
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 44

C++ Standard Library: Part 2 (STL)

Welcome to Programming in Modern C++. We are in week 9 and we are going to discuss

Module 44.

(Refer Slide Time: 00:34)

In the last module, we introduced the standard library overview of C++. And most

importantly, we have learnt the fundamentals of generic programming, how to do Meta

programming in C++ which will be the backbone for the standard template library.

(Refer Slide Time: 00:54)

So, in this module, we will understand the standard template library better, and specifically,

take a look at some common container or data structures and their use.

(Refer Slide Time: 01:06)

So, this will be the outline and will be available on the left panel.

(Refer Slide Time: 01:12)

So, first let me formally introduce STL, Standard Template Library and it is customary to call

it the STL. You will soon realize why.

(Refer Slide Time: 01:23)

So, STL is a part of ISO C++ Standard Library. STL as such has four components;

containers, iterators, algorithms. We have talked about these three and functions which are

basically function objects. So, these are the primary components of STL, but we do not say

that STL is such a, you know, well-defined subset, because we will see the use of these

components, in turn, in almost every other component of the C++ Standard Library.

Now, the STL is mostly non-numerical. There are only four standard algorithms that

compute. These are the four standard algorithms. There is a component called numeric which

does that. It can handle textual as well as numeric data. For example, it can most of STL can

work with say, things like string or user defined data type. So, it works with built in data type,

user defined types, data structures and so on so forth.

(Refer Slide Time: 02:30)

This amazing piece of the library is an outcome of about 15 years of research by this great

computer scientist Alex Stepanov, who offered it to the standards committee and was

subsequently adopted in very well in C++ to make things most generic, most efficient and

most flexible.

(Refer Slide Time: 02:57)

Now your question would be that, is the ISO standardized STL or C++ standard library? Is it

the only one that exists in the world? The answer is, of course, no. There are several other

implementations of the similar ideas of standard template library. The most common being

Boost, which is an open source, free peer reviewed, portable C++ source library.

The big advantage of Boost is, Boost does a lot of experiments for the future generations of

C++. Many of the things that we currently have in C++ standard library has evolved or even

the language features have evolved from experiments in Boost. So, you can consider

contributing to Boost as well.

There are several others which are commercial like Microsoft Visual C++ STL. Then others

and so on. But most widely, the best-known and most widely used example of generic

programming happens in the ISO standardized standard template library only. That is the

reason we call it the STL. It is not a STL; it is the STL that it uses.

(Refer Slide Time: 04:08)

We have talked about the basic model, that the basic model is to, you know, separate the

concerns of an algorithm and the container, separately. The container and algorithm interact

through the concept of iterators which go over the data structure in a physically or virtually

linearized form, to get give the algorithm the next data element as and when it needs. And

starts from the beginning, goes up to the end, or wherever you ask it to start and wherever

you ask it to end.

(Refer Slide Time: 04:47)

So, with that the basic advantage we noted is that the iterators which are marked by the

beginning of a data structure to one beyond the last element of the data structure can be

clubbed with the algorithm. So, that the algorithms do not need to know about the containers

when those algorithms are coded. They can just rely on the three operators of the iterators,

which is ++ to go to the next element, * to get the value of the element and == or != operator

to check, if two iterator values are same or not.

(Refer Slide Time: 5:25)

In the same way, the containers also, in turn, do not need to look at, no, the algorithms that

are applying on them. Their whole purpose is to support; every container must support the

corresponding iterators, which are those three functions. So, how do you conceptualize this

on the particular container, if it is a vector, it is an array, it is a sequence container, things

happen in a linear manner. So, the zeroth location is the beginning. And one beyond the last

location is the end of the iterator.

It is not necessary that it will have to be that. It could be somewhere in the middle also. You

could say I will start doing things from 2. I have done something else before that and so on.

For a list, this will again be the same. So, only thing that will get different is, the way these

three overloaded operators of ++, * and == comparison are implemented by the respective

data structure, which is the responsibility of the data structure, responsibility of the container

to implement.

So that algorithms can always assume that whatever data container they have, for that the

corresponding conceptually same operations are available through syntactically identical

code. And this applies; this concept of iteration applies also to non-linear data structure like a

set, which is in a binary search tree form.

You can do an in order traversal of the tree to get the order in which the data elements will be

given for the iteration or your implementation could choose some other order. But all that you

need is there has to be a unique starting point, there has to be a unique end point beyond the

last element and there has to be a unique order created out of this non-linear structure.

(Refer Slide Time: 07:22)

Now with that we saw a find() algorithm, which is very interesting, in that it takes an iterator

class In and the element type class in the template. So, then, the find() function takes two

iterators, one were to begin, other were to end, defining the range and the value as a constant

reference. Because you are finding, so you do not want to change that value.

Then the code is extremely simple, which you write in terms of first part checks that there are

more elements to check, because first is not equal to last, and the second part checks if the

current value *first is the value that you are looking for. If it is not then you go to the next

element, as simple as just an iterative find() algorithm. No smart things like binary search or

anything being attempted right now.

Now with this, if you have different types of containers with different underlying data types

but all of them support the iterator in the same way, the entire code that you write to do the

find() is exactly identical. Because the algorithm find() knew that it knew the iterator. So,

algorithm find() does not assume the data structure.

The containers whether it is a vector or a list or a double implies has implemented the

iterator, did not need to know whether you will find or sort or sum or do whatever. So, it fits

in, you can see that except for the blue part everything else in the code is actually identical

and this finally returns the iterator value. So, you have to check whether the iterator value is

same at the end.

If it is same as the end that means you have crossed the entire data structure and you did not

find the value. So, it is a failure. If it is not same as the end, again check the operator that the

iterator has to support. If it is not at the end then you must have got the value at the iteration

point which is basically the value *p. Because p is your iterator here.

(Refer Slide Time: 09:40)

So, this is how the generic algorithms are written you will find this find() algorithm in the

algorithm component of the STL. You can even generalize this further saying that instead of

giving a value I will give a functor here, I will give a predicate here, I will give a, you know,

a function pointer or a function object which will check certain property. So, I am saying that

you go over this vector and find the first odd element.

Now this oddness is not a value, oddness is a property. So, I can write a function as a function

pointer it to check if a given value is odd or I can write a function object to do that. I can pass

either of them. So, what I am passing is I am passing an instance of the Pred class which is

basically a function object. So, I pass that.

So, what happens is when I am trying to do the iteration over this data structure, I am just

evaluating this function object Pred with the given element. So, which is basically either a

call to this function operator, if I pass the functor as we have done here or it is a call to this

function if I passed Odd, if I just passed Odd as a function pointer. So, either of that can be

used.

And so this will make things even more, more generic things can be done. So, you can write

any logic as a part of this function object. And you can find elements which can satisfy

variety of different conditions. One catch point to note here is in the earlier form of find, you

needed to pass set, the type of the element; here you are not doing that.

Because you have set the type for the functor object. You have set the type for the functor

object. So, this functor object here takes the element type. So, since you are calling Odd for

checking the, I mean checking as a predicate, it has to take an int. So, it will operate on the

int. So, that is the kind of deduction that the compiler would be able to do.

(Refer Slide Time: 12:08)

Now if you look into these two forms of find, you will find that the basic algorithm is the

same. Start, at the beginning keep on checking on the value, keep on going till the end. Now,

the way you check that has been changed. In the case of find, the check was by equality. In

the case of find if, it is by some other predicate. It could have been equality also. So, such

elements in the design of STL is called a policy.

That is generically speaking, I am trying to do find and I have a policy for deciding how I

find or what I find. Here is another example on this, which is from your more common

domain of sorting. So, I have a record which has say two fields. One is of type string; another

is of type character array, which is basically C-style string. One keeps the name, another

keeps the address of a person.

Now, a vector for this record. So, I have of that. So, how do I sort? To sort, I need to, we

have seen sort earlier also, but now look at it from the generic programming point of view.

To sort, what I need to know? I need to know the range, where to start where to end. So,

where to start is the begin iterator, where to end is the end iterator.

And what else you need to know? You need to know how to compare elements. So, that you

pass as a function object as a functor. So, I have a functor implemented here as compare by

name which overloads the function call operator for a pair of record references and does a

comparison by using the compare function of the string type, because these are strings.

Whereas, I also have another functor for comparing addresses which overloads the function

call operator again for a pair of records, because to compare I need two records. But it does

the comparison using strncmp function of the string.h header of C. Because address is a C-

style string. Null terminated array of characters.

So, you can see that, basically, if you look at sort, there is no difference in the sort, only thing

that changes is the comparison policy. And based on that the same sort code can be made to

use not only on arbitrary data structures but also on arbitrary policies. So, that makes it really

really powerful and this is what is known as policy parameterization.

(Refer Slide Time: 15:19)

So, many of the algorithms available in STL has the policy parameterization, often they have

a default policy. But there is a provision to parameterize the policy, as you want. There are

some compact, more compact ways of doing that as well.

(Refer Slide Time: 15:37)

I have just shown as example here but we will come back to this heavily when we do C++11.

(Refer Slide Time: 15:40)

Here, what I am using is I am using the concept of an anonymous function, a function object

which does not have a name. So, the entire code is written here and the all of that struct, bool

operator, parenthesis, all that are shorted in the form of a pair of square brackets which is

called a lambda or a closure object in C++11, you will see more of that. So, I can also write

the policies in this form.

Certainly, the advantage is that if the policy is simple as it is here then writing it inside the

sort call makes it easier to understand, makes it easier to follow as to what exactly are you

doing. Of course, if it is a big code, you will not be doing this, you will not be using lambda.

You will be using a named object, as we did earlier. But lambdas are available for doing this.

We will see more of that. Do not worry about not understanding lambda. You will you will

have ample time to understand lambda in the subsequent module.

(Refer Slide Time: 16:53)

So, policy parameterization, in general, can be done through named objects as we have done

or through lambda expressions, depending on whether you want to reuse the same policy in

multiple places you will use a named object or if it is if you need to have a lot of comments

there in or you know it is quite a complicated logic and so on otherwise you just use a

lambda.

(Refer Slide Time: 17:18)

So, with that let us take a look at the common standard library components.

(Refer Slide Time: 17:24)

So, this is just a very very small part of the standard library C++ standard library but also it is

a fact that possibly these components will cover 80%, 90% of your common usage. iostream,

fstream, we have already done. Then there are a number of containers of which also string we

have seen in multiple places, we more or less understand.

Vector we have seen in multiple places but vector, map, list, these we will briefly discuss in

this module, to give you a better idea of the uniformity that exist between the containers of

C++ standard library. Then there are other components which are very very useful. The

algorithms which give you all sorts of common algorithms, the numeric and the functional.

And we will have more components coming when you do C++11 from the next week

onwards.

(Refer Slide Time: 18:17)

So, let us look at what is the structure of a vector declaration. This is not the complete vector

class in the standard template library but this is the representative part. So, the philosophy is,

since there are multiple containers, the philosophy is to have as much of uniformity as

possible.

So, a number of containers have a number of functionality which is common, particularly,

you will need, you will have element type. You cannot have a container where you do not

have element type. This is not possible. You will have, you will need iterators to write code

in the model that we have shown.

So, there has to be iterators. If we have iterators, there has to be begin and end of the iterator.

Since it is a container, there should be some way to insert, some way to remove element and,

so on. So, these are standardized to the extent possible in terms of syntax, semantics, even

name, so that you do not really need to memorize a lot of things.

If you understand it for one data structure, you will be able to guess most of the member

functions and types of another container. You know almost with 90% certainty, rest of it you

look up the manual. So, all that we need is for a, let me just explain vector then will go

quickly over the rest.

So, you need the actual underlying container which is kind of T is the element type. So,

elements is a pointer to T. So, it is an array, as you can understand. So, vector has a type

definition, typedef type alias for value type. So, if I do vector::value_type, I will be able to

know what is the element type. So, that is defined as T. So, that is that is a very easy way of

doing things. So, at any point you can know this. And this is uniform for most of the

containers. You need to use an iterator, so you are saying using iterator.

Now, what is the type of that iterator? I am not, I did not try to write this because this is a

highly implementation dependent. This is not standardized because this needs lot of

optimizations based on the particular machine on which the compiler will target. So, this is

implementation-defined feature.

So, you do not need to really bother about what that whole type expression is. All that you

need to know is it has a name iterator. So, you are looking, you are working with a vector,

your iterator type will be vector::iterator. The nice thing about the uniformity is, if you are

working with list, your iterator type is list::iterator.

If you are working with a map, it is map::iterator and, so on. Then your iterator could be a

constant iterator. That is it does not allow you to make changes in the code, I am sorry, in the

container values cannot be changed. So, you have a const iterator which is also uniform.

And then you have the standard member function. You have a begin for the non-const

iterator, you have a begin with for the const iterator. Naturally, with the const iterator it has to

be a constant member function. And similarly, you have an insert which takes an iterator and

a value and returns you an iterator. That is you are inserting into the vector.

So, you give the iterator to a point where you want to insert. So, it will be inserted before that

and that iterator will be returned. Similarly, you do erase by giving an iterator and getting

back the iterator after the erase. So, you can see that it is the whole target is to do a very very

uniform design and as we will come to, in the next data container type, you will see that how

similar the entire design is.

(Refer Slide Time: 22:49)

But before that let me just quickly take you through some of the differences in semantics that

may rise, give rise to this. Syntactically they are very similar. So, let us say, I am talking

about insert of vector. So, this is this is a vector that I have and. So, I this obviously is my

iterator type p as a vector of integer. So, vector<int>::iterator p. So, begin is here. I am

starting at this point.

Now, so p, I am sorry, let us, let me mark it separately. So, p, v.begin will take me here which

is p. Now, I do three plus p’s. 1 ++, 1 ++, 1 ++. Three times I increment the iterator which

means p will now point to this element 3. I define another iterator q same as p. So, q will

point here. But I do ++q. So, q points to the next element. So, this is how given this code I

come to this iterator positions.

(Refer Slide Time: 24:12)

Now, I do an insert with p of a value 99. As I do the insert, what will happen? It will be get

inserted before the value that p is pointing to that is the semantics. And all values to the will

have to be shifted. So, all values will get shifted. So, p will get returned, whatever is returned

is assigned to p.

So, that is the position of the new element. You get 99. But as all elements get shifted q now

points to 3, it was pointing to 4. So, q actually has become invalid. It is pointing to something

which is wrong. So, remember, if you insert in a vector, your pointers, your iterators, other

iterators will get invalid.

(Refer Slide Time: 25:04)

Similar, thing you can see in terms of erase. The value immediately that have been inserted

here. I am erasing that. So, as I erase, it will get removed values from will be pushed back. It

points to 3, but q which was pointing to 3 will now point to 4, again it will get invalid. So, for

insert, delete in a vector, the side effect is that other pointers or other iterators will become

invalid.

(Refer Slide Time: 25:36)

Now, see, if I have a vector, what are the different ways I can traverse, it obviously there

could be multiple that we have already seen. One is I can just use the index, very simple. I

can use the index using a variable which is of type int. It is ok but not very advisable.

Because the implementer may have implemented the index using some other type, say,

unsigned int. So, what vector does, in fact, almost all containers do that is, they have a type

variable called size_type which gives you the type of the size variables in for that container.

So, it is better, if you are using index, it is better to use size_type. Or better still I could have

used an iterator, simply. I am doing the same thing just traversing it. So, I could have used

any one of this. Of that the iterator form is what we will slowly move more towards, because

in both of these, the actual code is closely bound to the fact that it is a vector. I cannot have

kind of, I cannot have do ++i and go to the next element in the list. So, I would prefer to go

by the iterator’s style.

(Refer Slide Time: 27:08)

There are other, with this iterator style; there are other styles which will be coming in C++11,

particularly, when you are doing an entire data structure traversal. For example, you can say

the value_type is x, value type we have already explained. And just colon v. In which case

what it will do? It will start from the very beginning of the container and go up to the end.

This is called a range kind of support.

You can even simplify it even further by just saying it is auto&. You know what auto&

means we will come to C++ eleven, but just to give you a glimpse that iterator style is really

really strong and you can you can see in here there is no dead container, no type, nothing is

mentioned. It is just the variable given which is a vector of int in our case. But in given any

other variable corresponding to any other container of any other underlying type, this will

also work.

(Refer Slide Time: 28:11)

So, let us consider a doubly linked list. Just to see the parallel. This is the node structure

which is trivial. T is the value. There are two links for the double link. Naturally, you have a

link pointer as the header. This time it is the header. Now, you have the same value type

because that is the underlying type. The contain, the iterator and constant iterator types will

be available.

So, will be the begin for non-constant and constant iterator, end for non-constant and constant

iterator. Insert in the same way, erase in the same way. We can see exactly, except for this

link* and the name list, everything else is same between this and the vector. Because

conceptually they are all same. So, the code is generic and can be worked in a generic way.

(Refer Slide Time: 29:13)

Of course, depending on the difference of the semantics of the iterator, the side effects will be

different. The same situation we are showing here, where we have the same data in the list

with p pointing here and q pointing here and I do insert of 99. 99 comes in, but since it is the

list, there is no movement of elements. Therefore, q does not become invalid, which was

becoming invalid for the case of vector. So, that is for insert, there is a case of erase also

worked out.

(Refer Slide Time: 29:48)

For the case of list, the insert and erase do not invalidate the other iterators but for vector they

do. So, there are semantic differences that you will have to understand.

(Refer Slide Time: 30:05)

But generically the code and the structure are all same and you can understand that on what

context you should use a vector, obviously, if there is no other reason you should use a

vector, it is a most efficient. You can grow both, vector and list. Vector can grow only at the

back; list can go at both ends. You can do insert, delete. Naturally, vector has more compact

storage contiguous, list have separate allocations.

(Refer Slide Time: 30:32)

Let us look at the next container which is very very interesting, which is called a map. It is

basically a kind of a, you know, it does not do hashing but it serves a similar purpose. In a

vector, you use an integer as a subscript; in a map you can use anything as a subscript.

Almost any type you can use, type of value you can use as a subscript.

After vector, map is probably the most useful standard library container to be used. It is

implemented as an ordered balanced binary tree. So, let us look at the basic structure. I have

the value type. So, map is a name value pair, you know. So, I say, this is ppd and this is his

age, this pair always. So, the left one is called the key, by which you index. And the right one

is the value that you….

So, the value_type for a map or the underlying types, element type for a map is a pair, a key

type and the value type. And you pair them. Pair also is a, is available in the STL to take a

pair of types and make it into a pair type which is becomes the value_type for the map. But

you have the value type anyway. You have the iterator, constant iterator, begin, end, all these.

Additionally, in map, what you have? You have a way to access an element. Actually, you

have this in vector also. You do not have it in list, because list cannot, is not indexed. You

have a way to find, because in map finding is somewhat different. Your insert works

differently, because now, you are not inserting based on the iterator, you insert based on a

value and you get the basically the key value pair. Whereas erase works on the iterator itself.

(Refer Slide Time: 32:56)

Let us just take a look at an example of a map. So, I am doing a map which is a char, int pair.

So, key will be char value will be int. So, the pairs I am creating is ‘a’,10 that is character ‘a’,

10. So, you can see the standard array notation coming in here. I can just say my map, give

that index value and assign the value. I can do this.

There are other ways of doing that also. I can do this by insert. If I want to do this by insert, I

have to make a pair of these two values. Say, I am basically trying to do this. The key value is

‘c’, actual value is 30. So, I make a pair of them. I insert. So, these are different ways you can

do you know insert, add elements to a map.

(Refer Slide Time: 34:00)

Then you can do the printing using the basic iterator style here. Here you are getting the

iterator and since map has two components of the pair, the first is the key second is the value,

which prints these values. You can do a find on map. To given a key, you can find what is the

value that it has. So, this is very very useful.

(Refer Slide Time: 34:28)

And there is another example which is given here. I am not going through this. This is

example of using a map to find the frequency of different words in a text. So, just try this out

and convince yourself about the use of map.

(Refer Slide Time: 34:43)

There are other containers also. Set is another which keeps this collection of unique elements.

It is also stored as a binary search tree. And just wanted to show you the uniformity, the value

type, iterator, concentrator, begin, end, insert, erase, just signatures are little bit here and

there. Very similar to what you have for map, but set is also a useful container.

(Refer Slide Time: 35:12)

There are many more, but it is time to close on this module. And here we have learnt about

the standard template library with common components particularly, the focus has been on

learning the basic containers, vector and map and some of the others that will also come in

like string and set and so on. And what is their use. So, thank you very much for your

attention and we will meet in the next module.

