Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur
Lecture 41
Input-Output: File Handling in C

(Refer Slide Time: 0:36)

Programming in Modern C++
Module M41: Input-Output: File Handling in C

Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

All url's in this module have been accessed in September, 2021 and found to be functional

Many diagrams in this module are taken from Computer Science: A Structured Programming Approach Using C
M4L1 "5‘

Programming in Moder C++

C for handling errors
o Discussed exception (error) handling in C++ with try-throw-catch feature in
C++ for handling errors

o Introduced the templates in C++
o Discussed function templates as generic algorithmic solution for code reuse
o Discussed class templates as generic solution for data structure reuse
o Explained partial template instantiation and default template parameters
o Demonstrated templates on inheritance hierarchy

o Introduced Function Objects or Functors
o lllustrated functors with several simple examples and examples from STL

Programming in Moder C++ Partha Pratim Das Ma12

Welcome to Programming in Modern C++. We are in week 9 we are starting it with Module

M41. In the last week, we have discussed some key concepts of C++ particularly in terms of

exceptions and error handling, introducing the try throw catch mechanism. We introduced

generic programming or meta programming through templates in C++. And we specifically

took a look at a special type of objects or classes called function objects or functors. And

there we will see extensive use of those in the modules coming hereafter.

(Refer Slide Time: 1:17)

[ﬁ} Module Objectives

o Understand file handling and 1/0 in C
¢ To understand Text and Binary |/O

Programming in Modern C++ Partha Pratim Das [IEW

[‘;J Module Outline

«
Programming in Moder C++ Partha Pratim Das ML “‘

Standard Library for 1/0

.
Programming in Modern C+-+ Partha Pratim Das Mars 8

In the module today, we are going to discuss about file handling and input output in C and
particularly understand the text and binary input output, how it is to be done in C? This is an
outline and will be available on the left pane as always. So, in C, the language by itself does
not have any support for input output, input output is provided totally in terms of C standard

library.

(Refer Slide Time: 1:57)

[éj Standard C 1/O Functions

o The C programming language provides many standard library functions for file input andi
output. These functions make up the bulk of the C standard library header <stdio.h>§

o Categories of /0 Functions

o File Open/Close

o Formatted Input/Output
o Character Input/Output
o Line Input/Output

o Block Input/Output

o File Positioning

o System File Operations

o File Status

Source: C file input/output, Wikipedia

o
Programming in Modem C+-+ Partha Pratim Das mate o

And you know that it has a header stdio standard io.h which needs to be included in a source
file for doing any kind of file or terminal or printer input output operations. It provides many
functions and the functions can be broadly categorized in terms of opening and closing files,
formatted as well as unformatted input output, block input output, file positioning, certain
checking of file status, system file operations and so on. There is a long list and we will
discuss some of the representative functions here which are more commonly used in regular

programming.

(Refer Slide Time: 2:45)

Files and Streams

Files and Streams

.
Prograning i Modern -+ Partha Pratim Das miz

Files and Streams

o Afile is an external collection of related data treated as a unit. The primary purpose o
a file is to keep a record of data. Since the contents of primary memory are lost when &

device, such as a terminal, or with a file stored in auxiliary memory.

Data Source Program

«
Programming in Moder C+-+ Partha Pratim Das M18 “

So, the first thing we introduce here is what is file and what is stream? The basic notion of
stream is very critical. And actually C was a pioneer in introducing the concept of stream
which eventually got imbibed into Unix and it is all there everywhere. We understand what is
a file, it is an external collection of related data, which is treated as a unit and more often a
file is treated as a sequential data structure, which means that starting from the beginning of
the file, you can keep on moving forward reading or writing and you get the subsequent data
elements that exist, though it is possible to treat it, also as a kind of random access by

positioning the particular reader.

Now, stream in contrast is kind of an abstract concept, which the name naturally derives from
the natural English word of stream which keeps on flowing. So, it is something which can be

associated with a physical device like a terminal or a printer or a file stored in the auxiliary

memory. So, when we have for example, these input devices like key board or a file, then
from that we create an input text stream, because these are input devices, and that brings in

the data into the memory.

Similarly, the other way, if the data residing in the memory can be put through the output text
stream, which is kind of a continuous one in this, in a stream you do not go back, you just
keep on doing things forward. And that can be subsequently stored in a file or displayed in a

monitor or maybe printed on a printer and so on.

(Refer Slide Time: 4:55)

[ﬁé} Reading and Writing Text Files

Destination - Character Convemng
Function
Source - Character Converting
Function
Filss 3ad Sticams

Text files are used for:

o Formatted input/output functions
o Character input/output functions

o String input/output functions

«
Programming in Modern C-+-+ Partha Pratim Das ML “‘

Now, how do we read or write text files? We are already familiar to a good extent doing it
particularly on the console. So, for doing a text file, we have the data represented in some
standard in the form of some standard type, it could be an integer data, character data, string
data and so on. So, you take that and you apply a conversion function, a conversion function,

So, that the data can be suitably represented as a sequence of characters.

This is important, because a text file is simply a sequence of characters and then you put that
in your destination or the or in the reverse direction if you have a text file which is a sequence
of characters, you take each character one by one and then apply the appropriate conversion
function you are you will be more familiar with this in the name of Format Specification and
convert that into a form which is representable in the memory according to the corresponding

type and you stored that in the type.

So, this is the basic idea they have of doing io with a text file, it can be used for formatted
input output or unformatted ones like character input output or even free input output can be

done with the text files.

(Refer Slide Time: 6:24)

@ Binary File: Block Input and Output

Destination < B:?uc:c\tli\:ﬁe
;

Block Read —
@ 8 —- Function

Destination M C:::;z’;g) - Data :

Character Converting Data
bl — Function == EN

B
Programming in Moder C++ Partha Pratim Das w0 84

The other form of input output which is available through the C standard library function are
kind of direct or block input output. So, you have the data represented in the memory as
before, then you have a block write function, that is it checks takes the data as the chunk as it
exists and puts it to the destination, and the difference here is it is not unlike here below is
what you do for the text file. So, unlike doing a conversion, it is not doing a conversion it
takes the data in the binary form and puts it to the destination directly without trying to do

any kind of conversion.

So, this could be formatted, this could be unformatted, this could be written simply in the
binary form and so on. Similarly, the reverse happens from a source, you do a block transfer
of whatever bit patterns you get, and put that in the memory. So, these are the two broad

types of input output that is available in terms of C functions.

(Refer Slide Time: 7:31)

Text and Binary Files

= 55 = 0b 0011 0111 ‘
= 54 = 0 0011 0110? o (%
=56 = 0b 0011 1000
'A') = 65 = 0b 0100 0001

= 0b 0000 0011 0000 0000

Ag
[oot10111 Joott0110 [0o111000 Jot000001 00000011 [00000000 [01000001
— 768 ———>ie— A > —— 768 —p-a— A
I
Text File Binary File

o Text files store data as a sequence of characters
o Binary files store data as they are stored in primary memory

o
Programming in Modern C++ Partha Pratim Das man 8

Text and Binary Files

o ascii(

55 = 0b 0011 0111 0)_,

7)=
o ascii(§) = 54 = 0b 0011 0110 Wk
o ascii(8) = 56 = 0b 0011 1000 V
o ascii(’A’) = 65 = 0b 0100 0001
b

¢ 768 = 0b 0000 0011 0000 0000
; honint” 768 ' char El

7
Z

() &) & (9 N\
[oo1¥6111 Jootidt10 [0o111000 Jo1000001 00000011 00000000 [01000001
——— 768 —— >t A > {4\-—/793/—\}:4— A

Text File Binary File

o Text files store data as a sequence of characters
o Binary files store data as they are stored in primary memory

«
Programming in Modern C++ Partha Pratim Das MéL1L ‘4

So, just to understand the text and binary files in little bit more depth, suppose | have a short
integer 768. And | have a character in character A capital A uppercase A. Now, if you
represent it in terms of a text file, what you will do is, you will take each one of these 7, 6 and
8, each one you take as a character and you put the ASCII code of the character in the file.
So, here is the ASCII code of 7.

For your convenience | have written the ASCII codes here you can see, these ASCII code of
7 being written in 8 bits, next is the ASCII code of 6 being written in 8 bits, next is ASCII
code of 8 being written in 8 bits and then the code of ASCII code of uppercase A which is 65

is written here.

So, it is being written character by character. So, a text file every component of the text file is
a character typically it is 8 bit character, that is 1 byte character, it could be Unicode 2 byte
characters as well that those kinds of text files are also possible. In contrast, if | say a file is a
binary one, then it will represent this number in its binary form, that is as it is stored in the

memory. How will it be stored in the memory? This is the entire binary representation.

So, 768 as we can see, it needs 2 bytes because one byte can keep up to 255. So, 768 is more
than that, it will keep, it will need two bytes which can keep up to 16k numbers. And
therefore, if you see this is the higher order byte which is here, this is a lower order byte
which is here.

So, in a binary file, you are not representing these characters, but you are representing the
value as a whole here the value 768, whereas when it comes to the character A, since
character A is an individual data, it has this ASCII code. So, the character A is represented as
before there is no difference in that. So, that is the basic difference between text file and

binary file.

Examples are like any program source we are writing is a text file naturally, but an image that
we click, image that we display is a binary file because it does not have characters, it just has
the bit patterns of different intensity values. Similarly, even say something | mean just to be
clear, suppose you have a doc file, doc or docx file the word file. Now, you when you
visualize it through the Word, you will find that it displays you text, but that is what actually
a text file.

The viewer is showing you as a text, but along with that, it is also showing you different
annotations, like some words may be bold, some words may be italicized, there are alignment
pads, there is paragraph separators and all that which are actually not text character
information. So, if you actually ask a doc file or a docx file is actually a binary file too. Just
to check what you can do is, you can in say windows, you can use a notepad application to
open a docx file. You will find that you are not seeing the text as you are familiar to see you
will see a whole lot of you know garbage nonsense characters, because notepad necessarily is

a text editor.

So, it tries to, any file it opens it tries to separate it, punctuate it in 8 bits together and
represent it as a character, but the representation inside the word file is not in terms of the
ASCII codes, they are in terms of other symbols and binary values. So, you will see that

garbage, but if you open a program source file through notepad, you will see a very nice, you
know, nice text that comes in. So, that is the basic difference. And that is a reason that we do

need both of these to be available.

(Refer Slide Time: 12:11)

| Mode [r [¥Y% ["a [(z)[(#) [[a9)
Open state v/ read | write | write | read | write | write
Read allowed ~/ Yes | mo | no | yes | yes | yes
Write allowed no | yes | yes | yes | yes | yes
Append allowed no | no | yes | no | no | yes
File must exist v/ yes | no [no | yes | no | no
Contents of existing file lost no | yes | no | no | yes | no

For read/write of binary files, use ‘b’ with one of the above modes
2

(dv\ File Opening Modes

e
[@ | /@ A V/L [
N D

Read Mode (r, r+) rite Mode (w, w+) Append Moée—(a./a»f)

Programming in Modern C:++ Partha Pratim Das maL12 “‘

Now, every file is associated with a mode, that is you can either do input to a file, do input
from a file or you can do output to a file. So, there are this is specified by certain flags, read,
write flags. So, when you associate a stream with a file, you have to specify which mode are

you using. So, you can read, write at the two dominant modes.

So, if the file has been open, which means that it has been associated with a stream, then in
that you can do a read if you have opened it in the read mode, that is you are taking inputs
from it. You can do write if you have opened it in the write mode, when the read be allowed,
if you have opened it in the read mode, but if you have opened a file in the write mode, you

will not be allowed to read from that. It will be an error.

Similarly, write will be allowed if you have opened the file in the write mode, but read will
not be allowed. If the file is being opened in the read mode, it must exist otherwise you will
have an error, but in the write mode it will not need to exist, if it exists, it will be cleared, all

contents will be cleared and overwritten new and if it does not exist a file will be created.

So, this is the basic difference between the read and write mode. There are other modes like
append which is pretty much like write, but it does some different behavior as you can see in
terms of here. For example, if you open in append mode, you will not be able to write, you

will be able to append only that is it will happen. So, you can see how that goes on.

This is the view of the stream that you have here. And you have opened means you have put a
marker on it, the marker, which remembers in the sequential order where you are. So, when
you do it in the read mode, it will always put the marker at the beginning because you have to
start reading from the beginning. When you do it in the write mode.

It will also have it in the beginning, but you can see in the read mode, we expect content to be
there in the right mode, there will be no content. If there were contents when you open it in
the write mode, that content is purged out. Whereas if you open it in the append mode, it
already has content and you are putting mode to it. So, it is like append mode is important,
because if you do not write the entire file in one go you write some data.

And then maybe some other program write some more data then maybe again your program
write some more data, you cannot do it by the write mode, because the moment you open it
by the write mode, everything that you had written earlier it purged in append mode that
purging is not done. But as much as has been written, the file marker will go right after that

and start writing from there.

So, these are the basic three modes, then there are + modes on those, which says that read and
something more. So, you can see what are the different behaviors | have written down here in
some cases, like if something is opened in r+, then read of course is allowed, but write we if it
is open in w+, then also you can you are able to read. So, you can use the + modes to do both

read and write, append and read these kinds of things together.

So, these are the basic modes and particularly, if you have a binary, so, if you open a file in
these modes, it will be opened as a text file, if you want to open a binary file, you will have to
write b along with the mode. So, you write this it opens as a text file, you write this it opens

as a binary file, that is a simple rule that you will have.

(Refer Slide Time: 16:46)

[;é;] File States

read ’ write
,' positioning >

functions) ‘
writ

le

read read

J

read mode (r) read update mode (r+) write mode (w)

read write write write
. positioning ’ positioning

wite read read wite read

write update mode (w+) append mode (a) append update mode (a+) ;,‘
Programming in Modern C:++ Partha Pratim Das L1

Now, naturally, depending on in which mode you have opened it the file will maintain a state
based on whether you are reading or you are writing and here in this diagram, | have just tried
to summarize the states, like if you have opened something in the read mode, you do every
read it continues to remain in the read state, but if you try to do a write it goes to an error and

the write state is not reachable because you cannot write there.

Whereas if you do it in the read+ mode, read update mode, then in the read state it can keep
on reading, you can reposition your marker, | will show how to reposition the marker, and
come to the write mode where you can keep on writing you remain in this state it can again
reposition go back to the read mode. So, you can write some data go back read it again, go

forward write again and so on.

But if you try to do read on a write state or write on a read state, then you will come to an
error, repositioning properly is absolutely necessary for doing the other state of operation. So,
that is the basic principle you can go through each of these diagrams and based on the mode

chart I gave you in the last slide you can understand these state transitions.

(Refer Slide Time: 18:06)

[;ééj File Open and Close

o To write to or read from a file, we need to open it:
FILE *fppen(const char *filename, const char *mode);
TT Bach FILE. hidct: denctes: & C streaiandik tha state’ disiz T/0

// filename:
// mode: null-te

o If successful, returns a pointer to the new file stream. The stream is fully buffered yrfess

filename refers to an interactive device. @
o On error, returns a null pointer

o On successful opening, we write and/or read data using |/O functions \/((’ ﬁ

2 . ; \
o Once the write or read file over, we need to close it: /vﬁ/
int fclose(FILE #*stream); // stream: the file stream to close

o Returns 0 on success, EOF otherwise // EQF is special End-of-File marker

0 Closes the file stream, flushes unwritten buffered data, and discards unread buffered data
o The stream is no longer associated with a file, the buffer is disassociated and deallocated
o The behavior is undefined if the value of the pointer stream is used after fclose returns

Programming in Moder C++ Partha Pratim Das MaL14

o To write to or read from a file, we need to open it: “‘(‘I

FILE *fopen(const char *filename, const char *mode);
——

T =
]
Ll
filename refers to an interactive device. 79
o On error, returnsa.qull pointer @
o On successful opening, we wri Jar read data using |/O functions @l\ac’ l]
o Once the write or read file over, we need to close it:
int fclose(FILE *stream); // stream: the file stream to close
o Returns 0 on success, EOF otherwise // EQF is special End-of-File marker
0 Closes the file stream, flushes unwritten buffered data, and discards unread buffered data
0 The stream is no longer associated with a file, the buffer is disassociated and deallocated
o The behavior is undefined if the value of the pointer stream is used after fclose returns
Programming in Moder C++ Partha Pratim Das M 8

Now the basic form of io is like this. Let us say you have a file. So, that file, let us say
physically exist in the disk system or needs to be created in the disk system. What do you do?
You visualize this in the program as a stream and that stream type in C is a data structure
called capital FILE, which is defined in the stdio.h library, this has a buffer to do your io and

it has a marker on that buffer.

So, what happens when you say, you have open it, this is how you open it, fopen, give the file
name which is this entity and give the mode you want to open for writing. So, he will give it
w here. Then what you get? You get a pointer to this file structure. And everything that you

do, you actually refer to this pointer, pointer to the file which means that whenever you are

trying to write something you are doing a printf rather fprintf because you are writing to a

file, then you actually the data keeps on going to the buffer.

When the buffer gets full, it will write it to the file and then flush itself and again keep on.
The reason it is done in this way, in this buffered way is simple that the file being on the disk
actual writing to the disk could be very, very slow. So, you want to avoid during that, at every
instant you keep on accumulating things in a buffer, which is in the memory, which is very
fast and only periodically when the buffer has become full or when you are done with the file

and you want to close everything you write that actually to the file.

The same thing happens in the case of read, again, you again you will open, let me just clear
this out this part. So, what you have is, you are opening it in the read mode. So, you will do
read to provide the file name this must exist now, because you want to read and what you get

is a file pointer, pointer to this data structure file, which contains this buffer.

So, as you start reading from it, which you will do by fscanf a chunk of data is actually taken
from the physical disk file and the buffer is filled up and the marker remains here at the
beginning. Now, as you keep on reading data, the marker keeps on progressing and when it is
exhausted the buffer the next chunk will again be brought from the file.

So, you can understand that this particular transfer part is expensive, whether you are reading
or writing because it is making accesses to the disk. So, you avoid that by doing this buffered
stuff, which is happening automatically inside the library functions. So, the steps are simple
you have to open a file, which means associate a stream with a file then you do write or read
depending on the mode or mixture of that read update, write update depending on the mode

in which you have opened and then you do a close, by close you dissociate.

Now, you say that no more this file structure a pointer to the file structure will mean the file
that you had associated it with. So, with that, if you are writing then whatever data was there
in the buffer is flushed onto the disk file and you are your disk file is saved it will remain
there forever and the file structure is released, if you are doing a read then if anything left in
the buffer that will simply be discarded and the linkage will be broken and this file structure
will be released. So, this is the basic process of io, rest of it are nothing but simple function

call.

(Refer Slide Time: 22:46)

[@} File Open and Close

#include <stdio.h>
#include <stdlib.h>
int main() {

FILE+ spTemps;

if ((spTemps = fopen("TEMPS.DAT", "r")) == NULL) {
printf ("{aERROR opening TENPS.DAT\n");
exit(100); /

if (fclose(spTemps) == EOF) {
printf("\aERROR Elosing TEMPS.DAT\n");
exit(102);

«
Programming in Modern C++ Partha Pratim Das M4LIS '-4

So, for example, here we are showing how to open. We are opening this file name in this
mode with fopen. It will give you the stream pointed and if the opening has an error suppose
we are opening with the read mode, so the file must exist. Suppose the file does not exist,
then it will not be able to open then it will not be able to associate. So, if it does that, if that
happens, then it returns a value 0 in null pointer. And by that you know that you could not

open it successfully, So, you exit.

Similarly, when you are closing it returns you a value typically a value 0 to mean success,
otherwise, you read it returns with end of file marker, which is a special character, which is
the marker put at the end of every file meaning that this is a point where there is nothing
more in that file structure. So, suppose you could not close because your disk is full. So, it is
not possible to flush out the buffer and write the remaining data on to the file because this
does not have space. So, in that case, your fclose will fail and you will get EOF as a return

value.

(Refer Slide Time: 24:00)

[{;} Formatted 1/0

Formatted 1/0

.
Programming in Modern C-+-+ Partha Pratim Das R |

o\}o write, we use:
int printf(const char éfomat) oGO // Vrites to output
int fprintf(FILE *stream, comst char *format, ...);

int Eprintf(char *buffer, const char *format, ...);

buffer mus efore writing
o If successful, number of characters transmitted to the output stream or number of
characters written to buffer (not counting the terminating null character) is returned
o A negative value is returned for an output error or an encoding error

o To read, we use:
int scanf(const char *format, ...); stdin
——
int iscanf=(FILE *stream, Cofist char +format, ...); // eam stream
int sscanf(char *buffer, const char *format, ...); // Reads fr 1g buffer

o Number of receiving arguments successfully assigned (which may be zero in case a
matching failure occurred before the first receiving argument was assigned), or EOF if input

failure occurs before the first receiving argument was assigned. -.‘
Programming in Moder C++ Partha Pratim Das w7 8

So, this is the basic you know process. Now, | will quickly go through the functions. So, you
know the printf, so, I will not detail it any more, you know the use of formats. And so just
you know remember that in this library, the function names are done in a very systematic
manner. So, f at the end of this name, whether you are doing print, or we are doing scan is

meant to represent format.

So, it shows that formatted. You are doing it with formatting which means that it will have a
format string to say how the conversion has to happen, whether it is for output or is for input.
And if you have a f or an s at the beginning, f means that you are doing it with the file, s
means you are doing it with a string buffer. A string buffer could also act as a source or a

destination of your read write operation exactly in the same way. Rest of it is exactly like

printf as you have used where by default, your file is stdout, which is always open you do not

need to defer, you never need it to open the file because stdout is always open.

Similarly, when you do scanf when you are doing reading, you have the similar format stuff
specified and you do not need to open it because it will always use stdin and that is always

open when your program starts. So, that is the basic process.

(Refer Slide Time: 25:38)

ﬁ Side Effect and Value of Formatted |/O Function A

o printf, fprintf etc.
o Side Effect

> Converts internal data, as required, to strings of characters and writes the
converted values to a file, which may be the standard output or error file

7.

o Value
> Returns the number of characters written to the output file. In case of an error,
it returns EOF
Formatted 1/0 o scanf, fscanf etc.
o Side Effect
> Reads and converts a stream of characters from the input file, and stores the
converted values in the list of variables found in the address list
o Value
> Returns the number of successful data conversions. If end of file is reached
before any data are converted, it returns EOF

«
Programming in Moder C+-+ Partha Pratim Das M4L18 “‘

Naturally both printf and | mean all kinds of printf and scanf they do the operation of writing
or reading and they return a value, for printf the return value gives you how many characters
you have written and for scanf it gives you how many data elements that you have converted

and read.

(Refer Slide Time: 26:01)

scanf/fscanf

$ flag

maximum
width

- left justify
+ sign(+or-)

space if
0 zero padding

conversion

9

% flag

minimum
width

precision

conversion
code

Programming in Modern C++

printf/fprintf

Partha Pratim Das

i
M4119

So, these are the, so, this is the different kinds of format conversion you have this app shown

in terms of a diagram. So, it always starts with a percentage then you have a flag for

alignment and so on. You can specify maximum width for scanf, minimum width for printf

you can provide precision for a printf and then you provide the size which is mean how much

size you want basically. And then you have the conversion code which you have to align with

the type of the data that you are printing that you already have seen in the printf.

(Refer Slide Time: 26:40)

[;ééj Print Built-in Type

Data

#include <stdio.h>

int main() {

printf("id\n", i);
prmtf("T’n i);
prwtf(Jn i);
printf("}ld\n", 1);
pnntf(m\n 64);
printt ("TE\", 1);
printf (" /If\n d);
printf("lc\n", c);
pnntf(Us\n", s);
/ printf("/p\n", p);

Programming in Moder C++

840 235696416671
2.142857
2.142857
x

ppd
0x7££c2810298

Partha Pratim Das

int i = 17;

long 1 Fhro12a78ch; 606

long long unsigned int i64 = Ox012a78cb2597ac3d /1l 8 56964166717
float £ = 15.0 / 7; '_‘/_/—
double d = 15.0 / 7;

char ¢ = 'x’;

const char #s = "ppd";

int *p = &i;

i
Mo

So, here is an example which you can try to run these are different types of data and these are

printf on those and you can see what are the values that are being printed. Just be careful with

this particular line because unless you have a 64 bit machine this particular data type

declaration and the corresponding percentage %llu writing will not work. It works only in the
64 bit type. So, if your system does not have that, then just comment out these two lines and

rest of the code will work you can see what kind of data you get.

And you have all different types of formats that are possible both in terms of the data type as
well as the way you want to visualize. For example, %d, %x, %o, all work with each type,
but they write the data in different forms. So, same 17 with %d is written as 17, but with %x
is written as 11 because it is hexadecimal. So, 11 is 1*16+1, 17. Similarly, if you do
percentage o it will be written as 21, in the octal system two times 8 is 16+1 like this. So, you

can you can easily use that.

(Refer Slide Time: 28:03)

ﬁ Print User-defined Type Data

#include <stdio.h>

typedef struct Complex {
double re, im;
} Complex;

int main() {
Complex c1 = { 2.5, 7.3 }, c2 = { 4.3, 8.9 };

printf("(41f, %1f)", cl.re, cl.im);
printf("; ");
printf("(%1f, %1f)\n", c2.re, c2.im);
printf ("(41f, %), c1); warning: format ‘§1f’ expeqys argument of type ‘double

it argument type ‘Complex’ {aka ‘struct

t ‘%1f’ expects a matching ‘double’ argument

printf("; ");
printf ("(1f, %1£)\n", c2);

}

(2.500000, 7.300000); (4.300000, 8.900000)
(2.500000, 7.300000); (4.300000, 8.900000)

o MoV joes not produce 3| g2s -
Programming in Moder C+-+ Partha Pratim Das M2 “‘

You can use these, but if you have user defined data type like a complex as we have seen,
then you will not be able to extend printf for doing that you have to take them component by

component and use them you have seen this before.

(Refer Slide Time: 28:18)

[ﬁ;} Flags, Sizes, and Conversion Code for printf family a

Argument Type Flag Size Specifier

integer -, +, 0, space hh (char), h (short), none (int), 1 (long), 11 (long long)

unsigned int -, +, 0, space hh (char), h (short), none (int), 1 (long), 11 (long long) | u K&
integer (octal) -, + 0, # space | hh (char), h (short), none (int), 1 (long), 11 (long long) | o
integer (hex) -, +,0, # space | hh (char), h (short), none (int), 1 (long), 11 (long long) | x, X
real -, +, 0, # space | none (double), 1 (double), L (double) f

real (scientific) -, +, 0, # space | none (double), 1 (double), L (double) e E
real (scientific) -, +,0, # space | none (double), 1 (double), L (double) g6
real (hex) -, +, 0, # space | none (double), 1 (double), L (double) a A
character = none (char), 1 (wchar_t) c
string = none (char string), 1 (wchar_t string) s
pointer P
integer (for count) none (int), h (short), 1 (long) n
to print % h
Programming in Modern C+-+ Partha Praim Das M2 ’4

W Flag Formatting Options
Lu.i g g

Flag Type Flag Code Formatting

Justification | none right justified
= left justified
Padding none space padding
0 zero padding
Sign none positive value: no sign
negative value: -
+ positive value: +
negative value: -
space positive value: space
negative value: -
Alternate # print alternative format for
. | scientific, hexadecimal, and
| octal
Programming in Moder C++ Partha Pratim Das ma123 ;4

Here | have given some charts, which certainly | am not going to go through right away. This
chart is for your reference, So, that if you want to use a particular type of format, you can get
all the information in this charts of different flags, formatting options of padding justification

and so on.

(Refer Slide Time: 28:40)

E;;J Read Built-in Type Data

#include <stdio.h>
int main() {
int i; long 1;
long long unsigned int i64;
float f; double d;
char c; char #s = (char*)malloc(10);
int *p;

own 1in ﬂageﬂta and Output shown in gray

scanf("4d\n", &i); printf("4d\n", i); 314;

scanf ("Ix\n", &i); printf("ix\n", i); 1111

scanf("lo\n", &i); printf("o\n", i); 21 21

scanf ("41d\n", &1); printf("%ld\n", 1); 19560651 19560651

scanf("411u\n", £i64); printf("/1lu\n", i64); 84012356964166717 84012356964166717

scanf ("4f\n", &f); printf("if\n", £); 2.142857 2

scanf("/1f\n", &d); printf("J1f\n", d); double 2.142857 2.142857

scanf("iic\n", &c); printf("ic\n", c); x £z

scanf ("ls\n", s); printf("is\n", s); ppd ppd

scanf ("Yp\n", &p); printf("ip\n", p); 008FFCOC 008FFCOC

b

Programming in Modern C-++ Partha Pratim Das MéL24

Similar exercise will also apply to read in terms of scanf exactly as you have done, the
formats are more or less similar, the format codes are more or less similar. And here | have
shown just to be confirmed that what you have read, what you have read is what you are
getting, | have shown the corresponding printf as well, you can just run it and get comfortable

with the common formats of data that you have.

(Refer Slide Time: 29:10)

@ Sizes and Conversion Code for scanf family
P

Argument Type

Size Specifier

integral hh (char), h (short), none (int), 1 (long), 11 (long long) h | i
(short), none (int), 1 (long). 11 (long long)
integer h (short), none (int), 1 (long), 11 (long long) d
unsigned int hh (char), h (short), none (int), 1 (long), 11 (long long) u
character octal hh (unsigned char) 0
integer hexadecimal | h (short), none (int), 1 (long), 11 (long long) X
real none (double), 1 (double), L (double) f
real (scientific) none (double), 1 (double), L (double) e
real (scientific) none (double), 1 (double), L (double) g
real (hexadecimal) | none (double), 1 (double), L (double) a
character none (char), 1 (wchar_t) c
string none (char string), 1 (wchar_t string) s
pointer P
integer (for count) | none (int), hh (char), h (short), 1 (long), 11 (long long) n
set none (char), 1 (wchar.t) [
Programming in Modern C++ Partha Pratim Das MiL25 ;]l

[ﬁ% Checking scanf Results

#include <stdio.h>

#define FLUSH while (getchar() != '\n')
#define ERR1 "\aPrice incorrect. Re-enter both fields\n"
#define ERR2 "\aAmount incorrect. Re-enter both fields\n"

int main() {
int amount;
double price;
int ioResult;

// Read price and amount
do {

if (mkesult =1V
printf (ERR1) ;
else
printf (ERR2) ;
Y11 it
} while (icResult != 2);

«
Progrananing i Modern -+ Partha Pratim Das w2 84

Again the similar conversion chart for the scanf which you can refer to and when you do
scanf you could for example, you have given scanf for two values as we are here. So, as | said
the scanf will return how many data elements you have converted. So, if you have given for
two and you have provided only one data, then certainly you will have an error or so, if it is
one or you have not provided any data, you have just tried to kind of say that there is no data.

So, then also he will have error. So, with scanf you can use this kind of checks to see that

you have gotten as much data as you had actually needed to have from the input.

(Refer Slide Time: 30:04)

ﬁ Unformatted |/0

Unformatted 1/0

‘
Programming in Modem C++ Partha Pratim Das Mz &

W Unformatted |/O: Character 1/0
e il

Character _q
10 i
L)
L]
l |
Terminal Any
Only Stream
I
| ; [|
Input Output * Input Output Push Back
e —— P —— ——— I ——
getchar putchar getc/fgetc putc/foutc ungetc
Programming in Modern C++ Partha Pratim Das Mé1.28 ;‘

IO could be unformatted also like you can read character wise and these are the different
types of functions that are available. If you are doing it with terminal, it is getchar and
putchar which does input-output of individual character otherwise with any stream you will
have getc or fgetc, (now, the naming convention). So, getc will get it from a steady in fgetc

will get it from a file similarly, putc, fputc, ungetc and so on.

(Refer Slide Time: 30:35)

[ﬁé} Create Text File

#include <stdio.h>
int main() {
FILE* spText;
int c, closeStatus;

printf ("This program copies input to a file.\n");
printf("When you are through, enter <EOF>.\n\n");

if (!(spText = fopen("My_New_Text_File.txt", "&"))) {
printf("Error opening My_New_Text_File.txt fdr writing");
return (1);

}

while ((c = getchar()) != EOF)
fputc(c, spText);

closeStatus = fclose(spText);

if (closeStatus == EOF) {
printf ("Error closing file\a\n");
return 100;

printf ("\n\nYour file is complete\n");

}

.
Programming in Moder C++ Partha Pratim Das w8

Here is a text file example given which I will not go through, please try it on your system and

see how you get.

(Refer Slide Time: 30:46)

@ Direct Input/Output

Direct Input/Output

‘
Programming in Modern C-+-+ Partha Pratim Das e

[ﬁé} File Write Operation

outArea [l——»

fwrite (outArea, sizeof (int), 3, spOut);

W:/

o
Programming in Modern C++ Partha Pratim Das e

Besides this, you can also have direct input-output that is particularly what you want to do
with a binary file is take a chunk of data and directly write it. So, here for that you use
different functions possibly fwrite, which takes a buffer like this. So, you need to specify that

what is the units in that buffer. So, | said there are three units: total sizes, its size of int,

So, every chunk has to be size say 4 bytes, and there will be three such and it has to go to this
stream. So, it takes in this way, it takes three chunks of ints and put it to the output. So, that is
our basic operation, you can see that this is where your marker was before you started doing
it and this is where it goes after you are done with it. So, directly using fwrite you can
directly do that. Similarly, there is a version called write which works which does not need

the spout which will work with stdout.

You can do similar stuff with directly taking a structure and writing it in using the fwrite.
You can do the inverse by reading using fread again you need to have the buffer into which
he will read, the size of every unit and how many units you want to read. And then finally the
stream these diagrams will obviously corresponding to fread there is a read which can happen
with the stdin.

(Refer Slide Time: 32:28)

Before Read

oneStudent } read

MO0 W00
B mooo -

oneStudent read
After Read

«
Programming in Modern C-++ Partha Pratim Das Mé134 ’4

Pl

H‘H File Write / Read

size_t furite(const void *buffer, size_t size, size_t count, FILE #*stream);

// buffer
size: si
// count: t

o Writes count of objects from the given array buffer to the output stream stream. The objects
are written as if by reinterpreting each object as an array of unsigned char and calling fputc
size times for each object to write those unsigned chars into stream, in order. The file position
indicator for the stream is advanced by the number of characters written.

o Returns number of objects written successfully, which may be less than count if an error occurs.

size_t fread(void *buffer, size_t size, size_t count, FILE *stream);

o Reads up to count objects into the array buffer from the given input stream stream as if by
calling fgetc size times for each object, and storing the results, in the order obtained, into the
successive positions of buffer, which is reinterpreted as an array of unsigned char. The file
position indicator for the stream is advanced by the number of characters read.

o Returns number of objects read successfully, which may be less than count if an error or
end-of-file condition occurs.

«
Programming in Moder C+-+ Partha Pratim Das MaL35 *‘

You can read by structures also. So, these are all, here you are not parsing it in terms of
specific characters you are just you know taking things in block and reading or writing them.
So, here are the two major functions fwrite and fread which | have already explained here are

the details you can go through.

(Refer Slide Time: 32:51)

[ﬁ;ﬁ File Positioning

| & 0

File Positioning

)

‘
Progranning i Modern Partha Pratim Das e

["Q File Read Operation

gny L L g

3" 4=12bytes peore v, e, after®,
read read °

o, N

fread (inArea, sizeof (int), 3, spData);

«
Programming in Modern C++ Partha Pratim Das M41.33 ”‘

{%;] Rewind File

Before Rewind

1111

1111 1 1

After Rewind

file
marker

.

Programming in Modern C:++ Partha Pratim Das e

Naturally for you know, for using the + mode, the update mode, you need to reposition the
marker. So, it is possible that you have done some tasks and you can reposition. So, there are
at certain functions to do that you can rewind, which will bring the file marker from wherever

it was to the beginning of the file, but it can be done specifically at different points also.

(Refer Slide Time: 33:20)

[{éj Current Location (ftell) Operation

Dnmmmm mo

Current
Number of Bytes jocaion (16)

o
Programming in Modern C++ Partha Pratim Das e

[ﬁé} File Seek Operation

0 [0 0 O OO o [+

(00 0 o0 0 o g

fseek (sp, 4 * sizeof (STRUCTURE_TYPE), SEEK_SET);

lumullmun lulmnllmmulluuunllumulm

""" k (sp, -4 *s f (STRUCTURE_TYPE), SEEK_END);

fseek (sp, 2 * size (STRUCTU& T{PE) SEEK_CUR) ; «
Programming in Modem C+-+ Partha Pratim Das ML “‘

You can actually note the current position of the file marker also by a function called ftell,
you can reposition the file marker anywhere by doing it fseek operation you can set it to a
point you can set it to the end you can set it to the beginning and so on. So, rewind is
basically a special case of seek operation. So, these by this you can reposition your marker

and then again restart read or write as we had explained in the update operation.

(Refer Slide Time: 33:54)

long ftell(FILE *stream); 0

o Returns the file position indicator for the file stream stream on success or -1L if failure occurs |4

o |f the stream is open in binary mode, the value obtained by this function is the number of &8
bytes from the beginning of the file

o [f the stream is open in text mode, the value returned by this function is unspecified and is
only meaningful as the input to fseek()

int fseek(FILE *stream, long offset, int origin); origin = SEEK_SET, SEEK_CUR, or SEEK_END|
offset: num £ ters to shift n relative to origir
origin: position

o Sets the file position indicator for the file stream stream to the value pointed to by offset.
Returns 0 upon success, nonzero value otherwise.

void rewind(FILE *stream);
o Moves the file position indicator to the beginning of the given file stream.
o The function is equivalent to fseek(stream, 0, SEEK_SET), except that EOF is cleared

int fgetpos(FILE *stream, fpos_t *pos);
int fsetpos(FILE *stream, fpos_t *pos);

4
Programming in Modern C++ Partha Pratim Das MiL40 5“

Eéj Module Summary

o Discussed formatted and unformatted |/O using C Standard Library
o Discussed |/O with file and string

4
Programming in Modern C++ Partha Pratim Das maa 8

So, these are the common functions which we will need for doing this ftell, fseek and rewind.
So, this brings us to the end of this naturally input output standard io is a very very big topic.
So, | just tried to give you the basic idea of association between file and stream and the
buffered input or output that typically goes on through the system for performance. And
going forward. We will see the same view in terms of C++. Thank you very much for your
attention.

