Nudtimag | Stores < ey, il 1 no oder wes

So, this is a complete chart of the containers in the standard library. Just for convenience and
easy reference you remember my one slide summary principle. So, this is a one slide
summary of the containers that you have in C++ including C++ 11. So, those which are only

in C++ 11 | have marked them.

And what you can get to see is what is the class template for the each one. So, which
basically say what is the functionality that this particular container will have. And here are
some remarks that are available, like for stack the underlying container by default is a deque,
whereas for a queue it is also a deque, whereas for a priority queue it is a vector. But the
design is such that, if you want then any other type of underlying container, as specified, can
also be used for these container adapters.

Now, there are different properties, basic properties that | have tried to summarize here. So,
you have the sequence containers, three in C++ 03, two more in C++ 11, three container
adapters, four associative containers and four associative unordered containers in C++ 11. So,
this is the total set. Of course, you do not; from day one you do not start using all of them. It
is primarily the vector and map, then possibly list, stack, queue is what will be most of the

use that you will find.

(Refer Slide Time: 09:30)

Lize « allscazar< > clams

These are just showing you the template styles of these different containers in C++ 03. | am
not going through them, you can read them, study them. And the basic principle you have to
remember is of uniformity. So, do not try to remember anything but try to understand the

reason of why it is.

So, for example, if I look at say, map | am looking at map. So, class key obviously is the key,
this is T is a map type and | have a compare. Why? Because as | said, map is an ordered
container. To represent the map in the underlying way, it is using a binary search tree which
needs ordering. So, | need to have an ordering on the key value. So, | am using the Less

functor with the key value type for doing this.

(Refer Slide Time: 10:34)

What will be the allocation? Allocation is allocator is basically the underlying container that
you use. So, this is the type of the allocator that you will have. It will have a key, constant
type of key and the map type paired and allocation will happen on that. So, once you
understand this, you will you will understand that it is relatively easy. You do not have to

really remember anything but things are done in a very very uniform manner.

(Refer Slide Time: 11:10)

For example, in case of container adapter stack, it is saying that the class container, the
second parameter is class container, which is defaulted by deque T. So, if you just say stack

int, if you just say stack int whatever you specified you have specified this T as int. So, your

stack will actually be implemented, you will get a code that is implemented on deque<int>,

deck of integers.

But if you want something else, you can pass a second parameter to your template
instantiation, of what type of underlying container you want and you will get that type of
container. So, that is the kind of flexibility that STL containers give us. That is the kind of

uniformity STL containers give us. There is a kind of power STL containers give us.

(Refer Slide Time: 12:21)

| Tor the dedaust Mo
Corwerlise 10 coeasit

“Yarglate paraneter 1 [
Targlte

e e
Tarolte pramster aTpase Celaslts %0: Iw
| Terghte parameter Caspare | cefavits to. less

So, these are the different member types. value_type you have seen already number of places.
allocator_type is what kind of allocation will happen. Then there is reference type,
pointer_type and so on. iterator_type we have seen, key type, size_type. So, this is typically
what. May be some containers will not need to define some of these but most containers will

define most of these member types.

So, you know conceptually, that over all these 10 containers, it is all uniform in terms of. So,
these are the types that you can use the container type name vector<int>::value_type or, so,
you have that type you will be able to see what is the value_type that you have, what is the

size_type that you have.

(Refer Slide Time: 13:16)

PRl ansfe . i

P ¥ ,
iﬁi Operations in STL Containers

Coming to the operations, | have tried to do a uniformity summary. I was looking for it; I did
not find it anywhere. So, I built it from the manual. So, on left you see the containers and
these columns are the types of different operations that are available. So, one is capacity

related.

So, vector has three capacity related members resize, capacity and reserve. Whereas deque
has only one. List or set etcetera, they do not have anything. Whereas, if you look at say
modifiers, you will find this as a push_back, pop_back that is you can add at the end, take out

the, this is push_back, pop_back, but deque is at two ends. So, it has push_front, pop_front.

List is at both ends. So, it has all of these. So, assign is available for all of them. You can
assign each one of these data structures. So, you can see that there are different, if you just
think conceptually as to what the data structure should give you, you will find that those

operations would be available appropriately in that STL container type.

So, here that is some more of these, some we have already seen. And like if you look at the
container adapters, you can see a very very uniform design. All have empty, size. Stack has
push, pop. Queue also has push, pop. Priority queue also has push, pop. In addition, to keep
to the naming conventions used in queue, it also has front and back. So, these are different

kind of operations that you can think of.

(Refer Slide Time: 15:20)

Ps Al fte

K ‘
iﬁi algorithm Component

algorithm Component

[L—T e, Pty P Ma |

So, kind of that was a summary picture of what you have in terms of containers in STL.
Before we close on STL and the standard library, let me just take you through some of the

other components like algorithm.

(Refer Slide Time: 15:31)

L O B AR B

F
‘tﬁ‘i algorithm Component

o The header <algorithn> defines 3 collection of functions especially designed to be
used on ranges of elements
o |t provides STL-style algorithms
o Takes one or more sequences
» Usually as pairs of iterators
> Takes one or more operations
Usually as function objects
Ordinary functions also work

o Usually reports “fadure” by retuming the end of 3 sequence

Prgrammg » Medbes Pt Py (i e |

Algorithm is a component a header which defines a collection of functions which are
designed to work on a range of elements. Where do you get a range of elements? By iteration.
So, that that is how algorithms can work on any container. So, it is naturally STL style. So, it

takes one or more sequences and one or more operations and performs.

(Refer Slide Time: 16:05)

rRP s ands e

K _
iﬁi‘ algorithm: Useful algorithms

r = find(b,0,v) r pomts to the first occurrence of ¥ m [b,e)
r = find.if(b,8,p) r ponts o the first eement x in [b,8) for which plx)
x = count(b,e,v) % is the sumber of occarrences of vin [b,e)
t = count {f(b,e,p) % is the mumber of elements in [b,0) %r which p(x)
gort(b,e) sort (b,8) using <
gort(b,e,p) st [b,e) using p
copy(b,e,b2) copy [b,0) to [b2,b2¢(e-d))

there had better be enough space after bl
unique_copy(b,e,b2) copy [b,e) to b2, b2e{e-d))

but do not copy adjacent duplicates
perge(b, e b2,82,1) merge two sorted sequence [b2,02) and (0,8

into [r,r+{e-b)+({e2-82))
r = equal.range(b,a,v) ris the subsequence of [b,s) with the value v
[basicadly 3 binary search for v)

equal(b,e,b2) do all elements of [b,e) and [42,b2+(e-b)) compars squal?

[—— T e Farts Prp e 4

Naturally there is a large number of algorithms available but some are like find, is b, e, v
written in short form so that | should a lower end notation also I can give that. But it is quite
obvious, b is the beginning iterator, e is the end iterator, v is the value. So, you are doing a
find you have already seen that. Find b begin, end predicate. Similarly, count; it counts how
many are there of that value v and so on. So, find, count, sort, copy, unique copy, merge,

these are some of the very common algorithms which will be available in this component.

(Refer Slide Time: 16:51)

The copy is avadable in <algorithe> sad it

o Copies the elements in the range (first,last) into the range beginning at resslt

o Returns an iterator to the end of the destination range (which points to the elsment following
the last elemant copied)

o The ranges shall not overlap in such a way that Tesult points to an element = the range
[first,last)

teapistecclass Iaputiterstor, class Dutputlitarator>
Outputlterat (Jspetiterator first, lapetiterator last, Cutputlterater reaplt) |
RITe (Tirat [S — e
STeRult = ofiyet; SrEare & afirgnee

}

Just to see an example say of copy. So, we can copy the elements from a range of first to last,
to another iterator starting at say result. So, it has to take two iterators, one is the input

iterator from which you are copying, and another is the output iterator to which it goes. So,
the output iterator finally is a result that you return. So, in the input iterator you get the first
and last, output iterator you just have the result where you will copy, the destination. Quite

simple as to how the code will look like.

(Refer Slide Time: 17:32)

sl and te

copy: Copy from list to vector

It is you do not need to write this because it is available in the algorithm component. Just
include that you will have a copy. So, here | have defined a list of int and a vector of double.
And | have made the size of this vector same as that of the list because | want to copy in that.
So, | am copying elements from a list of integer to a vector of double. And just see how easy

itis. First I will check if the vector is large enough, if it is not then, certainly, I cannot do.

And then copy is just a one-line code. This is the beginning iterator of list, ending iterator of
the list. So, this is my list. And this is the beginning iterator of my destination output iterator,
the vector, where | will copy. So, once | have done that, it is all available. | can assign this to
get the final iterator if | want to use it. | have directly used the vector itself and I have sorted
it using the sort function which is also available in the algorithm. So, once | do that naturally,

you can see that how easily things can be copied and sorted using the algorithm component.

(Refer Slide Time: 19:04)

numeric Component

o The hesder <numortc> defines 3 set of algorithens (as function templates) to perform
certain operations on sequences of numeric values
o Due to their flexibility, they can also be adapted for other linds of sequences

o The component contains the following algorithms

Accumulate values in range

Compate adjacent difference of range
Compute cumulative inner product of range
1. Compute partial sums of range

lota Stoee increasing sequence

There are very interesting numeric component available which can also be used in semi-
numerical context. So, the numeric header, basically, had in C++ 03, it had 4 different
algorithms. In C++ 11, one more has been added. So, of these | will just take example of two

and show you.

(Refer Slide Time: 19:31)

The accumlate is avadable in <suseric> and it

o Returns the result of accumadating all the values in the range [firat, last) to init
o Uses add a5 defadt operation. but 3 different operation can be specfied a5 binary_op (Binllp)

tesplate<class 1o, class T> T accumulatelln firet, Is last, T 1mit} |
=l

tenplatecciage In, cless T, class 3ialps T accesulatells first, Is lase, T Laie, Bisdp cpl |

.......

First is accumulate. | really like this because what it does is, it basically you can think of that
I have a collection, I want to take the elements and add them. So, it simply does that
accumulate. So, the iterator class as input, the element type to add. So, your actual function is
the first and last iterator and the initial value. Because you need to, you are accumulating, so

are you starting with 0 or starting with something else, so that tells you the element type.

And this at least, this is your iteration loop which is by now you know, it is almost common
across all different algorithms. This is the way to go to the next element, this also is known.
So, this is my accumulation code. You take the element *first, add it to end, put it back to

end. So, that is a beautiful logic.

(Refer Slide Time: 20:43)

Seand te . L

r‘" U
iﬁ‘i accumulate: Sum the elements of a sequence

Now, before getting into the next one, let me just show you the use of this. So, this
accumulator, with this accumulator | have created a vector and | accumulate, begin, end. |
have passed 0 as the initial value. So, starting from 0 all will be get added. 1, 2, 3, 4. Result

is, if you print sum, you will see 10.

| have another vector of double and | have written a function which takes a vector of double.
It takes an int pointer and it takes a number. So, just to show the different ways of working,
so in the vector of double, | pass vd, in the int pointer | pass this vector by the address of its
0’th element. This address of it is 0’th element. | pass it here. So, it is coming as an integer

pointer converted and then how many elements are there in that vector.

(Refer Slide Time: 21:50)

o

r‘"! PR lsandste .
iﬁj accumulate Sum thE elements Of d Sequence

Sinclede Clontren
Finciade Crectsc)
Finsiats <y S Al
Llay tasess.
vold f{vectarciochlond vd, Lxte p, Lat gl |
decble san » acomelate(nd beglal), wi.eadl),
accomulate! 1, 0}] B
sl * accumilate por, loagill)
it pra, 4.0 7
d ——
decble ;1
M * aTEala 1.tegla d.ex u
woiardipt | 3 4}
3t wm * wcumalate(y, egin{], v end()
widasd e|1b }
v, &l steell)y
[3 [} s

So, as | do that inside this, | can accumulate. If | pass 0, it will accumulate in the integer way.
If 1 pass long zero, it will accumulate in the long type. If I pass 0.0 it will accumulate in the
double type and so on. So, all these are possible. I can also pass my accumulation variable
and then reassign it here to get the accumulation done. So, you can accumulate everything.

That is a nice way that you do not need.

(Refer Slide Time: 22:29)

accuomlata is avadable in <sugeric> and it

o Returns the result of accumudating all the values in the range [firat,last) to init
¢ Uses add a5 defasdt operation. but 3 different operation can be specified 35 binary_op (Binllp)
/ \
/
v ; . : (&Y
tesplate<class lo, class T> T accumulate(ls firet, Is last, it i1
uiile (fir

But, the more interesting part of this story is that you can actually, | have actually come back

one slide. You can, if you notice here then this is just an operation of addition being done. It

is an operator. So, with all our notion, I can say that this is nothing but operator + working

with init and *first.

So, it is possible that I will not hard code this operator +. Rather, I will pass it to this
algorithm as a function object. So, | put another parameter, binary operator. | put another
parameter to this accumulate function also. And | pass an op which is a binary function object

which certainly has to return an appropriate type of value which is same as T.

So, then this generically is changed to op applied onto in init and *first and that will do the
job. Now, if | pass operator +, of course, | will not, because | have the default accumulator. If
| pass operator + then | will get the first behavior, otherwise, | can pass anything. | can pass

an operator multiply. Then the values will get multiplied as nice as that the same code.

(Refer Slide Time: 24:21)

Pls g te .

P " "
Lﬁ;‘- accumulate: Multiply the elements of a sequence

fizclode <iostreas>
#inclods <list>
fiaclude <nameric> accumslate

fiaclede <functicnal> sultiplies
using naspacs avd;
’
v /
void #{liatcistok 1d) | / v
tot product = accusulate(ld. begin(), 1d.end(),

3 Y
;gl:;-'.u:v@)‘ 1); /) mitiplies
b

oet << product << endl;

int main() { /

Hawcint> 1« (1, 2,3, 4)1 V

So, let us go and see this. So, | have this accumulate. This is a list of list | of integer 1, 2, 3, 4.
| have defined and then I am calling this function with this list. | have begin and end iterator.
| am initializing with, actually I should initialize it with 1. 1.0 is not needed. Initialize it with
1. And then what | pass as an operator is multiplies. Multiplies is a standard function object
which is a binary function object which takes two parameters of the given type, multiplies
them and returns back the result. So, it is a binary multiplying operator. So, | pass the

multiplies. So, what will happen?

(Refer Slide Time: 25:22)

r"" - sbeansfe . s
iﬁi accumulate: Multiply the elements of a sequence

fizclode <iostreas>
#inclods <list>
fiaclode <pumericy accuxslate
fiaclude <functional> // sultiplies
using zamespacs atd;

void #(listcizt>d 1d) |

ot product = accusulate(1d.begin(), 1d.end(),
1.0,
mltipliescizt>()); // mltiplies

cout << product << endl;

\ -
int main{) | A MA
lstcine> 1 = (\“ ?ria’ll.',l.
(W, VAVAY.
11}
|
* € [} w e

Now, instead of adding the elements, as they come from the iteration, it will multiply the
elements. So, it will multiply 1 with 2 then with 3 then with 4. So, the result will be 24. So,
these are, and | mean this is just a simple illustration. You can write your own functor to pass

here as well and do anything as you accumulate the values.

(Refer Slide Time: 25:52)

L 50 .50

P . :
'&ﬁ‘- accumulate: What if the data is part of a record?

stract Mecord |
L Wity -
dochle it friee; —

I

Goiale price(dechle v, coont Necoydh f) |

tetsan ¢ ¢ ramit peice ¢ rnite
} —_———f—'—v/-—\

d f{conat wectorClacosdad wr) | ’

deehle tatal = azeesulatelss bagiel), vr aed(), 5.0, price);
—— ’,|
|
/
/
vold f{comat wactorscoed) '
deable tatal = sccamlatelvr.begisl), vr.eedl], 4.0, $
price
¢ f . wni—

The accumulation can be done in terms of components of records also. Suppose you have a
record which has unit price and number of units and you want to see what is the total price,
total value of the collection. So, for every case, every record in that collection, you have to
multiply the unit price with the number of units and add them.

So, it is not a matter of one operation but it is a multiplication then addition. So, you can
define it in terms of a function and pass that function pointer. Just remember, anywhere you
can pass a function object; you can also pass a function pointer. Or better still you can define
a lambda which is a function object.

There is an anonymous function with the same code as this one and pass it to the accumulate.
It will accumulate the entire value. The advantage of doing this is, of course, since this is a
simple code, the advantage of doing this is whoever is reading it can clearly see what is being

done. Very understandable. An anonymous function, we will see more in C++ 11.

(Refer Slide Time: 27:22)

The inner producs is available i <auseric® and it

o Computes cumulative inner product of range

¢ Returns the result of sccumedating fnit with the inner products of the pairs formed by the
elements of two ranges starting at first! and first2

o Uses two default cperations (to add up the result of multiplying the pairs) that may be
overridden by the arguments binary.opl (BinOp) and binary.op2 {Bin0a2)

clase In2, clasa T T tmmer prodactilno first, [a last, [x2 :::’:t: T 1att) {
- ly TNy
:1:‘{; sfirst Xﬂ.'-'. lI

PR 417 T —?CU

At

So, these are some of the different things that accumulate can do. Let us look at another inner
product. Inner product is something in school, high school you used to do in a vector inner
product. That is you are given two vectors and you do component wise multiplication and
then add them.

But now for us, it need not be a vector because everything through the iterator can be thought
of as a sequence. So, it is a corresponding elements of the sequence, those will have to be
multiplied and added together. So, an inner product component, inner product will, algorithm

will take an iterator, first and last of one sequence, one iterator in.

Then it will have another, the other one, the other vector or other list that you are doing inner
product with. You do not need the end of that because when this ends that has to end because

unless they are of the same length inner product is not defined. And the initial value. So, kind

of the price, unit price, price part we were doing, can be directly done by this. So, you get the
element pointed to by the first iterator, get the element pointed to by the second iterator at
two different vectors, multiply them here and add accumulate. So, this gives you the inner

product.

(Refer Slide Time: 29:03)

2iaclode <lostreas>
fizclode <vector?
#inclods <mweric> // laner product
using zamaszace atd;

int main{) |
vector<double> dow price = { B1.55, 34,89, B4.45 }; \/

J
vector<donble> dow_wedght = (58843, 2.4800, 3.B30); /

dothle dj_index = ianer_product(
fov_price Sepin(), dov price.end(), dow_weight begin(l, 0.0);
B —

<< d)_iadex <C eadl;

coet

¢ € ! BRI

So, you can see. There is a very naive example | have given. These are different prices and
there is a different weights of the index and so you dow_price.begin, price.end and

weight.begin and find the inner product to see the entire value.

(Refer Slide Time: 29:31)

o Computes cumdative inner product of range

¢ Returns the result of sccumedating fnit with the inner products of the pais formed by the
elements of two ranges stacting at first! and firstl

o Uses two default cperations (to add up the result of multiplying the pairs) that may be
overridden by the arguments binary.opl (BinOp) and binary.cp2 {Bin03a2)

tempiate<class In, clase In2, clase 10 T fmaer prodactiln first, Iz last, [a3 firsd, T fatt) |

Interestingly, like you do for, like we did for accumulator, we can generalize the inner
product also. But in inner product, there are two operations. What you are saying? You have
sequences; you are taking element component wise, each | element, multiplying them and

then adding them.

So, this is operator +, init, init then the becoming cluttered, let me write clearly. Operator +
then init, then operator *, then *first, then *first2. This is the meaning of this expression. So,

there is nothing special about operator + and operator *. I can pass two functors.

(Refer Slide Time: 30:38)

The inner product i available » <ausaricd and it

¢ Computes cumdative inner product of range

® Returns the result of sccumedating Snit with the inner products of the pairs formed by the
elements of two ranges starting at first! and first2

o Uses two default cperations (to add up the result of multiplying the pairs) that may be
overridden by the arguments binary.opl (BinOp) and binsey.op2 {BinOgp2)

tesplate<class In, clase 122, clase T5 T tmaer prodactils first, Iz last, [x3 fistd, T iatt) |

. oparTatoce

So, the generic form of this actually passes two binary operators, two binary function objects
and does this as a total generic binary operators of any two types. So, you can do inner
products. For example, | can define, interestingly, | can define that | will take element wise
add them and then added value I will multiply, whatever that means. So, anything of that sort
is available. So, you can see the power of STL. It gives you; it is a lot of flexibility and

generality of what you can do with the data with the containers.

(Refer Slide Time: 31:31)

X ad B

r"" LI B)
tﬁi functional Component

functional Component

o The header <functional> defines a set of useful function objects
o These are typically used as arguments to functions, such as predicates or compansan
functions passed 1o standard algerithms
o Some useful standard function objects are
Binary
plus, ninus, pultiplies, divides, modulus

0, greater, less, greater_ equal, less\e‘?a]

has heavy use to function objects where the foflowing will be dsucssed

s functicn, bind, cref, ref, zea. fn
e mtd

The functional component is another very important which, basically, defines a set of
function objects. So, these are used typically as arguments to functions such as predicates or
comparison functions and so on. So, there are many useful function, standard function objects

like plus, minus, multiplies, we have just now we have used, multiplies, divides, modulus.

So, the basic arithmetic operators, the basic your comparison operators, logical operators,
those are available in terms of the functional component. So, when you are making use of
STL algorithms, you can make use of these function objects to ease your task. You do not
have to write them. But a much bigger value of the functional component comes in terms of
actually building up bigger components, more powerful components in terms of building up
closure objects and so on so forth.

So, there are some like, there is a template called function which allows you to define the
prototype of a function having certain input parameter types and a given result type. So, you
can write something like function int. I am sorry. This is function. This is you can write
something like this. Which will mean that this is the type of a function which takes two

integers and gives you an integer result.

We will see more of that. We will see ways to bind variables, parameters to functions and so
on. So, these are heavily used in C++ 11. So, | though at a basic level the support is also
available for C++ 03, I chose not to discuss them here because it would be better to discuss it

once when we discuss C++ 11 standard library as a whole.

(Refer Slide Time: 34:16)

»

'ri}“ Module S
tld: Module Summary
==

o Summarized containers in STL

o Ghmpsed at algorithe numeric, and functional fibrary components

So, that brings us to the closure of the discussion on the C++ standard library. | have
obviously, while | have tried to summarize the containers extensively, because | feel the
containers, iterators and associated algorithms are the most useful. But we have been able to

glimpse through only some of the algorithms and functional, particularly, partly.

And there are number of other, even besides IO related ones, are a number of other
components as well, which are less frequently used. Once you learn the style of STL based
standard library use, | think any other component you will be able to learn by yourself very
easily. Thank you very much for your attention. This brings us more or less to the closure of
C++ 03 discussions. The remaining three weeks, we will really spend on the modern part of

C++ which will be C++ 11 and at times C++ 14, C++ 17 and so on.

