Programming in Modern C++
Professor Pratha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture: 43
C++ Standard Library: Part 1 (Generic Programming)

(Refer Slide Time: 00:32)

pPRB ATl

Programming in Modern C++

Module M43: C++ Standard Library: Part 1 (Generic Programming)

Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

All url's in this module have been accessed in September, 2021 and found to be functional

Programming in Modern C++ Partha Pratim Das Me31

Welcome to programming in modern C++. We are in week 9 and we are going to discuss
module 43.

(Refer Slide Time: 00:37)

L R S B A A RS

[;@E Module Recap

o Understood object-oriented |/0 of C++

o Learnt the major standard library components

Programming in Moder C+-+ Partha Pratim Das M32

In the last module, we understood the object-oriented 1/0 of C++, the iostream, fstream and
other headers and learned some of the major standard library components. We will actually

go further in that to get an overview of the overall standard library components of C++ and

understand the generic programming what is generic programming for STL.

(Refer Slide Time: 01:13)

PP AEL O

[ﬁé} Module Objectives

o To get an overview of Standard Library components of C++

o To understand generic programming for STL

Programming in Mode C++ Partha Pratim Das Mi33

PPRLAHL SO T

[ﬁé} Module Outline

Programming in Moder C++ Partha Pratim Das Mi34

This is the outline of points on standard library and generic programming which will be

available on the left panel.

(Refer Slide Time: 01:26)

[R B I A RS

ﬁ Standard Library

Standard Library

Programming in Modern C++ Partha Pratim Das M435

r"1 L R O R

>
H’H What is Standard Library?

o A standard library in programming is the library made available across implementations of a
language

o These libraries are usually described in language specifications (C/C++); however, they may
also be determined (in part or whole) by informal practices of a language's community (Python)

o A language's standard library is often treated as part of the language by its users, although the
designers may have treated it as a separate entity

o Many language specifications define a core set that must be made available in all
implementations, in addition to other portions which may be optionally implemented

o The line between a language and its libraries therefore differs from language to language

o Bjarne Stroustrup, designer of C++, writes:

o This suggests a relatively small standard library, containing only the constructs that “every
programmer” might reasonably require when building a large collection of software
o This is the phllosophy that is used in the C and C++ standard libraries

Source: Standard lbrary, Wiki Accessed 13-Sep-21
Programming in Moder C+- Partha Pratim Das Ma36

So, just to quickly recap, what is the standard library? A standard library is a collection of
functions or classes typically templatized which are made available in addition to the core
language. So, the core language has a lot of features as we have already studied at least, all

major features of C++98, C++03 we have already studied. Will do some more for C++11.

But in order to facilitate the programming the development work for the software developers
in an easy manner languages do provide a standard library which is also, specified in the
language standard. So, C had a standard library much of which we have seen through practice
and C++ has a significant standard library which is designed keeping, relatively small size in
mind though that small size itself is not small enough. And it is useful for every programmer

who needs to do programming in C++.

(Refer Slide Time: 02:37)

PPRBAHL O BN

{i‘éj C Standard Library: Common Library Components

| Component | Data Types, Manifest Constants, Macros, Functions, ... |

stdio.h Formatted and un-formatted file input and output including functions

o printf, scanf, fprintf, fscanf, sprintf, sscanf, feof, etc.

stdlib.h Memory allocation, process control, conversions, pseudo-random numbers, search-
ing, sorting

e malloc, free, exit, abort, atoi, strtold, rand, bsearch, gsort, etc.
string.h Manipulation of C strings and arrays

o strcat, strepy, stremp, strlen, strtok, memcpy, memmove, etc.

math.h Common mathematical operations and transformations
o cos, sin, tan, acos, asin, atan, exp, log, pow, sqrt, etc.
errno.h Macros for reporting and retrieving error conditions through error codes stored in

a static memory location called errno

o EDOM (parameter outside a function's domain - sqrt (-1)),

o ERANGE (result outside a function’s range), or

o EILSEQ (an illegal byte sequence), etc.

A header file typically contains manifest constants, macros, necessary struct / union types,
typedef's, function prototype, etc.

Programming in Moder C++ Partha Pratim Das Ma7

So, quick look at some of the major common library components of C which we are regularly
using stdio.h, stdlib.h, string.h, math.h, are 4 that almost every time we need.

(Refer Slide Time: 02:54)

pPRsAEd te

E{?} C Standard Library: math.h

/% math.h
* This file has no copyright assigned and is placed in the Public Domain.
* This file is a part of the mingw-runtime package.

* Mathematical functions.

*/

#ifndef MATH H_
#define _MATH_H_
#ifndef __STRICT_ANSI__
W oeee

#define M_PI 3.14159265358979323846h// manifest constant for pi
V{0
struct _complex { uct of _complex type

double b /* Real part #/

double Vi /* Imaginary part */

_CRTIMP double __cdecl _cabs (struct _complex);
Fhvos
#endif /* __STRICT_ANSI__ */

Hisee

_CRTIMP double __cdecl sqrt (dcuble):u

Meses

#define isfinite(x) ((fpclassify(x) & FP_NAN) == 0)
...

#endif /x MATHH_ */ \\

Source: € math h library functions Accessed 13-Sep-21

This is how a typical header would look like if you just go into your system and dig out a
header | have dugout math.h. So, this is the compilation multiple inclusion guard present here
which we learned about here are some constants defined as manifest constants because it is C.
So, if you need the value of Pl in a language, the developer can use M_PlI, here is a complex

structure defined with _complex name. This is the addition in C++ at a later point.

Here is a signature for the function square root that we regularly use and So, on. Of course, a
lot of the code here I have just hidden just to give you a glimpse of the kinds of things that
the standard library headers will have. Headers in C++ will, in addition, have classes and

templatized definitions.

(Refer Slide Time: 03:57)

D

[ﬁ?} C++ Standard Library: Common Library Components

Py

[C | Data Types, Manifest Constants, Macros, Functions, Classes, ... |
iostrean Stream input and output for standard I/O e cout, cin, endl, ..., etc.
fstream (Module 42)
string Manipulation of string objects e Relational operators, 10 operators, Iterators, etc
memory High-level memory management e Pointers: unique_ptr, shared_ptr, weak_ptr, & allocator etc.

exception Generic Error Handling e exception, bad_exception, unexpected handler, & terminate_handler
stdexcept Standard Error Handling e logic.error, invalid argument, domain.error, length.error,
out.of range, runtime_error, range_error, overflow_error, underflov.error, etc.

STL Utilities
Containers vector, deque, list, stack, queue, priority.queue, set, multiset, map, multimap
: array, forvard.list, unordered_set/multiset/map/multimap
Iterators begin & end, rbegin & rend. 1: cbegin & cend, crbegin & crend,

algorithm Non-Numerical: for_each, find, find_if, count, search, copy, move, swap, replace, fill,
generate, remove, reverse, rotate, sort, binary.search, merge, min, max, - - -

numeric Numerical: accumulate, adjacent_difference, inner.product, and partial.sum : lota
Functions equal_to, not_equal_to, greater, greater_equal, less, less_equal; plus, minus, multiplies,
divides, modulus; logical.and, logicalnot, logical.or. . bit.and, bit.or, bit_xor
Imported from C Standard Library
cmath Common mathematical operations and transformations
® cos, sin, tan, acos, asin, atan, exp, log, pov, sqrt, etc
cstdlib Memory alloc., process control, conversions, pseudo-rand nos., searching, sorting

o malloc, free, exit, abort, atoi, strtold, rand, bsearch, gsort, etc

S 9Cewe T

Now, in C++ standard library if we want to take a look then some of the components which
we have already done well is iostream, fstream all those 1/O libraries which we have done in
the last module itself, we have been using the string component very heavily we will make
use of memory component we have not discussed that yet we have made use of the exception
components and so on. So, there are a number of components which are very useful for us.
What is special in C++ standard library is the support for STL. STL stands for Standard
Template Library. STL is neither the full of the library.

It is kind of a subset by of the standard library, but it does provide support for quite a very
few important and interesting features of this standard C++ library. The most useful of them
include containers, like in C, you did not have a support for data structure only array is

available as a language feature. Using pointer, we had to build up linked lists of every kind.

But anything beyond that, whether it is stack or it is a queue or a priority queue or if | want to
do a HashMap anything, the programmer had to create his or her own library for that. So, that
has been strongly facilitated in C++ by providing a number of containers, almost a complete
set of what you will need, | mean, this kind of is resonates with what you have in Python,

where you have five basic data structure given as a part of the Python language itself.

So, in terms of the containers, we have vectors, which we have already been using quite
extensively in place of array, it is an array of flexible size, but the same efficiency, you have
doubly linked list, you have stack queue, priority queue or heap data structure, you also have
Set, Map, which is basically kind of hashing and So, on.

And C++11 has added a lot more components in that. So, each one of these container
components are a header by itself and has a complete functionality for that data structure. So,
using C++ the need for doing any basic data structure is almost not there, the standard library
will help that. To support that containers we have a number of iterators which can go over the
container and check at different elements, will understand what iterators are in more depth.
We have components for common algorithms like find, copy for doing something for each

element of a data structure and so on.

We have some numeric very useful flexible numeric algorithms, given numeric components
given these are not the numerical computation that we know, but these are like simple
numeric operations like summing the elements of a vector and those kind of. And we have

something which is very, very special in terms of the different functions that are provided.

So, there are, we have studied about functors in module 40. So, using functors using function
objects, a number of very useful functions are provided, which are in turn used in the
algorithms component and the container components. So, this is the main chunk of C++
standard library to specially learn and that is what we will be focusing in this module and in

the next two.

(Refer Slide Time: 08:08)

pPRB QB BN

Eﬁ?} namespace std for C++ Standard Library

Py

C Standard Library

C++ Standard Library

o All names are global
o stdout, stdin, printf, scanf

o All names are within std namespace
o std::cout, std::cin
¢ Use using namespace std;

to get rid of writing std:: for every standard
library name

W/o using

W/ using

#include <iostream>

int main() {

std::cout << "Hello World in C#+"
<< std::endl;

return 0;

}

Programming in Moder C+-+

#include <iostream>
using namespace std;

int main() {

cout << "Hello World in C++"
<< endl;

return 0;

}

Partha Pratim Das

M43.10

Now, coming to besides that, obviously, we know that C standard library headers can also be

used in C++ by prefixing the word the letters ¢ with it and you have the entire C standard

library functionality available though in C++, they may differ a little bit differently at times.

Just a quick recap that in C every name is in a namespace is which is global, because C does

not have the concept of separate namespaces.

So, all functions standard library functions are in the global namespace. So, you cannot have

your own functions by the same name. Whereas C++ puts all standard library components

under a namespace std, which you have to prefix before the standard library symbols or you

can use the mean have the flexibility of doing the using command as we have seen earlier.

(Refer Slide Time: 08:50)

PP QulstO BN
Eé% Standard Library: C/C++ Header Conventions g

[C Header | C++ Header |

C Program Use .h. Example: #include <stdio.h> Not applicable
Names in global namespace
C++ Program | Prefix c, no .h. Example: #include <cstdio> | No .h. Example:

Names in std namespace #include <iostream>

o A Cstd. library header is used in C++ with prefix 'c’ and without the .h. These are in std namespace:

#include <cmath> // In C it is <math.h>
std::sqrt(5.0); // Use with std::
It is possible that a C++ program include a C header as in C. Like:

#include <math.h> // Not in std namespace

sqrt(5.0); // Use without std::
This, however, is not preferred
o Using .h with C++ header files, like iostrean.h, is disastrous. These are deprecated. It is

dangerous, yet true, that some compilers do not error out on such use. Exercise caution.

Programming in Moder C++ Partha Pratim Das Mz 1L

In terms of header names, all headers in C has an extension .h in the standard library, stdio.h
whereas in C++, the standard library headers do not have this .h extension. If their standard
library headers borrowed from the C standard library, then there named in the C standard
library it is prefixed with ¢ and the .h is dropped. So, stdio.h to be used in a C++ program

must be included as cstdio.

Do not put that .h and the the pure C++ standard library headers do not have a .h, So, it is
iostream simply not iostream .h, be very careful about this because in the older versions of C,
the .h extension was there in the standard library. So, if you are using a little bit old system
then it might have somewhere in the corner, some iostream.h header available. So, if you use
that .h that wrong old file will be used. So, remember, in C standard library will always have

.hin C++ standard library headers will never have .h.

(Refer Slide Time: 10:02)

[R-E S RN A

@ Generic Programming

Generic Programming

Source:

® Chapter 20 The STL (containers, iterators, and algorithms), Bjarne Stroustrup
® Chapter 21 The STL (maps and algorithms), Bjarne Stroustrup

Programming in Modern C++ Partha Pratim Das Ma312

With these few words. Let me go over to discussing what is generic programming. Before we
can get into the containers, iterators, algorithms, functions of the C++ standard library, we

need to understand this concept of generic programming.

(Refer Slide Time: 10:25)

pPRLAnLl Lt

E@E Common Programming Tasks

o Collect data into containers
¢ Organize data

o For printing

o For fast access
o Retrieve data items

o By index (for example, get the N" element)
o By value (for example, get the first element with the value Chocolate)
o By properties (for example, get the first elements where age < 64)

¢ Add data

o Remove data

o Sorting and searching

o Simple numeric operations

Programming in Modern C++ Partha Pratim Das M413

We mentioned about this earlier too. And in the context of C++, this is often also referred to
as template metaprogramming. Because that is the mechanism through which generic
programming is realized in C++. So, what is the purpose of generic programming? Consider

the common programming tasks that we often have to do. What do we do, we think in a very

abstract way, we collect the data into containers, containers are nothing but data structures,

which contain data.

And we organize them for different purposes like I might want to print the data or 1 might
want to access the data at a very high speed, | may want to retrieve data items by different
criterion, for example, I may want to retrieve a data item by an index or the position have the
data in the data structure, or I might want to access that data by value that | want the value

first element in my list, which has a value chocolate.

Or | might want to access a data by a property, you can say that well, from the collection of
stood say person records, get me that record the first record where the age is less than 64. So,
there could be several such but generically, we want to retrieve data items based on certain
criteria, we want to add data, remove data, sort data, search data and so on, and do some
simple arithmetic, numeric computation. So, these are things which, irrespective of which

software project you are doing, you would be doing these or requiring to do this quite often.

(Refer Slide Time: 12:05)

PPRBQHL O BN
ﬁéj Common Tasks have Common Goals i i

o We can (already) write programs that are very similar independent of the data type
used (Recall templates)

o Using an int is not that different from using a double
o Using a vector<int> is not that different from using a vector<string>

o We would like to write common programming tasks so that we do not have to re-do the
work each time we find a new way of storing the data or a slightly different way of
interpreting the data

o Finding a value in a vector is not all that different from finding a value in a list
or an array

o Looking for a string ignoring case is not all that different from looking at a
string not ignoring case

o Graphing experimental data with exact values is not all that different from graphing
data with rounded values

o Copying a file is not all that different from copying a vector

Programming in Modern C++ Partha Pratim Das Ma34

So, what we saw earlier is to facilitate these kinds of repeated tasks, we saw the use of
templates, we have understood templates. So, we know that using an int is not very different
from using a double or using a vector of int, is not very different from using a vector of string
and so on. And so, we have seen that if we needed a stack of int or of char or of string or of a
user defined data type, unlike C, I do not need to write the stack code, every time in C++.

| can use the stack component from the C++ standard library, set the data element type to be
of the appropriate type, whether it is int or char, and the template automatically sets the type
for the container underlying container element of the stack, it sets the type for the different

push pop operations and so on.

So, using template, we have been able to generalize the different data structure different
classes based on certain templatized type parameters. So, this is one level of generalization
that we have been able to do. But still there is more that is possible. For example, suppose |
want to find a value in a data structure. Now, | that data structure could be a vector, the data

structure could be a list, naturally, the code typically would be different.

The same code cannot do this, of the kind of programming we know So, far. But
conceptually, if you think is it significantly different as to whether | am finding the value in a
vector or in a list, it is a collection. So, | want to find the value in that collection. So, the use
of template first gave us the liberty | mean liberation from the underlying element, data type

and so on.

But | want more liberty that conceptually, if an operation is applicable for multiple different
containers, multiple different data structures, 1 should not be able to write a common code to
do that operation. | want to I am looking for strings in a collection. Now, whether | look for
strings with case sensitivity or in a case insensitive manner, will mean certain difference in
the code. But conceptually, it is not very different. Conceptually, 1 am looking for strings,
that is all.

(Refer Slide Time: 14:58)

: PP QIO BN
ﬁﬁ% |deals for Commonly used Common Codes E

o Code that is o Easy traversal of data
o Easy to read o Compact storage of data
o Easy to modify o Fast
o Regular o Retrieval of data
o Short o Addition of data
o Fast o Deletion of data
o Uniform access to data o Standard versions of the most
o Independently of how it is common algorithms
stored R o Copy, find, search, sort, sum,

o Independently of its type
o Type-safe access to data

Programming in Moder C++ Partha Pratim Das M43 15

So, generic programming or commonly tries to find the common code with certain
characteristics. So, what it should be? The characteristics that are desirable is ideals we say is
the code should be easy to read, easy to modify, it should be more or less regular, short, fast
and so on. The access to the data should be uniform independent of how it is stored, | am
working with a stack | should not be bothered about whether the elements are stored in an

array or in a linked list.

It should be independent of that, | am doing a search on a data structure, | should not be
bothered about whether the data is in a vector or is in a list, whether the list is a single linked
list or is a doubly linked list and so on. And of course, it should be independent of its type.
C++ is strongly typed. So, access must be typesafe it should be easy to traverse the data the

storage must be compact retrieval, addition, deletion, everything should be fast.

And there should be standard versions of common tasks like copying, search, finding, sorting
and so on so forth. Can we write algorithms or codes in that level of generality? If we can and

that is what is called generic programming.

(Refer Slide Time: 16:26)

PPRLQHIL L T

[;éj Examples

o Sort a vector of strings

o Find a number in a phone book, given a name

o Find the highest temperature

o Find all values larger than 800

o Find the first occurrence of the value 17

o Sort the telemetry records by unit number

o Sort the telemetry records by time stamp

o Find the first value larger than “Petersen”?

o What is the largest amount seen?

o Find the first difference between two sequences

o Compute the pairwise product of the elements of two sequences
o What are the highest temperatures for each day in a month?
o What are the top 10 best-sellers?

o What is the entry for “C++" (say, in Google)?

o What is the sum of the elements?

Programming in Modern C++ Partha Pratim Das M43.16

So, here, just a jumble list of some common tasks like sorting a vector of strings, finding the
first value larger than “Peterson” and what is the entity for C++ say, when you search in
Google and so on so forth, which are generic in nature, but comes from a wide variety of
domains, for a wide variety of types, for a wide variety of possible values and So, on.

(Refer Slide Time: 17:04)

pPRsAnlte

[g?} Generic Programming

o Generalize algorithms
o Sometimes called lifting an algorithm
o The aim (for the end user) is
o Increased correctness
> Through better specification a
o Greater range of uses
> Possibilities for re-use
o Better performance

> Through wider use of tuned libraries
> Unnecessarily slow code will eventually be thrown away

o Go from the concrete to the more abstract
o The other way most often leads to bloat

Programming in Modern C++ Partha Pratim Das Maa7

So, instead of having to write separate specific code for these tasks, can we generalize? That
is the basic question that we are trying to answer in the generic programming. So, generic
programming tries to generalize the algorithm it is also, called lifting an algorithm. So, that
its correctness can be increased, because you are generalizing you are specifying it in a very

compact form, and possibly once to be used a million times afterwards.

So, a better specification must be possible, there should be greater range of use, that is the
basic purpose and the performance must be wisely usable for tuned libraries. So, for doing
this, we try to go from concrete algorithms that we write down in terms of C or C++ code, to

more abstract forms of algorithms.

So, as you come to concrete, things start bloating up, the code for stack, for input, for stack,
for a double, bloated up, we made an abstraction to made it a, made the element type to be a
type parameter in the template, it became compact. Now, it still can bloat if it is a stack of
vector. Stack, realized by a vector or a stack realized by a doubly linked list. Can | abstract it
by just saying that it is a container, where I can put an element take out an element, check if

the container is empty, and so on so forth.

(Refer Slide Time: 18:35)

E@ij

pPRsQEdto . 4 ED

Lifting example: Concrete Algorithms

/ Sum in Array: one cor

I a thn (doubles in array
double sum(double array(], int n) { // data
double s = 0;
for (int i = 0;
i<n;

not at end
get next data element
get value

retuln s;
Sum in Lis c ithm (ints in list
struct Node { Node next; int data; };
int sun(Nodex first) { // data
int s = 0;
while (first) { not at end : terminates
s = s + first->data; get value
first = first->next; get next data element
return s;
. 9C e T ———

PPl aEdlste . S EN

& |
% Lifting example: Concrete Algorithms

Fa
L

n I rithm (doubles in array
double sum(double array(], int n) { // data

double s = 0;
for (int i = 0;
i<n; not at end
++i) get next data element
s = s + array[i]; // get value
return s;

struct Node { Node* next; int data;
int sun(Node* Tirst) { // data
S s s
int s = 0; |
while (first) { / not at end : terminates on null pointer
s = s + first->data; get value

g il
first = first->next; / get next data element
e

}
return s;
}
[R SR .

pPRsasudste . U

& .
% Lifting example: Concrete Algorithms

Fa
L

Sum in Array: one cor algorithm (doubles in array
double sum(double array(], int n) { // data
double s/:'z)\, S
for (int i = 0;
i<n; not at end
++i) get next data element
s = s + array[i]; // get value
return s;
}
// Sum in List: another concrete a ithm (ints in list
struct Node { Node next; int data; };
int sun(Nodé* first) { // data
int s = 0;
while (first) { not at end : terminates on null poi
s = s + first->data; get value
first = first->next; // get next data element
}
return s;
}
Al X ST Ml] m—

So, that is the basic, lifting the algorithm is a basic idea, and | give you an example. Suppose
we are trying to do, we are trying to add the numbers in a data structure, let the data structure
be an array. So, that is the data given to us. And, well, since it is an array, | need to also tell
what is the size of the array, I tell that and then how do | add the elements, | will have an
accumulating variable s, says where | keep the sum, which I initialized to 0, and then | keep

on traversing on the array.

And there are two steps one is i < n, which checks if | have reached the end of the array,
because there are n elements, | can go up to n - 1. And there is ++i, which takes me from the
current index to the next index. That is it gets the next element. And as | have got the next
element, | add it to the accumulated variable s, the sample code, C code. All of us have seen

this a number of times.

Think about an equivalent code, equivalent way of doing this for a list. Let us say it is a
Singly Linked List, which has a node which points to the next node contains the data and you
write a similar function some passing the header of the node. So, which is the marker of the
data. Now you have a similar accumulator for, for s which will have the sum. Now, you start

with the first header and you keep on traversing the linked list we know.

So, what we have the header, we go to the next pointer, get the next value, go to the next
pointer, get the next value till we are at the end of the list where typically customarily we will
have a null value assigned to mean that the list has ended. So, we can go to the next element
by doing this operation, changing first from first to first point and next.

And any when at a certain point, then the value that | need to access is first pointer data.
Now, if you compare these two, then you see there are differences in terms of the first
underlying type of data, double and int. There is differences in terms of the data structure.
One is a list and other is an array.

But if you look at the loop in general, you can see that it is almost similar requiring three
basic operation that to be able to check that you are not at the end, to be able to start at the
beginning and then check that you are not at the end. And this has to be a way to go to the
next element. And there has to be a way to access that element and get that value to do that

accumulation.

(Refer Slide Time: 21:40)

pPRsQEdto . EN

Eéj Lifting example: Abstract the data structure

int sumSzieEa_) {
int s = 0;
vhile (not at end) {

s =5 + get value;

get next data element;
} —

return s; // return result
}

o We need three operations (on the data structure):

0 not at end
o get value
0 get next data element

S 9Cwe .

54 20 45 EN

L S O]

2 -
% Lifting example: Abstract the data structure

Fa
L

int syn(data) {
s =0;
“ Vhile (not at end) {

s = s + get value;
get next data element;

}

return s; // return result

}

o We need three operations (on the data structure):

0 not at end
o get value
0 get next data element

5 9Cee D T ..

So, we can lift these two concrete algorithms into an abstract algorithm to write it in a in
terms of a pseudo code, we say okay, given the data, which could be array or list whatever, it
is a while loop, which continues till the end is reached every time I check the current value-
added to s and then go to the next element. If we can do that, if we can do these three steps,
then we will be able to easily, generalize both these concrete algorithms into an abstraction
and that is what we are trying to do here a specific element type has been used, which, can be

very easily liberated by using a templatized type.

(Refer Slide Time: 22:26)

pPRsAsd e

[éj Lifting example: Using template

// Concrete STL-style code for a more general version of both algorithms

E
=]

an Input_iterator

P

template<class Iter, class T> // Iter sl
= /l something we can + and =
T sun(Iter first, Iter last, l_g_) { //'T is the accumulator type \ﬂ/’k
while (first != last) { // not at end &“ﬁ('
T —
s = s + *first; " // get value
e o
++first; // get next data element
} fismue

return s; D E\ BD i
} , M(/ 0 | 2 .9} =

o Let the user initialize the accumulator =7
float al] = { 1,2,3,4,5,6,7,8 }; // al0], al0], ..., al7]
double d = 0;
d = sun(a, atsizeof(a)/sizeof(*a), d); // [a[0],a[8]) = {a[0], a[0], ..., a[T]}
3 .6‘@@ ol et |

pPRsAud te .

- .
% Lifting example: Using template

Fa
L

// Concrete STL-style code for a more gemeral version of 1
template<class Iter, class T> be an Input_iterator
/1 something we can + and =
T sun(Iter first, Iter last, T s) { // T is the accumulator type
while (first != last) { // not at end
s = s + *first; // get value
++first; // get next data element
}
return s;
}
o Let the user initialize the accumulator
float al] = { 1,2,3,4,5,6,7,8 }; // al0], al0], ..., a7l
double d = 0;
d = sum(a, atsizeof(a)/sizeof(*a), d); // [&a[O]La[8]) = {a[0], a[o0], ..., a[7]}
a &]
[QC¢E D RNy

So, if I try to write this in the form of a template, | can say that, well, I will have something
like, like a pointer to the data, which | called lIter, or iterator. So, I will have a class iterator
which can point to any data element. Now, mind you, this pointing mechanism would be
maybe different between an array and a linked list. Because the way | go to the next element

in an array, and the way | go to the next element in a linked list are different.

But | can generically think that there is a pointer like thing, which say, if | have these data
elements, So far | am talking about a linear data structure. So, | can there is a sequencing
order in this, I am not saying whether they are indexed like this or whether they are linked
like this either that is possible. And | say that | have a iterator, which points to the first. So, it
is for the array it is a[0] for the list, it is a header.

And then | say that | have something like a node which is beyond my last element one
beyond my last element. So, for an array of size n it is the location a[n]. For a linked list, it is
a value null, which is where the next element should have been. So, I call this as my first and
I call this as my last. This is a basic process of iteration.

And then | have a template parameter T which tells me the element type of which the sum
type will have to be the same. So, what | do is | would say that | have an operator++, if you
think about pointer, you will understand is very immediately. | have an operator++ which
takes my pointer, the iterator from the current position to the next, then again current that

position to the next So, that takes me to the to get the next data element.

| have a * operator thinking in terms of as if it is a pointer, it is again similar it is basically
dereferencing whatever that iterator is pointing to I can get that element. So, that is get value.
And how long do I continue? | will continue till from the first is going till it becomes equal to
last, when this becomes equal to last the when first becomes equal to last | know that have

gone past the last element because it is one beyond the last element.

So, | will continue till first is not equal to last. So, | should be there should be a way to
compare these two iterators leads to values of the iterators and this like comparing pointers as
you can think. So, with that a this becomes a generic code which can work in different
contexts provided | can support this, ++, * and !'= operators in a proper manner | show it use

in in case of a of a concrete array where there is an array of 8 elements.

So, this is my begin Iter which actually a is nothing but address of a 0. This is the size the
number of elements which is | know there are 8 elements. So, it is 1 beyond a[8], is the
address of a[8], sorry there should be address of, is the address of a[8], but it just does not go

there goes one before that, and | will go up to that this is my end last Iter.

(Refer Slide Time: 26:42)

pPRBAnIl Lt

{%;33 Lifting example

o Almost the standard library accumulate
o A bit for terseness is simplified
o Works for

0 arrays
o vectors
o lists
o istreams

o Runs as fast as hand-crafted code
o Given decent inlining

o The code's requirements on its data has become explicit
o We understand the code better

Programming in Moder C+-+ Partha Pratim Das M321

So, with this generalization, now, | can easily do things uniformly for arrays, for vectors, for

lists, and so on.

(Refer Slide Time: 26:53)

pPRs Qs to . EN

{:‘éj Basic Model: Algorithms ==> lterators <== Containers

&

[son | [fing] copy =l o Separation of Concerns

o Algorithms manipulate data,
but do not know about
Containers
- o Containers store data, but do
(Iterators) not know about Algorithms
o Algorithms and Containers

interact through Iterators
o Each Container has its own

‘ P [:
vector | | list || m deque = iterator types
N
i 9Cwe ..

And that will be as efficient as doing it in the handcrafted code. So, for this C++ standard
library provides a generic model, which say that, well, what are the things that | need to do? I
will have to do different | will have different containers as in here, these are the different data
structures, | can have a vector of a list, as a map and so on. | have different algorithms to
perform, | want to do a search, | want to do a find, I want to do a copy, | want to do a sort and
so on. So, these are different algorithms.

If 1 look in the C way then for every data type, for every data structure, | have to implement
every algorithm. So, if there are 60 10 containers that C++ standard library has another 60
algorithms roughly, then there are 600 implementations you need which is humongously
large, | get rid of that by introducing the iterators.

Iterators are as | explained, simply, it tells you the way to get start from the beginning of the
data structure go over till the end at every point gives you the data. So, if the algorithm does
not assume that it knows the container, if it knows that there is somebody called iterator,
which will give you the elements 1 by 1, then the algorithm can be written even without

knowing the container.

The containers can be implemented without knowing what the algorithm will do with them,
because all that they need to provide, is the implementation of the iterator. That is the current,
the beginning, the end the current position, how to go to the next position and how to give the

next element.

(Refer Slide Time: 28:39)

rP L AH

{éj Basic Model: Iterators

o A pair of iterators defines a sequence

o The beginning (points to the first element - if any)
o The end (points to the one-beyond-the-last element)

begin: end:

o An iterator is a type that supports the iterator operations
o ++ Go to next element
o * Get value
o == Does this iterator point to the same element as that iterator?

o Some iterators support more operations (for example, ==, +, and [1)

Programming in Moder C+-+ Partha Pratim Das M3 23

So, this is the basic model that is used. So, this is the better diagram of the iterator that | was
drawing earlier. So, it is typically the initial is called begin, one pass the last one beyond the
last element is called end. And there are three operators++ to go to the next element start with

the value and equality to check if two iterator values are equal or not.

(Refer Slide Time: 29:04)

pYPRLAHItO

ﬁééj Basic Model: Algorithms + Iterators

o An iterator points to (refers to, denotes) an element of a sequence
o The end of the sequence is one past the last element
o not the last element
o That is necessary to elegantly represent an empty sequence
o One-past-the-last-element is not an element
> You can compare an iterator pointing to it
> You cannot dereference it (read its value)

o Returning the end of the sequence is the standard idiom for not found or unsuccessful

An empty sequence:

the endﬂ begin: end:

some
iterator:

Programming in Moder C++ Partha Pratim Das Ma324

So, algorithms can now be written just thinking of the iterators. So, whatever you need to do,
you just do not have to think whether you are going over an array or a list or a set or
anything, you just think that the iterator, call the iterator operation, and that will give you the

next element to work with. You can work simply with that.

(Refer Slide Time: 29:28)

pPRBQELl e

W Basic Model: Containers + lterators
i

set
kind of tree

S 9Cwe T - T

Similarly, containers do not need to think about the algorithms all that they need to support
the iterator and here we show that the support can be provided not only for the sequence

iterators sequence containers like vector, which is kind of an array or a list, which is linked

singly or doubly. But it can be provided for a nonlinear data structure like set. Set is a

collection of unique elements. So, it is typically kept in the form of a binary search tree.

So, in that binary search tree, if we do a in order traversal, then naturally the nodes are
traversed in a certain way left, then parent then right, if we do that. So, the traversal order
here would be I will start from here, I will call left left left until I get to a lift node, this is the

first iteration value this is the first element | will get, these are first of the iterator.

Then | will have this element on ++, this element on ++, next ++ is here, next ++ is this this
this this call, because it keeps on going down, then it is this element then it is this element,
then it is this element and then it does not have anything where it should. So, that is my end
of the iteration. So, you can see that even when a data structure is nonlinear, it can be

linearized through this process of iteration very simply.

(Refer Slide Time: 30:55)

(AR R

[ﬁéj Algorithm: find()

template<class In, class T> '

In find(In first, In last, const T& val) {
while (first != last && *first != val) ++first;
return first; —

void f(vector<int>k v, int x) { works for vector of ints
———
vector<int>: :iterator p = find(v.begin(), v.end(), x);
if (p != v.end()) /# we found x *
Il e
}

void f(list<string>t v, string x) { // works for list of string
1ist<string>::iterator p = find(v.begin(), v.end(), x);
if (p != v.end()) /+ we found x *
Tl e

}

void f(set<doubledt v, double x) { works for set of doubles
setcdoudle’s
set<double>: :iterator p = find(v.begin(), v.end(), x);
if (p != v.end()) /* we found x *

eCee .8 E—C ..

So, using that we can have very nice algorithms written for example, if you compare these
codes to find it is one is for vector of int, one is for list of strings, and one is for set of
doubles, you can see that the code is practically identical, because all that it needs to know is
the first and last of the iterator and the type of the value it has to look for, which is all
templatized and all that you are doing is you are checking that you are covering the entire
data structure. You are checking if the current iteration value, which is start first equals the
value given. If it does not, then you go to the next one. And you keep on doing that you can

see that all this code are perfectly identical.

(Refer Slide Time: 31:46)

L O

[l;} Algorithm: find if ()

template<class In, class Pred>

In find_if(In first, In last, Pred pred) {
while (first != last &k !pred(sfirSt)) ++first;
return first;

}

void f(vector<int>t v) {
vector<int>: :iterator p = find_if(v.begin(), v.end, 0dd());

if (p != v.end()) { /* we found an odd number #/ }
7/

A predicate (often of one argument) is a function or a function object returns a bool given the
argument/s. For example

bool odd(int i) { return i % 2; }

0dd(7);
functior t (Module 40
struct Ddd { bool operator((1nt 1) const { returni 4 2; } };
0dd odd; n d of typ
0dd(7);

QG we o [0

So, that is a big advantage that we get by doing this kind of generic programming this is
another where if you are doing find and you can even generalize it further saying that find
finds the element which is equal to the given element, but | can say that | do not just want to

find “PPD”, | want to find the person who is teaching programming in modern C++.

So, | can provide a condition statement predicate for that, which can be provided as a as a
functor. As you can see here, the function object as you can see here, we will talk more about

this as we go forward.

(Refer Slide Time: 32:30)

L

ﬁ Module Summary

o Overview of Standard Library components of C++

o Learnt fundamentals of generic programming

Programming in Moder C++ Partha Pratim Das M43 28

So, this was a basic introduction to standard library component, particularly the generic
programming side of it. So, that we can subsequently discuss the actual STL which will be
the topic for the next module. Thank you very much for your attention and see you in the next
module.

