
Programming in Modern C++

Professor Pratha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture: 43

C++ Standard Library: Part 1 (Generic Programming)

 (Refer Slide Time: 00:32)

Welcome to programming in modern C++. We are in week 9 and we are going to discuss

module 43.

(Refer Slide Time: 00:37)

In the last module, we understood the object-oriented I/O of C++, the iostream, fstream and

other headers and learned some of the major standard library components. We will actually

go further in that to get an overview of the overall standard library components of C++ and

understand the generic programming what is generic programming for STL.

(Refer Slide Time: 01:13)

This is the outline of points on standard library and generic programming which will be

available on the left panel.

(Refer Slide Time: 01:26)

So, just to quickly recap, what is the standard library? A standard library is a collection of

functions or classes typically templatized which are made available in addition to the core

language. So, the core language has a lot of features as we have already studied at least, all

major features of C++98, C++03 we have already studied. Will do some more for C++11.

But in order to facilitate the programming the development work for the software developers

in an easy manner languages do provide a standard library which is also, specified in the

language standard. So, C had a standard library much of which we have seen through practice

and C++ has a significant standard library which is designed keeping, relatively small size in

mind though that small size itself is not small enough. And it is useful for every programmer

who needs to do programming in C++.

(Refer Slide Time: 02:37)

So, quick look at some of the major common library components of C which we are regularly

using stdio.h, stdlib.h, string.h, math.h, are 4 that almost every time we need.

(Refer Slide Time: 02:54)

This is how a typical header would look like if you just go into your system and dig out a

header I have dugout math.h. So, this is the compilation multiple inclusion guard present here

which we learned about here are some constants defined as manifest constants because it is C.

So, if you need the value of PI in a language, the developer can use M_PI, here is a complex

structure defined with _complex name. This is the addition in C++ at a later point.

Here is a signature for the function square root that we regularly use and So, on. Of course, a

lot of the code here I have just hidden just to give you a glimpse of the kinds of things that

the standard library headers will have. Headers in C++ will, in addition, have classes and

templatized definitions.

(Refer Slide Time: 03:57)

Now, in C++ standard library if we want to take a look then some of the components which

we have already done well is iostream, fstream all those I/O libraries which we have done in

the last module itself, we have been using the string component very heavily we will make

use of memory component we have not discussed that yet we have made use of the exception

components and so on. So, there are a number of components which are very useful for us.

What is special in C++ standard library is the support for STL. STL stands for Standard

Template Library. STL is neither the full of the library.

It is kind of a subset by of the standard library, but it does provide support for quite a very

few important and interesting features of this standard C++ library. The most useful of them

include containers, like in C, you did not have a support for data structure only array is

available as a language feature. Using pointer, we had to build up linked lists of every kind.

But anything beyond that, whether it is stack or it is a queue or a priority queue or if I want to

do a HashMap anything, the programmer had to create his or her own library for that. So, that

has been strongly facilitated in C++ by providing a number of containers, almost a complete

set of what you will need, I mean, this kind of is resonates with what you have in Python,

where you have five basic data structure given as a part of the Python language itself.

So, in terms of the containers, we have vectors, which we have already been using quite

extensively in place of array, it is an array of flexible size, but the same efficiency, you have

doubly linked list, you have stack queue, priority queue or heap data structure, you also have

Set, Map, which is basically kind of hashing and So, on.

And C++11 has added a lot more components in that. So, each one of these container

components are a header by itself and has a complete functionality for that data structure. So,

using C++ the need for doing any basic data structure is almost not there, the standard library

will help that. To support that containers we have a number of iterators which can go over the

container and check at different elements, will understand what iterators are in more depth.

We have components for common algorithms like find, copy for doing something for each

element of a data structure and so on.

We have some numeric very useful flexible numeric algorithms, given numeric components

given these are not the numerical computation that we know, but these are like simple

numeric operations like summing the elements of a vector and those kind of. And we have

something which is very, very special in terms of the different functions that are provided.

So, there are, we have studied about functors in module 40. So, using functors using function

objects, a number of very useful functions are provided, which are in turn used in the

algorithms component and the container components. So, this is the main chunk of C++

standard library to specially learn and that is what we will be focusing in this module and in

the next two.

(Refer Slide Time: 08:08)

Now, coming to besides that, obviously, we know that C standard library headers can also be

used in C++ by prefixing the word the letters c with it and you have the entire C standard

library functionality available though in C++, they may differ a little bit differently at times.

Just a quick recap that in C every name is in a namespace is which is global, because C does

not have the concept of separate namespaces.

So, all functions standard library functions are in the global namespace. So, you cannot have

your own functions by the same name. Whereas C++ puts all standard library components

under a namespace std, which you have to prefix before the standard library symbols or you

can use the mean have the flexibility of doing the using command as we have seen earlier.

(Refer Slide Time: 08:50)

In terms of header names, all headers in C has an extension .h in the standard library, stdio.h

whereas in C++, the standard library headers do not have this .h extension. If their standard

library headers borrowed from the C standard library, then there named in the C standard

library it is prefixed with c and the .h is dropped. So, stdio.h to be used in a C++ program

must be included as cstdio.

Do not put that .h and the the pure C++ standard library headers do not have a .h, So, it is

iostream simply not iostream .h, be very careful about this because in the older versions of C,

the .h extension was there in the standard library. So, if you are using a little bit old system

then it might have somewhere in the corner, some iostream.h header available. So, if you use

that .h that wrong old file will be used. So, remember, in C standard library will always have

.h in C++ standard library headers will never have .h.

(Refer Slide Time: 10:02)

With these few words. Let me go over to discussing what is generic programming. Before we

can get into the containers, iterators, algorithms, functions of the C++ standard library, we

need to understand this concept of generic programming.

(Refer Slide Time: 10:25)

We mentioned about this earlier too. And in the context of C++, this is often also referred to

as template metaprogramming. Because that is the mechanism through which generic

programming is realized in C++. So, what is the purpose of generic programming? Consider

the common programming tasks that we often have to do. What do we do, we think in a very

abstract way, we collect the data into containers, containers are nothing but data structures,

which contain data.

And we organize them for different purposes like I might want to print the data or I might

want to access the data at a very high speed, I may want to retrieve data items by different

criterion, for example, I may want to retrieve a data item by an index or the position have the

data in the data structure, or I might want to access that data by value that I want the value

first element in my list, which has a value chocolate.

Or I might want to access a data by a property, you can say that well, from the collection of

stood say person records, get me that record the first record where the age is less than 64. So,

there could be several such but generically, we want to retrieve data items based on certain

criteria, we want to add data, remove data, sort data, search data and so on, and do some

simple arithmetic, numeric computation. So, these are things which, irrespective of which

software project you are doing, you would be doing these or requiring to do this quite often.

(Refer Slide Time: 12:05)

So, what we saw earlier is to facilitate these kinds of repeated tasks, we saw the use of

templates, we have understood templates. So, we know that using an int is not very different

from using a double or using a vector of int, is not very different from using a vector of string

and so on. And so, we have seen that if we needed a stack of int or of char or of string or of a

user defined data type, unlike C, I do not need to write the stack code, every time in C++.

I can use the stack component from the C++ standard library, set the data element type to be

of the appropriate type, whether it is int or char, and the template automatically sets the type

for the container underlying container element of the stack, it sets the type for the different

push pop operations and so on.

So, using template, we have been able to generalize the different data structure different

classes based on certain templatized type parameters. So, this is one level of generalization

that we have been able to do. But still there is more that is possible. For example, suppose I

want to find a value in a data structure. Now, I that data structure could be a vector, the data

structure could be a list, naturally, the code typically would be different.

The same code cannot do this, of the kind of programming we know So, far. But

conceptually, if you think is it significantly different as to whether I am finding the value in a

vector or in a list, it is a collection. So, I want to find the value in that collection. So, the use

of template first gave us the liberty I mean liberation from the underlying element, data type

and so on.

But I want more liberty that conceptually, if an operation is applicable for multiple different

containers, multiple different data structures, I should not be able to write a common code to

do that operation. I want to I am looking for strings in a collection. Now, whether I look for

strings with case sensitivity or in a case insensitive manner, will mean certain difference in

the code. But conceptually, it is not very different. Conceptually, I am looking for strings,

that is all.

(Refer Slide Time: 14:58)

So, generic programming or commonly tries to find the common code with certain

characteristics. So, what it should be? The characteristics that are desirable is ideals we say is

the code should be easy to read, easy to modify, it should be more or less regular, short, fast

and so on. The access to the data should be uniform independent of how it is stored, I am

working with a stack I should not be bothered about whether the elements are stored in an

array or in a linked list.

It should be independent of that, I am doing a search on a data structure, I should not be

bothered about whether the data is in a vector or is in a list, whether the list is a single linked

list or is a doubly linked list and so on. And of course, it should be independent of its type.

C++ is strongly typed. So, access must be typesafe it should be easy to traverse the data the

storage must be compact retrieval, addition, deletion, everything should be fast.

And there should be standard versions of common tasks like copying, search, finding, sorting

and so on so forth. Can we write algorithms or codes in that level of generality? If we can and

that is what is called generic programming.

(Refer Slide Time: 16:26)

So, here, just a jumble list of some common tasks like sorting a vector of strings, finding the

first value larger than “Peterson” and what is the entity for C++ say, when you search in

Google and so on so forth, which are generic in nature, but comes from a wide variety of

domains, for a wide variety of types, for a wide variety of possible values and So, on.

(Refer Slide Time: 17:04)

So, instead of having to write separate specific code for these tasks, can we generalize? That

is the basic question that we are trying to answer in the generic programming. So, generic

programming tries to generalize the algorithm it is also, called lifting an algorithm. So, that

its correctness can be increased, because you are generalizing you are specifying it in a very

compact form, and possibly once to be used a million times afterwards.

So, a better specification must be possible, there should be greater range of use, that is the

basic purpose and the performance must be wisely usable for tuned libraries. So, for doing

this, we try to go from concrete algorithms that we write down in terms of C or C++ code, to

more abstract forms of algorithms.

So, as you come to concrete, things start bloating up, the code for stack, for input, for stack,

for a double, bloated up, we made an abstraction to made it a, made the element type to be a

type parameter in the template, it became compact. Now, it still can bloat if it is a stack of

vector. Stack, realized by a vector or a stack realized by a doubly linked list. Can I abstract it

by just saying that it is a container, where I can put an element take out an element, check if

the container is empty, and so on so forth.

(Refer Slide Time: 18:35)

So, that is the basic, lifting the algorithm is a basic idea, and I give you an example. Suppose

we are trying to do, we are trying to add the numbers in a data structure, let the data structure

be an array. So, that is the data given to us. And, well, since it is an array, I need to also tell

what is the size of the array, I tell that and then how do I add the elements, I will have an

accumulating variable s, says where I keep the sum, which I initialized to 0, and then I keep

on traversing on the array.

And there are two steps one is i < n, which checks if I have reached the end of the array,

because there are n elements, I can go up to n - 1. And there is ++i, which takes me from the

current index to the next index. That is it gets the next element. And as I have got the next

element, I add it to the accumulated variable s, the sample code, C code. All of us have seen

this a number of times.

Think about an equivalent code, equivalent way of doing this for a list. Let us say it is a

Singly Linked List, which has a node which points to the next node contains the data and you

write a similar function some passing the header of the node. So, which is the marker of the

data. Now you have a similar accumulator for, for s which will have the sum. Now, you start

with the first header and you keep on traversing the linked list we know.

So, what we have the header, we go to the next pointer, get the next value, go to the next

pointer, get the next value till we are at the end of the list where typically customarily we will

have a null value assigned to mean that the list has ended. So, we can go to the next element

by doing this operation, changing first from first to first point and next.

And any when at a certain point, then the value that I need to access is first pointer data.

Now, if you compare these two, then you see there are differences in terms of the first

underlying type of data, double and int. There is differences in terms of the data structure.

One is a list and other is an array.

But if you look at the loop in general, you can see that it is almost similar requiring three

basic operation that to be able to check that you are not at the end, to be able to start at the

beginning and then check that you are not at the end. And this has to be a way to go to the

next element. And there has to be a way to access that element and get that value to do that

accumulation.

(Refer Slide Time: 21:40)

So, we can lift these two concrete algorithms into an abstract algorithm to write it in a in

terms of a pseudo code, we say okay, given the data, which could be array or list whatever, it

is a while loop, which continues till the end is reached every time I check the current value-

added to s and then go to the next element. If we can do that, if we can do these three steps,

then we will be able to easily, generalize both these concrete algorithms into an abstraction

and that is what we are trying to do here a specific element type has been used, which, can be

very easily liberated by using a templatized type.

(Refer Slide Time: 22:26)

So, if I try to write this in the form of a template, I can say that, well, I will have something

like, like a pointer to the data, which I called Iter, or iterator. So, I will have a class iterator

which can point to any data element. Now, mind you, this pointing mechanism would be

maybe different between an array and a linked list. Because the way I go to the next element

in an array, and the way I go to the next element in a linked list are different.

But I can generically think that there is a pointer like thing, which say, if I have these data

elements, So far I am talking about a linear data structure. So, I can there is a sequencing

order in this, I am not saying whether they are indexed like this or whether they are linked

like this either that is possible. And I say that I have a iterator, which points to the first. So, it

is for the array it is a[0] for the list, it is a header.

And then I say that I have something like a node which is beyond my last element one

beyond my last element. So, for an array of size n it is the location a[n]. For a linked list, it is

a value null, which is where the next element should have been. So, I call this as my first and

I call this as my last. This is a basic process of iteration.

And then I have a template parameter T which tells me the element type of which the sum

type will have to be the same. So, what I do is I would say that I have an operator++, if you

think about pointer, you will understand is very immediately. I have an operator++ which

takes my pointer, the iterator from the current position to the next, then again current that

position to the next So, that takes me to the to get the next data element.

I have a * operator thinking in terms of as if it is a pointer, it is again similar it is basically

dereferencing whatever that iterator is pointing to I can get that element. So, that is get value.

And how long do I continue? I will continue till from the first is going till it becomes equal to

last, when this becomes equal to last the when first becomes equal to last I know that have

gone past the last element because it is one beyond the last element.

So, I will continue till first is not equal to last. So, I should be there should be a way to

compare these two iterators leads to values of the iterators and this like comparing pointers as

you can think. So, with that a this becomes a generic code which can work in different

contexts provided I can support this, ++, * and != operators in a proper manner I show it use

in in case of a of a concrete array where there is an array of 8 elements.

So, this is my begin Iter which actually a is nothing but address of a 0. This is the size the

number of elements which is I know there are 8 elements. So, it is 1 beyond a[8], is the

address of a[8], sorry there should be address of, is the address of a[8], but it just does not go

there goes one before that, and I will go up to that this is my end last Iter.

(Refer Slide Time: 26:42)

So, with this generalization, now, I can easily do things uniformly for arrays, for vectors, for

lists, and so on.

(Refer Slide Time: 26:53)

And that will be as efficient as doing it in the handcrafted code. So, for this C++ standard

library provides a generic model, which say that, well, what are the things that I need to do? I

will have to do different I will have different containers as in here, these are the different data

structures, I can have a vector of a list, as a map and so on. I have different algorithms to

perform, I want to do a search, I want to do a find, I want to do a copy, I want to do a sort and

so on. So, these are different algorithms.

If I look in the C way then for every data type, for every data structure, I have to implement

every algorithm. So, if there are 60 10 containers that C++ standard library has another 60

algorithms roughly, then there are 600 implementations you need which is humongously

large, I get rid of that by introducing the iterators.

Iterators are as I explained, simply, it tells you the way to get start from the beginning of the

data structure go over till the end at every point gives you the data. So, if the algorithm does

not assume that it knows the container, if it knows that there is somebody called iterator,

which will give you the elements 1 by 1, then the algorithm can be written even without

knowing the container.

The containers can be implemented without knowing what the algorithm will do with them,

because all that they need to provide, is the implementation of the iterator. That is the current,

the beginning, the end the current position, how to go to the next position and how to give the

next element.

(Refer Slide Time: 28:39)

So, this is the basic model that is used. So, this is the better diagram of the iterator that I was

drawing earlier. So, it is typically the initial is called begin, one pass the last one beyond the

last element is called end. And there are three operators++ to go to the next element start with

the value and equality to check if two iterator values are equal or not.

(Refer Slide Time: 29:04)

So, algorithms can now be written just thinking of the iterators. So, whatever you need to do,

you just do not have to think whether you are going over an array or a list or a set or

anything, you just think that the iterator, call the iterator operation, and that will give you the

next element to work with. You can work simply with that.

(Refer Slide Time: 29:28)

Similarly, containers do not need to think about the algorithms all that they need to support

the iterator and here we show that the support can be provided not only for the sequence

iterators sequence containers like vector, which is kind of an array or a list, which is linked

singly or doubly. But it can be provided for a nonlinear data structure like set. Set is a

collection of unique elements. So, it is typically kept in the form of a binary search tree.

So, in that binary search tree, if we do a in order traversal, then naturally the nodes are

traversed in a certain way left, then parent then right, if we do that. So, the traversal order

here would be I will start from here, I will call left left left until I get to a lift node, this is the

first iteration value this is the first element I will get, these are first of the iterator.

Then I will have this element on ++, this element on ++, next ++ is here, next ++ is this this

this this call, because it keeps on going down, then it is this element then it is this element,

then it is this element and then it does not have anything where it should. So, that is my end

of the iteration. So, you can see that even when a data structure is nonlinear, it can be

linearized through this process of iteration very simply.

(Refer Slide Time: 30:55)

So, using that we can have very nice algorithms written for example, if you compare these

codes to find it is one is for vector of int, one is for list of strings, and one is for set of

doubles, you can see that the code is practically identical, because all that it needs to know is

the first and last of the iterator and the type of the value it has to look for, which is all

templatized and all that you are doing is you are checking that you are covering the entire

data structure. You are checking if the current iteration value, which is start first equals the

value given. If it does not, then you go to the next one. And you keep on doing that you can

see that all this code are perfectly identical.

(Refer Slide Time: 31:46)

So, that is a big advantage that we get by doing this kind of generic programming this is

another where if you are doing find and you can even generalize it further saying that find

finds the element which is equal to the given element, but I can say that I do not just want to

find “PPD”, I want to find the person who is teaching programming in modern C++.

So, I can provide a condition statement predicate for that, which can be provided as a as a

functor. As you can see here, the function object as you can see here, we will talk more about

this as we go forward.

(Refer Slide Time: 32:30)

So, this was a basic introduction to standard library component, particularly the generic

programming side of it. So, that we can subsequently discuss the actual STL which will be

the topic for the next module. Thank you very much for your attention and see you in the next

module.

