Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 42
Input-Output: Streams in C++

(Refer Slide Time: 0:31)

Programming in Modern C+

Module M42: Input-Output: Streams in C+4

Partha Pratim Das
Department of Computer Science and Englneering
Indian Institute of Techaology, Kharagpur

ppdicse fthgp ac in

AN uel's in this module have Deen accessed in September, 2021 and found to be functiony

Progrommeng m Moders (o 4 Farths Pratim Dt ey I

Welcome to Programming in Modern C++, we are in week 9 and we are going to discuss
module 42 - M42.

(Refer Slide Time: 0:35)

{;@3 Module Recap

o Discussed formatted and unformatted |/O using C Standard Library
o Discussed 1/0 with file and string

So, in the last module we have talked about doing formatted and unformatted 1/0 using C
standard library, particularly the component stdio.h. We discussed 1/O with file and string and

specifically introduced the notion of files and streams and their association.

(Refer Slide Time: 0:53)

Module Objectives

’
p,
0
o To understand object-oriented stream input/output of C+4-4]
]
v
Source: Chapter 21 - C4+ Stream Input/Output, (C) Copyright 1992-2004 by Deitel &
Associates, Inc, and Pearson Education Inc. All Rights Reserved
Programming s Madees (4o Putha Potm O LA ‘

In this module, we are going to discuss about the object-oriented stream input-output of C++.
How does C++ do it? Obviously, stdio.h is also available in C++ as you know as cstdio in the
std namespace. You can use all those functions, but certainly you can do things in a lot better

way in terms of using the object-oriented stream operations in C++.

(Refer Slide Time: 1:22)

[@} Module Outline

0 ‘
of
ol

o Standard 1/O Library

. Module Summary

Frogt amemong e Moders (oo Pt P O LU ‘

This is the module outline which will be there on your left panel all the time.

(Refer Slide Time: 1:34)

[ﬁi} Features of C++ 1/0

Features of C++ 1/0

Progr amemng in Madom € o ¢ Faths Prasm O Mas ‘

So, let us identify what are the key features of C++ 1/0.

(Refer Slide Time: 1:40)

[ﬂ} Features of C++ 1/0

o Many C++ 1/0 features are object-criented
o Use references, function overloading and operator overloading -

o G+ uses type safe 1/O ®
o Each| 6.c_>perat:on is automatically performed in a manner sensitive to the data |
type
o Extensibilty
o Users may specify |/O of user-defined types as well as standard types
Programmiog s Mies €+ Puths Ism O s I

There are three key features: one is most of the C++ 1/O features are object-oriented, like in
the C stdio.h, you had everything as a collection of functions, procedural. Here, you will have
most of the things as classes and objects instantiated for those classes, and you will deal with
the member functions of those classes. So, that is, that is what makes it really-really flexible

and you know, gives you all the advantages.

The second is, C++ uses type safe 1/O that is in C when you are trying to say write a value

say you are doing trying to write an integer value (int type of value) you will have to rightly

specify the format in the corresponding position. If you write %d it is good, but if you write

%s and try to write an integer value, you will have unpredicted results.

And this correspondence of the type of the value you are writing and the format specification
that you have given is to be managed by the programmer, which is a big overhead and in the
source of huge number of errors that have happened over time and keeps happening. But in
C++ it is type safe, you do not have to specify the format to write as you have seen. The
format is picked up based on the type of the data you are going to stream we are going to
write. You can just really say that | want to write this | want to read this, compiler knows the
type of the variable and accordingly chooses the right format.

And if you want to change that default choice, there are also additional features given to you
So, type safety is a big feature. The third that you have is extensibility that is in C. If you
have to write or read a particular structure that you have defined, user-defined data type So,
to say like complex, you know, you cannot have any specific function specific format string
for doing that, because the format strings were created before your particular your program is
done. So, you have to take it component by component always break it down to the lowest

level of built in types and do the read write this is extremely inconvenient.

Whereas in terms of C++, you can actually use the function overloading we have discussed
enough of that already. Particularly the operator overloading in terms of the streaming
operators and define your own input and output operators for your own type. And then just
keep using it. And it will have all the behaviors of object orientation and type safety as we
have for the building types. So, these are the three major features of C++ type of 1/0 and that

makes it really powerful.

(Refer Slide Time: 4:56)

Streams

o Stream

o A transfer of information in the form of a sequence of bytes

o The term stream is an abstraction of a construct that allows you to send or receive
an unknown number of bytes. The metaphor is a stream of water. You take the
data as it comes, or send it as needed. Contrast this to an array, for example, whiclfi
has a fixed, known length

¢ |/0 Operations
o Input: A stream that flows from an input device (that is, keyboard, disk drive,
network connection) to main memory
b istreanV ,
> ifstream
o Qutput: A stream that flows from main memory to an output device (that is,
screen, ptimerfisk drive, network connection)
b ostream V .4
> ofstrean \/

Programemeng im Moders Co o

We have already talked about streams So, just a quick reminder that it is a transfer of
information in the form of a sequence of bytes. The term stream | said it comes from the
natural you know, what a stream and for doing 1/0 operations here what you have is you have
certain stream classes defined. So, if it is an input device then it was represented by istream,
if it is | mean typically stdin or you can have a file defined or associated as an ifstream object.

You can understand that i stands for input f stands for file.

Similarly, for output you have ostream and ofstream. So, these are the classes given in the
library, so that you have all that you need to do is to just specify the physical file object or the
physical device with the corresponding stream type and everything else will then come from

that stream type class. So, you have already seen this but not very consciously though.

(Refer Slide Time: 6:08)

P
¥ Streams
@

%

o 1/0 operations are a bottleneck

to process the data in the stream

o Low-level 1/0
o Unformatted
o Individual byte unit of interest
o High speed, high volume, but inconvenient for people
o High-level 1/0
o Formatted
o Bytes grouped into meaningful units: integers, characters, etc
o Good for all 1/0 except high-volume file processing

Fvogrmming b Midven C4 4 Poths Posm O s ‘

Now, again a reminder is 1/0 operation is a bottleneck because 1/0 with the disk is very-very
slow. So, you can work around this if you have a low level you that is what you do you for
individual bytes of interest, you can just put them in the buffer and flush them out high speed
high volume can do. But high level 1/0 which is typically formatted needs to be grouped in
terms of the typical data types and they are good for all kinds of meaningful use, because you

cannot go down to low level and do things all the time.

So, the streams give you a mechanism by which you can do a high level I/O with its
advantages, but underlying it uses the buffers and all the padding and all those to make sure

that you get the efficiency of the low level 1/O that is a basic process of the stream.

(Refer Slide Time: 7:12)

<iostream> Header Files

o jostrean library
o <iostream>; Contains cin, cout, cerr and clog objects
o Atomanip>: Contains parameterized stream manipulators
2/ I anipulators

L Ut
e bt

= |& |
@ /. _am

- IS
(o) (o)) (o (=)
Ppamning s Moden €44 Mo '

So, to start with, let me introduce the stream libraries that we have. You are already familiar
with 1/O stream which is this library. You can see here in this diagram. | am trying to show
the where basically there ISA hierarchy of the major classes that are involved. So, you can
see that you have your 1/O stream is one com. So, let me explain the notation. So, whatever
you see in white, these are your classes. So, you have a hierarchy diagram amongst them.

What you see in terms of boxed and red names are the standard library components.

So, these are the headers that include the definitions of these corresponding classes. Whatever
is in blue is what we will typically include in a user program. Whatever is green is included
from these files, but we do not need to directly include them.

So, if we if you recall into this, you will know that we have always started by including
iostream, So, what do you get? If you include iostream then you actually get four streams,
which we have always used the cin for input, cout for output, and there are two more cerr for

error reporting and clog for log reporting.

Since we have not worked with the files, we have not included this. But this will be required
to be included if 1 want to work with files, input and output both. So, it has fstream, it has
ifstream which is input file stream, it is output file stream and iostream. When you include
iostream it actually in turn includes these two headers which we do not have to specify which

has the istream and the iostream for input as well as output.

Now | have mentioned here another which is iomanip. It is a little unnatural name what it
means input-output manipulation (manip comes from manipulator). So, if you include
iostream we for every data type you get a default formatting information in terms of what is

the size, what is the weight, written alignment, and so on so forth.

But if you want to change that, you want to specifically widen the size shorten the size, you
want a left justification, you want a right justification all of this, then you need to do this
stream manipulation through this iomanip since we have not done this before, we did not
require this earlier. So, as you can see, to summarize that, you will all that you will need to
remember is including iostream for standard input-output, including fstream if you are doing
file input-output and including iomanip if you want to manipulate the formatting for finer

details.

(Refer Slide Time: 10:43)

0 fatreas and ostrean inherit from los

> lostreas inherits from istroam and ostrean
o << (left-shift operator)
0 Overloaded as stream insertion operator

® > (right-shift operator)

0 Overloaded as stroam extraction operator
0 Both operators used with cin, cout, corr and clog, and with user-defined stream objects
o {stream: input streams
0 cin > grade,
D cin knows what type of data i to be assigned to grade (based on the type of grade)
@ oatream: output streams
0 cout << grade;
D cout knows the type of data to cutput
0 corr << orrorMessage; //
Iffered - pints errorMossage immediately
0 clog << errorMessage;

b Buflored + prints orrv‘uu 25 3000 as output buffer is full or flushed '
Fregrammng 0 Modews €4+ Farhs Pt Din M

So, with that, let us take a quick look into the stream classes and objects. So, at the top you
have ios which is the basic istream and ostream come from there you have, in that you have
for the two operators which look like left shift operator for output streaming right shift
operator for the input streaming. Then you have istream, which has cin. Then you have with

that you have ostream with which you can do up to cout you have seen this several times.

You can at the same time do cerr for printing unbuffered messages immediately, like cout, as
| said is buffered. So, you may write quite a few things, but it comes from the console, maybe
at a later point of time. But cerr it will come immediately because error is very important to
report. Whereas there is a logging clog where you can just log the things that are happening,
so, it is not unbuffered it is buffered because you do not need to look at the log at every point,
whenever the buffer is full, like the cout when the buffer is full or when needs to be flushed,

it is put together.

(Refer Slide Time: 11:56)

@ Stream Output

Stream Qutput

‘
Programming in Moder C++ Partha Pratim Das w2 8

|

“' Stream Output

r':'
L

stroas performs formatted and unformatted output

0 Uses put for characters and vrite for unformatted output
0 Qutput of integers in decimal, octal and hexadecimal

0 Varying precision foe floating points "
0 Formatted text outputs B
¢ £<is overloaded to output built-in types v
0 Can also be used tooutput user-defined types _—
0 cout << ‘\n’; / + “/,,7\ \
Pnnlwltm character / \

/ \
0 cout <4\ ondl;\ L 300

b endl ﬂ';um Bnipulator that issues a%w

character and flushes the output buffer

0 cout <<(flush)\ v
5 f1ush Viashés the output buffer
® pat member function

0 Qutputs one character to specified stream: cout, put(’A’);

O Returns a reference to the object that called it, so may be cascaded: cout.put(’A’).put('\n');
0 May be called with an ASCll-valued expression; cout,put(65);
& Outputs A
Frvgramemeng ot Modees € 1 4 Ports Prati D Mo l

Stream Output

o ostreas: performs formatted and unformatted output
0 Uses put for characters and write for unformatted output
0 Output of integers in decimal, octal and hexadecimal
0 Varying precision for floating points
0 Formatted text outputs

0 << is overloaded to output builtin types

an also be used to output user-defined types
0 cout << ‘\n";
b Prints newline character
0 cout << endl;
& ondl is 3 stream manipulator that issues a newline character and flushes the output buffer

out << flush;

& flush flushes the output buffer

® put member function

» \
7~ \ S
0 Outputs one character to specified stream:(cout.pat('A') — N /
O Returns a reference to the object that calledlit, s ascadded: \cout put CADLRUE("\n'):
0 May be called with an ASCll-valued expression; cout,put(65);
& Outputs A

Frogamming o Modon (o o Portha Pratm Din MG I

So, coming to stream output, there is not much to add. It is on ostream this operator. These
are the typical ways to write just | would like to mention that flush. Suppose, if you do if you
are writing, then it is being written on the buffer. And you are not being able to see it on the
console, because it is just being written on the buffer. So, if you want to make sure that
whatever you have written is shown on the console, then you can do it flush and the way to

do this is to just output flush like here you do a flush along with a newline.

So, endl is just not a newline, endl is not equivalent to this. endl or end line is actually a
manipulator which puts a newline, but after that it flushes the output buffer. If you just use
new line then it you may find that actually the newline has been put to the cout, but you are

not seeing it on the console.

Similarly, for you know kind of unformatted or character 1/0 you have put function member
function which you can call on the cout. As you can cascade your formatted 1/0 your object
I/0 you can also cascade the character 1/0 like this cout.put. So, basically you can make out
that the result this will put A on to the console and it will return cout again. So, this again
becomes cout. Exactly the same behavior, which we see in terms of this operator you have
seen we have written that we have seen that. So, you can again do a putc and keep on doing
this.

(Refer Slide Time: 14:01)

finclude <iostreas
using nasespace std;
int sain() {

* 0x012a78¢d;
164 = Ox012a78c028070cHd; L/

{ $
\<< § << endl;
1T << endl;

cout

U <t
cout << (voide)(s) << endl;

cout << p et

¥ int J dec L tal (oct hex | format
o A chare pointer prints 1k Y 10 pr the pointer vk 110 voide by atatic.cant<conat voide> o (voide

Progrommng i Modes (o o Parths Pratem D Mau i

@ Print Built-in Type Data
N

finclude <jostreasd
using namespace std;
int main() {

0x012aT8e0250Tacd; // g
ets0/7; .~ |4

/ \
) —_[9}) d
L[5\ /
cout << Kt 17 At dpé
cout << hex << 1 << endl; 1 —
oot << | << endl;
«* Yy
cout <C 164 <« * *
cout << g <<
cout <Cqe¢
cout ((}\((e
cout <o ke * ppd
R Rotde) (2) << end); W 02522200
cout << T TR
}
0 iat) ma dec { oct) hex
o A chare pointer prints the To print the pointer 10 voide by static.cast<const voide> « (voide)
Srogy vmavng m Moders €+ o Purtha Prates D Mo I

So, this is the basic streaming output. The earlier example | showed in the module 41
regarding using the printf the same example | have now written in terms of cout and you can
see what all are getting printed. The only two points to note here like this you will get with
%d in printf, and this you will get with %X, this will get with %o0. You do not have these in

C++ because it is being derived from that type.

So, if | write i then the default format is %d. And whatever %d will do write it in decimal. So,
if I want to write it as hex what do | do? | just do this very nicely just yes cout hex than this.
So, what it does is? It streams hex first onto the cout, sets it in the hexadecimal mode and
then when i comes then i will be printed in the hexadecimal mode. So, you will get the

printout, print as 11, rather not 11, one one because it is a, it is a hexadecimal value.

So, these are again the stream manipulators. So, you can very simply like we have seen endl,
we have seen flush, hex, oct or other manipulators that you can very frequently use when you
have the same type of data to be printed in different other forms that you want.

Here, if you have this character pointer, you can print it as a string by using %s. But if you
want that pointer value, you can print this that by %p. But here, when you do it with cout in
C++, when you do it ostream the type it knows for s is char* and char* is a string C style
string understanding for here. So, if you output s, then it will be output as a string, you will
get this string. So, how do you get the value of s value of this pointer which you could get as
%p. You cannot get that directly, so all that you need to do is to erase the type information

from this pointer.

So, you can use a C style casting to void* which again you should not do, you should do a
C++ style casting cast the constant char* to const void* and then use it and in that case it will
not know what type of value it is pointing to. So, it will not try to interpret that it will simply
print that value and you will get the pointer that is address of the first character. So, these are

the two basic differences from whatever we know in C.

(Refer Slide Time: 17:20)

{g;}] Print User-defined Type Data

finclude <lostrean>
using nasespace atd;

class Cosplex (
doudble re, in;

peblic
Cosplex(deuble r, double &) : re(r), ta(1) { }

friend cstreant operator<<(ostreank cs, const Complexk c) {
cout << *(" < g.re <t Y g qm i)Y

returs o8

Cout €<) <€ ") " < c2 <C andl;

Frog smeeng m Moders Co v Pt Prates D MO ‘

In terms of user-defined type, obviously, you have a big advantage because now you can
define overload your output streaming operator and put it as a friend function in the class and
cascade and write the user-defined objects exactly as the built in objects are written. I will not
| am not going through these details, because you have already we have already discussed

this at length earlier.

(Refer Slide Time: 17:49)

finclude <candio>
#include <iostream>
using nanespace std;
int sainl) {

const char op » “ppd®i,,
int vp = &i; R /
cout it ™ | erimts (4
Cout << hox << § << endl;| prim
Cout <€ oet << § << end); | prim
cout €< 1 ¢t Y
cout << 104 << *
cout < ¢t Yy |
couL <Cd <t | ¢
cout <€ e ¢t Y
cout < adct | m
Cout <CpdCct g
) ——

o Nate the use of hex and o¢t n (
Frogrsmenng w0 Modeen € 4 4

This is just a comparison of how it writes between C++ and C. If you write the same similar
things in both, you will find that, these all actually write identically. Though there are some
differences in cases. Here when you are writing float or double the default precision of %f for

%lIf is different from the default precision being taken.

Of course, you can change that by streaming an appropriate manipulator of precision or set
precision. There is a set precision manipulated by setting that you can change this precision
and make them identical otherwise, all of this will look very similar and you can you can very
easily when you write it side by side, you can very easily see that all these information which
you will have to have in your mind or to go back to module 41 slides and check the tables
that have given and carefully construct you do not need to have any one of those. Here are
very simple you just say these are value | want to output that is it. So, that gives you a big-big

advantage.

(Refer Slide Time: 19:20)

Stream Input

Stream Input

Frogrameming o Lioders {as Fartha ratiom D LTTHRE .

Stream Input

¢ >> (stream-extraction)
o Used to perform stream input

o Normally ignores whitespaces (spaces, tabs, newines)

o Returns zero (false) when EOF is encountered, otherwise returns reference to the 8

object from which it was invoked (that is, cin)

o >> controls the state bits of the stream

o endl is a stream manipulator that issues a newline character and flushes the output
buffer

o >> and << have relatively high precedence
"o Conditional and arithmetic expressions must be contained in parentheses
o Common way to perform loops
vhile (cin >> grade)

o Extraction returns 0 (false) when EOF encountered, and loop ends

Frgrammmg o Modess €4 o Parths Fratios O MO ‘

Stream Input

o >> (stream-extraction)

o Used to perform stream input \ € x &

o Normally ignores whitespaces (spaces, m&'ﬁ newlines) (9"~ :

o Returns zero (false) when EOF is encountered, ozhcmiywﬁuns reference to the IS
object from which it was invoked (that is, cin)

o >> controls the state bits of the stream

o endl is a stream manipulator that issues a newline character and flushes the output
buffer

o >> and << have relatively high precedence
o Conditional and arithmetic expressions must be contained in parentheses
o Common way to perform loops
vhile (¢in >> grade)

o Extraction returns 0 (false) when EOF encountered, and loop ends

Frogremmng o Vodes €10 Parthe Pratm D Man

Anyway, if it comes to input, it is obviously very similar. It is a stream extraction, as long as
you do not get to the end of the stream or end of file, the extraction will happen successfully
and the input streaming operator can be can control the state of the bits that are coming in.
And obviously at this point, it will be good to note that both of these operators have pretty
high precedence. So, if you have some conditional or some, you know expressions arithmetic

expression.

For example, if you want to suppose | want to write cout << a + b. If | write this it will be
interpreted as because this streaming operator has higher precedence than plus. So, this
obviously is not what | am meaning. So, it is always good that when you write expressions in
your input or output streaming, always put them in parenthesis to make it safe. So, now this
will happen and only that result will be output to the stream. Similar thing will happen for

input as well.

(Refer Slide Time: 20:48)

Member Functions

o cin,eof()
o returns true if end-of-file has occurred on cin
¢ cin.got()
o inputs a character from stream (even white spaces) and returns it
e cin.get(c)
o inputs a character from stream and stores it in ¢
o cin.get(array, size)
o Accepts 3 arguments; array of characters, the size limit, and a delimiter (default of
\n')
o Uses the array as a buffer
o When the delimiter is encountered, it remains in the input stream
o Null character is inserted in the array
o Unless delimiter flushed from stream, it will stay there

Progromming w Modeen Co o Porths Pratm D Man .

There are a number of member functions for cin as well, which, like eof tells you, if you are
at the end of the file, which you need to know, you can have character 1/0 using get or getc,
get array. So, these are the different ways to do the corresponding operations in the istream

domain.

(Refer Slide Time: 21:11)

Member Functions

¢ cin,getline(array, size)
o Operates like cin.get (buffer, size) but it discards the delimiter from the
stream and does not store it in array
o Null character inserted into array

e ignore

o Operates like cin.get (buffer, size) but it discards the delimiter from the
stream and does not store it in array
o Null character inserted into array

o putback
o Places the previous character obtained by get back in to the stream

® poek

o Returns the next character from the stream without removing it

You can read a line by getline, you can ignore some, you can you have read character, you
can put it back, you can see what is the character you are about to read without actually
removing it from the stream and so on. So, there are number of these functions, you can use
them as an when you so, whenever you need to do something just look up, you will find that
in I mean almost certainty | can say that it will be available in the standard library in the

istream or ostream, ifstream or ofstream for you directly.

(Refer Slide Time: 21:32)

|
{é@i Input / Output with Files

o Open

o Like in C, files nefd to be first opened and associated with a stream
2 ayiile; V

ofatreas

o Unlike C (where stream is a pointer), stream is an object in C4-4
o Unlike C (where mode is specified by a string flag), stream object itself is of input or
output types
¢ Read / Write
o Like in C, we perform formatted or unformatted 1/0 on an open stream (file)
@ Unlike C (where functions for formatted 1/ are variadic and needs explicit format
specification), objects are read / written using streaming operators for the data types

o Close
o Like in C, streams need to be closed when done and disassociated from the file
syfile.close(); e: F to f1le and & fate ¢ t

o Binary Files
ielffdou; sbinary flag i the opening mode, _,, ., waz |

So, now, let me just show you the final total example with working with the file in C++. So,
like in C, you need to open the file that is you need to associate the file with the stream. So, if
I am trying to do this, say for output, I am showing the example for output. | declare my
stream object myfile and that is of type ofstream, output file stream very simple. And then my

file has a method open to which I can pass a name.

So, this simply does the association if it cannot, then it will throw an exception. An alternate
way of doing that would be to do it at the time of construction itself that is you can make out
this construction is happening by default constructed, but ofstream also has a constructor
which takes the name of the file as a string. So, you can directly to the opening along with the
creation of the stream object. So, this will happen and then you can check if it has been if a
file has been open correctly, this will give you a true if it has been opened correctly otherwise

false.

So, this makes it really very simple. You do not have to do all these modes and all that in
terms of see if you see that the stream was just a file pointer, which did not have any specific
type for input or output. So, it is possible that you have multiple file pointers open and you
mistakenly use an input file pointer for doing a fprintf or the vice versa these kinds of things

will not happen here because your corresponding types are radically different.

So, you do not need to set a mode because this itself tells you the mode. You do not need to
say that this is output, because this will itself tell you that this is output if you have to do
input, then you have to create a stream which is an object of ifstream class and the mode will

be the input one.

So, this is a | mean the clean object-oriented solution. After the opening has been done, that is
association of the file and the stream has happened then you keep on using the stream keep
on writing or reading whatever you have planned for in the formatted or unformatted manner

to that using the streaming operators.

And finally, when you are done then you close. So, like in C we had had the close fclose
function which takes the FILE* pointer and closes dissociates here you have the closed
member function on the corresponding type of the stream object, and you just invoke that. If
you want to specifically open a binary file, then you have a flag ios::binary, which you will
have to specify when you are opening the file or you are creating the file as a second

parameter, if not specified, it opens it as a text file that is a default behavior.

(Refer Slide Time: 25:22)

Input / Output with Files

| #include <tostreaw>

finclude <fotrean>

nAzespace std;
) { ofstrens aytile;V

exazple, txt U o

#include cioatreasy
finclude <fetrean>
Sinclude <string> /

using
fat sa

space std;

exasple.txt

else cout << *Unable to open file")

Frogramming i Modes C 4+ Portha Pt s Mo l

So, here is a small example, actually two examples one is writing to output file. So, | create a
default stream object. | open a file and do the association. | do a streaming to it exactly as |
do in terms of cout. And that is written to that file, I do a close which will by which the
association is broken, and the buffer will be flushed and the file will be closed.

Similarly, here, I am opening a stream with my given file at the construction itself. I check if
it is open. If it is open, then | am reading from my file, that is what | have written here, | am
reading that and | output that so, | am reading it as a as a line. So, this is a line buffer, | read
it as a line buffer and output that to the stdout. When | am done, I close my input file. This is
a simple way everything else besides these few lines, everything else is exactly as you did in

case of cout or cin.

(Refer Slide Time: 26:36)

[ﬁ:ﬁ Type-safe |/O

Type-safe 1/0

Frogysmmarg Mabes (o o Parths Pratin Dim M .

[@i} Type-safe |/0

e << and »> operators
o Gets format from type of data being read / written
o Overloaded to accept data of different types
o Cascading for ease of expression
o Avoids the use of error-prone variadic functions
o When unexpected data encountered, error flags set
o Program stays in control

Progrommng b Modhws €4+ Parha Prots D o ‘

Now, the most critical thing is that the I1/O in C++ is type safe that means it is very difficult to
make errors in the /0. It gets the format from the type of the data | have already mentioned,
and for all built in types, the overloads of this operators are already given. Cascading makes
the ease of expression you do not have to correspond the format with the type of you know
data listed you just keep on saying one data after the other it happens automatically. So, it
avoids the use of the error-prone variadic that is variable number of argument functions like

printf, scanf and so on so, makes it and makes it much easier to use.

(Refer Slide Time: 27:26)

Binclude catdio>
finclude <iostrean>
using namespace std;

Gonut <€ 1 <c !
eomt << § << 'y
cout << d << e2dl;

o Catdio>
Sinclude <fostrean>
using nasespace std;

n¢ sadnl) |
st 1eb, Jed;]
double d = 2.37483; >
pr i
(o :
Lpr V/,
Nt << L <
eout <€ § << Yy
ot << d << edl; B 323148
}
Trganmg o b €40 Partha Pratm Din [(FY

finclude <cstdio>
#include <iostreas>
using namespace std;

(’ cout << 4 «
PAC RIS RO
) cout << d << end); 2.37483
-
Frogrammeng m Moders € 4+ Purtha Pravm D Mo x .

So, here is an example of type safety C versus C++. So, there are two types of two integer
variables and one double variable this is what | wanted to write for the integer %d %d it
prints okay. Here | have missed out on one %d which can always happen and | write two. So,
since it is it is missing and there are two values given it prints the first one it knows the
percentage the for the second value j it does not know what is a format. So, it prints in some

god knows in what format.

A problem of the reverse kind can also happen for example, you have written two format
strings and but given only one input, which will not give you an error or garbage but you will
simply ignore. So, %d it has got i it has printed that it does not have a second variable to
print. So, it does not do anything. So, all these kinds of errors are possible. What is even more
dangerous is if you use the wrong format. You want to write the double value you have to use

%If it prints the value correctly.

Suppose you have done it with d it will not tell you anything it will silently print something.
You know what does it printing it is | mean this entire double is interpreted, reinterpreted as
if as an int in some way and a negative value is generated. If you happen to do the reverse,
you are trying to print an integer but using the format for double %lf you again get something

meaningfulness. So, all these errors will keep on happening.

If you do it in the C++ style, there is no scope of error because all these specifying the format
the order the matching corresponding correspondence between the position of the format
string and the position of the variable all these do not exist. So, you can just keep on

cascading and it is guaranteed to work it is safe, type wise it will always work.

(Refer Slide Time: 29:43)

#include Ciostrean>
using nasespace atd;

class Complex { dosble re, im;
peblic: Coaplex(double r = 0.0, desdle & = 0,0) : relr), in(i)

friead ostreask cperator<<(catreask os, :::.s’./f::;in(¢)
cout <€ *(* < cre <€ 7, " Ko dmAe)Y
return oa; v

cin > c.re » c.ing \//

return os;

/
friesd istreask cperator>>(istreask os, v,/cﬂ.;»lnx’v e) {
4

)
}

int maia() {

Complex c1 = { 2.6, 7.3 }, ¢2(4.3, 8.9), <3, c4;
e ————— ;/,é
COut << €1 €€ "1 ¥ << €2 << end); /
COUT €€ €3 << ") " A< of << endl; 2 1 (0, 0); (0, ¢
¢in 2 €3 » ch; Mcadir 8 L 0.8
cac'.«d«';'((?/«w.‘ll: Cascading the gristing: (1,2, 3,70 (3.4, 9.0) &
}
Frogramng m Moders Co o Parthe Pratim D Mo I

What is more is the type safety extends to user-defined operators this is just for your
reminder. So, here is the operator for output is the operator for input which I have defined for
the Complex class you have seen this before. And here, we have some Complex class objects
which we can cascade and write, cascade and write. Then we can read into them using the

read operator and again right to check that you are getting correct values.

This is for completeness, because we have already discussed this, but for completeness in the
context of the 1/O is very important that it is type safety is not only available for the built in
types, but the same safety and the same syntax and the same cascading is available for any

user-defined type which makes everything very uniform.

(Refer Slide Time: 30:38)

P
1 Unformatted 1/0
i

Unformatted 1/0

Prwgramming i Moo (44 Partha Fvatm D Lk '

Unformatted |/0

o read and write member functions

o Unformatted /O

o Input/output raw bytes to or from a character array in memory

o Since the data is unformatted, the functions will not terminate at a newline

character for example

o Instead, like getline, they continue to process a designated number of characters

o If fewer than the designated number of characters are read, then the failbit is set
o geount

o Returns the total number of characters read in the last input operation

.3

Certainly, you can do unformatted I/O there are member functions like read, write, getline.

We have already seen total number of characters that you have done and so on.

(Refer Slide Time: 30:53)

Pt .
ﬁ;i Stream Manipulators

4

Stream Manipulators

Frogrammeng s Madurs Co o Farts oot D won ‘

Fa
@3 Functionality of Stream Manipulators

P

o Setting field widths

o Setting precisions

o Setting and unsetting format flags

o Setting the fill character in fields

o Flushing streams

o Inserting a newline in the output stream and flushing the stream

o Inserting a null character in the output stream and skipping whitespace in the input
stream

Frogromtng i Modws €14 P Fratim Din man '

Stream manipulators, we have seen already for example, we have seen how to flush the

stream and so, on how to put a new line we already know.

(Refer Slide Time: 31:07)

P
@~ Integral Stream Base

1Y

o dec (default), oct or hex v
o Change base of which integers are interpreted from the stream -

int n = 15;
cout << hex << n; v
o Prints "F"
¢ getbase!

o Changes base of integer output
o Load <iomanip>
o Accepts an integer argument (10, 8, or 16)
cout << setbase(16) << n;
o Parameterized Stream manipulator - takes an argument

Frogrammeng Modirn Co o Pt ot Din Mo R i

So, these you have seen you can change the base also you can say that | want to print this

value in the hexadecimal base and so on.

(Refer Slide Time: 31:21)

|
rﬁ;‘i Floating-Point Precision

it

¢ precision

o Member function
o Sets number of digits to the right of decimal point

cout.precision(2);

o cout.precision() returns current precision setting

e setprecision
o Parameterized stream manipulator
o Like all parameterized stream manipulators, <icmanip> required
o Specify precision
cout << setprecision(2) << x;
o For both methods, changes last until a different value is set

So, there are several manipulators like precision is something which is very-very important
because you can buy precision you can say how many points after the decimal that you want.
You can clearly say that by invoking the precision member function of cout and then

basically stream to it or you can use the setprecision function as well.

(Refer Slide Time: 31:45)

ré:: Field Width

%

¢ 1og width member function ‘
o Sets field width (number of character positions a value should be output or numbedes
of characters that should be input) B
o Returns previous width %
o If values processed are smaller than width, fill characters inserted as padding
o Values are not truncated - full number printed
cin.width(5);
® ety stream manipulator
cin > setw(5) > string;
4
o Remember to reserve one space for the null character
Trogrammeng s Moders Co o Portha Pratm D LA l

You can control the field width these I mean there are number of them, you just need to |
mean whatever you need, you just look up and apply that the style is the same that either you
can invoke it as a member function on the stream object or you can invoke it you can have it

as a global function wrapper in a iomanip.

(Refer Slide Time: 32:07)

User-Defined Manipulators

o We can create our own stream manipulators
o bell
o ret (carriage return)
o tab
o endLine

o Parametenzed stream manipulators

o Consult installation manuals

Frogrommeng i Modews € 1.4 Prits Fratin Oin M I

In for all this, you will have to certainly include the iomanip library component.

(Refer Slide Time: 32:14)

E:@z:: Stream States

Stream States

Now, in the next couple of slides, | am not going to go through at all because these are for
completeness of information in terms of what are the different states that exist for formats of
files, as well as in case of error states. So, those are just like data. So, there is nothing no
concept involved particularly. So, you can just look at them and refer to them as and when

you need.

(Refer Slide Time: 32:43)

=
: Standard |/O Library
i

Standard 1/0 Library

Programmeng m Moders Co o Purtha Pratin D L .

Library Organization

o <ios>, <istream>, <ostream>, <streambuf> and <iosfwd> are not usually included
divectly.in mast C44-programs—They d&zribe the base classes of the hierarchy and ar
automatically included by other header files of the library that contain the derived
classes.

. dlostrean> declares the objects used to communicate through the standard input and
output (including cin and out)

ovyfs:roup defines the file stream classes (like template basic_{fstream or class
ofstrean) as well as the internal buffer objects used (basic_filebuf). These classes
are used to manipulate files with streams

/ Lo : § .

o sésvrean>. The classes defined in this file are used to manipulate STL string objects
as if they were streams

o ¢lomanip> declares some standard manipulators with parameters to be used with
extraction and insertion operators to modify internal flags and formatting options.

Frogrammeng o0 Madees Co o Partha Pratis D LU '

Before | conclude, I will just summarize on the standard 1/O library for C++. So, in terms of
the organization you can see that what we typically need to include is iostream and sstream if
you want to do with strings and fstream or specifically fstream or ofstream. We can do
fstream itself like you are doing iostream and iomanip everything else like these all different
headers are included through them, you do not directly need to include them, particularly as
you do the application programs.

(Refer Slide Time: 33:24)

[tswoam | (tsveam]\ [olsream) [meba |

istringstream

(sngsream| [ostingsteam | [suing_but |

B00r00r bgnet (NPt LAy | phngiut oo Imgut (hfid | B0ty (provisemce (o

Frogrommng n Modws Co 0 Pt Pratim D Mo '

This is the overall class hierarchy for your understanding. So, you can say that ios base is
what lies in the stop, but ios is a main implementation of the input-output system from which
istream and ostream both are separately inherited and iostream is multiple inherited from both
and then fstream and string stream are come from them. So, that is how this whole structure

goes on.

(Refer Slide Time: 33:56)

e
rﬁ: Input-Output Classes in Header Files

4

v

I preeTe [w:‘\m-] [mu\r;um] [mu]]

| Userdochoded Hoaders | | Hosdec-inchied Maaders |

Sowrcm b, Outgut Lty phophon o togwt (Nngut Lbvwy cpmwmemecy com
Fvgy amming ' Moo € o« Perts P D uvu!

And this is the complete diagram of classes and the different files, remember the blue ones
are what you will need to include the four iostream, fstream, sstream, sstream and iomanip

others get included as it is.

(Refer Slide Time: 34:14)

Header Organization

¢ <iostream>
0 <istream>
b <ostroam>

- <l08>

o <fstream>

0 <istroam>
¢ <gstroam>

0 <string>
¢ <jomanip>

0 <istream>
o <stroambuf>

0 <xiosbage>
o <xiosbase>
o <losfud>

Frogrammng m Modees Co o o Pt D Ma % l

And this is an organization of the header for your reference which includes switch header.

(Refer Slide Time: 34:20)

Fas
s Module Summary
{H

o Understood object-oriented | /0 of C4++ ;
o Learnt the major standard library components -
-
N
£
Frigramming s Modews (o o Parths Pratios i MM ﬂ

So, we have a kind of taken a look at the object-oriented style of I/O in C++. We have seen
how it gives us very compact type safe mechanism which is extendable to user-defined data

types. Thank you very much for your attention see you in the next module.

