
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

Lecture 41

Input-Output: File Handling in C

(Refer Slide Time: 0:36)

Welcome to Programming in Modern C++. We are in week 9 we are starting it with Module

M41. In the last week, we have discussed some key concepts of C++ particularly in terms of

exceptions and error handling, introducing the try throw catch mechanism. We introduced

generic programming or meta programming through templates in C++. And we specifically

took a look at a special type of objects or classes called function objects or functors. And

there we will see extensive use of those in the modules coming hereafter.

(Refer Slide Time: 1:17)

In the module today, we are going to discuss about file handling and input output in C and

particularly understand the text and binary input output, how it is to be done in C? This is an

outline and will be available on the left pane as always. So, in C, the language by itself does

not have any support for input output, input output is provided totally in terms of C standard

library.

(Refer Slide Time: 1:57)

And you know that it has a header stdio standard io.h which needs to be included in a source

file for doing any kind of file or terminal or printer input output operations. It provides many

functions and the functions can be broadly categorized in terms of opening and closing files,

formatted as well as unformatted input output, block input output, file positioning, certain

checking of file status, system file operations and so on. There is a long list and we will

discuss some of the representative functions here which are more commonly used in regular

programming.

(Refer Slide Time: 2:45)

So, the first thing we introduce here is what is file and what is stream? The basic notion of

stream is very critical. And actually C was a pioneer in introducing the concept of stream

which eventually got imbibed into Unix and it is all there everywhere. We understand what is

a file, it is an external collection of related data, which is treated as a unit and more often a

file is treated as a sequential data structure, which means that starting from the beginning of

the file, you can keep on moving forward reading or writing and you get the subsequent data

elements that exist, though it is possible to treat it, also as a kind of random access by

positioning the particular reader.

Now, stream in contrast is kind of an abstract concept, which the name naturally derives from

the natural English word of stream which keeps on flowing. So, it is something which can be

associated with a physical device like a terminal or a printer or a file stored in the auxiliary

memory. So, when we have for example, these input devices like key board or a file, then

from that we create an input text stream, because these are input devices, and that brings in

the data into the memory.

Similarly, the other way, if the data residing in the memory can be put through the output text

stream, which is kind of a continuous one in this, in a stream you do not go back, you just

keep on doing things forward. And that can be subsequently stored in a file or displayed in a

monitor or maybe printed on a printer and so on.

(Refer Slide Time: 4:55)

Now, how do we read or write text files? We are already familiar to a good extent doing it

particularly on the console. So, for doing a text file, we have the data represented in some

standard in the form of some standard type, it could be an integer data, character data, string

data and so on. So, you take that and you apply a conversion function, a conversion function,

So, that the data can be suitably represented as a sequence of characters.

This is important, because a text file is simply a sequence of characters and then you put that

in your destination or the or in the reverse direction if you have a text file which is a sequence

of characters, you take each character one by one and then apply the appropriate conversion

function you are you will be more familiar with this in the name of Format Specification and

convert that into a form which is representable in the memory according to the corresponding

type and you stored that in the type.

So, this is the basic idea they have of doing io with a text file, it can be used for formatted

input output or unformatted ones like character input output or even free input output can be

done with the text files.

(Refer Slide Time: 6:24)

The other form of input output which is available through the C standard library function are

kind of direct or block input output. So, you have the data represented in the memory as

before, then you have a block write function, that is it checks takes the data as the chunk as it

exists and puts it to the destination, and the difference here is it is not unlike here below is

what you do for the text file. So, unlike doing a conversion, it is not doing a conversion it

takes the data in the binary form and puts it to the destination directly without trying to do

any kind of conversion.

So, this could be formatted, this could be unformatted, this could be written simply in the

binary form and so on. Similarly, the reverse happens from a source, you do a block transfer

of whatever bit patterns you get, and put that in the memory. So, these are the two broad

types of input output that is available in terms of C functions.

(Refer Slide Time: 7:31)

So, just to understand the text and binary files in little bit more depth, suppose I have a short

integer 768. And I have a character in character A capital A uppercase A. Now, if you

represent it in terms of a text file, what you will do is, you will take each one of these 7, 6 and

8, each one you take as a character and you put the ASCII code of the character in the file.

So, here is the ASCII code of 7.

For your convenience I have written the ASCII codes here you can see, these ASCII code of

7 being written in 8 bits, next is the ASCII code of 6 being written in 8 bits, next is ASCII

code of 8 being written in 8 bits and then the code of ASCII code of uppercase A which is 65

is written here.

So, it is being written character by character. So, a text file every component of the text file is

a character typically it is 8 bit character, that is 1 byte character, it could be Unicode 2 byte

characters as well that those kinds of text files are also possible. In contrast, if I say a file is a

binary one, then it will represent this number in its binary form, that is as it is stored in the

memory. How will it be stored in the memory? This is the entire binary representation.

So, 768 as we can see, it needs 2 bytes because one byte can keep up to 255. So, 768 is more

than that, it will keep, it will need two bytes which can keep up to 16k numbers. And

therefore, if you see this is the higher order byte which is here, this is a lower order byte

which is here.

So, in a binary file, you are not representing these characters, but you are representing the

value as a whole here the value 768, whereas when it comes to the character A, since

character A is an individual data, it has this ASCII code. So, the character A is represented as

before there is no difference in that. So, that is the basic difference between text file and

binary file.

Examples are like any program source we are writing is a text file naturally, but an image that

we click, image that we display is a binary file because it does not have characters, it just has

the bit patterns of different intensity values. Similarly, even say something I mean just to be

clear, suppose you have a doc file, doc or docx file the word file. Now, you when you

visualize it through the Word, you will find that it displays you text, but that is what actually

a text file.

The viewer is showing you as a text, but along with that, it is also showing you different

annotations, like some words may be bold, some words may be italicized, there are alignment

pads, there is paragraph separators and all that which are actually not text character

information. So, if you actually ask a doc file or a docx file is actually a binary file too. Just

to check what you can do is, you can in say windows, you can use a notepad application to

open a docx file. You will find that you are not seeing the text as you are familiar to see you

will see a whole lot of you know garbage nonsense characters, because notepad necessarily is

a text editor.

So, it tries to, any file it opens it tries to separate it, punctuate it in 8 bits together and

represent it as a character, but the representation inside the word file is not in terms of the

ASCII codes, they are in terms of other symbols and binary values. So, you will see that

garbage, but if you open a program source file through notepad, you will see a very nice, you

know, nice text that comes in. So, that is the basic difference. And that is a reason that we do

need both of these to be available.

(Refer Slide Time: 12:11)

Now, every file is associated with a mode, that is you can either do input to a file, do input

from a file or you can do output to a file. So, there are this is specified by certain flags, read,

write flags. So, when you associate a stream with a file, you have to specify which mode are

you using. So, you can read, write at the two dominant modes.

So, if the file has been open, which means that it has been associated with a stream, then in

that you can do a read if you have opened it in the read mode, that is you are taking inputs

from it. You can do write if you have opened it in the write mode, when the read be allowed,

if you have opened it in the read mode, but if you have opened a file in the write mode, you

will not be allowed to read from that. It will be an error.

Similarly, write will be allowed if you have opened the file in the write mode, but read will

not be allowed. If the file is being opened in the read mode, it must exist otherwise you will

have an error, but in the write mode it will not need to exist, if it exists, it will be cleared, all

contents will be cleared and overwritten new and if it does not exist a file will be created.

So, this is the basic difference between the read and write mode. There are other modes like

append which is pretty much like write, but it does some different behavior as you can see in

terms of here. For example, if you open in append mode, you will not be able to write, you

will be able to append only that is it will happen. So, you can see how that goes on.

This is the view of the stream that you have here. And you have opened means you have put a

marker on it, the marker, which remembers in the sequential order where you are. So, when

you do it in the read mode, it will always put the marker at the beginning because you have to

start reading from the beginning. When you do it in the write mode.

It will also have it in the beginning, but you can see in the read mode, we expect content to be

there in the right mode, there will be no content. If there were contents when you open it in

the write mode, that content is purged out. Whereas if you open it in the append mode, it

already has content and you are putting mode to it. So, it is like append mode is important,

because if you do not write the entire file in one go you write some data.

And then maybe some other program write some more data then maybe again your program

write some more data, you cannot do it by the write mode, because the moment you open it

by the write mode, everything that you had written earlier it purged in append mode that

purging is not done. But as much as has been written, the file marker will go right after that

and start writing from there.

So, these are the basic three modes, then there are + modes on those, which says that read and

something more. So, you can see what are the different behaviors I have written down here in

some cases, like if something is opened in r+, then read of course is allowed, but write we if it

is open in w+, then also you can you are able to read. So, you can use the + modes to do both

read and write, append and read these kinds of things together.

So, these are the basic modes and particularly, if you have a binary, so, if you open a file in

these modes, it will be opened as a text file, if you want to open a binary file, you will have to

write b along with the mode. So, you write this it opens as a text file, you write this it opens

as a binary file, that is a simple rule that you will have.

(Refer Slide Time: 16:46)

Now, naturally, depending on in which mode you have opened it the file will maintain a state

based on whether you are reading or you are writing and here in this diagram, I have just tried

to summarize the states, like if you have opened something in the read mode, you do every

read it continues to remain in the read state, but if you try to do a write it goes to an error and

the write state is not reachable because you cannot write there.

Whereas if you do it in the read+ mode, read update mode, then in the read state it can keep

on reading, you can reposition your marker, I will show how to reposition the marker, and

come to the write mode where you can keep on writing you remain in this state it can again

reposition go back to the read mode. So, you can write some data go back read it again, go

forward write again and so on.

But if you try to do read on a write state or write on a read state, then you will come to an

error, repositioning properly is absolutely necessary for doing the other state of operation. So,

that is the basic principle you can go through each of these diagrams and based on the mode

chart I gave you in the last slide you can understand these state transitions.

(Refer Slide Time: 18:06)

Now the basic form of io is like this. Let us say you have a file. So, that file, let us say

physically exist in the disk system or needs to be created in the disk system. What do you do?

You visualize this in the program as a stream and that stream type in C is a data structure

called capital FILE, which is defined in the stdio.h library, this has a buffer to do your io and

it has a marker on that buffer.

So, what happens when you say, you have open it, this is how you open it, fopen, give the file

name which is this entity and give the mode you want to open for writing. So, he will give it

w here. Then what you get? You get a pointer to this file structure. And everything that you

do, you actually refer to this pointer, pointer to the file which means that whenever you are

trying to write something you are doing a printf rather fprintf because you are writing to a

file, then you actually the data keeps on going to the buffer.

When the buffer gets full, it will write it to the file and then flush itself and again keep on.

The reason it is done in this way, in this buffered way is simple that the file being on the disk

actual writing to the disk could be very, very slow. So, you want to avoid during that, at every

instant you keep on accumulating things in a buffer, which is in the memory, which is very

fast and only periodically when the buffer has become full or when you are done with the file

and you want to close everything you write that actually to the file.

The same thing happens in the case of read, again, you again you will open, let me just clear

this out this part. So, what you have is, you are opening it in the read mode. So, you will do

read to provide the file name this must exist now, because you want to read and what you get

is a file pointer, pointer to this data structure file, which contains this buffer.

So, as you start reading from it, which you will do by fscanf a chunk of data is actually taken

from the physical disk file and the buffer is filled up and the marker remains here at the

beginning. Now, as you keep on reading data, the marker keeps on progressing and when it is

exhausted the buffer the next chunk will again be brought from the file.

So, you can understand that this particular transfer part is expensive, whether you are reading

or writing because it is making accesses to the disk. So, you avoid that by doing this buffered

stuff, which is happening automatically inside the library functions. So, the steps are simple

you have to open a file, which means associate a stream with a file then you do write or read

depending on the mode or mixture of that read update, write update depending on the mode

in which you have opened and then you do a close, by close you dissociate.

Now, you say that no more this file structure a pointer to the file structure will mean the file

that you had associated it with. So, with that, if you are writing then whatever data was there

in the buffer is flushed onto the disk file and you are your disk file is saved it will remain

there forever and the file structure is released, if you are doing a read then if anything left in

the buffer that will simply be discarded and the linkage will be broken and this file structure

will be released. So, this is the basic process of io, rest of it are nothing but simple function

call.

(Refer Slide Time: 22:46)

So, for example, here we are showing how to open. We are opening this file name in this

mode with fopen. It will give you the stream pointed and if the opening has an error suppose

we are opening with the read mode, so the file must exist. Suppose the file does not exist,

then it will not be able to open then it will not be able to associate. So, if it does that, if that

happens, then it returns a value 0 in null pointer. And by that you know that you could not

open it successfully, So, you exit.

Similarly, when you are closing it returns you a value typically a value 0 to mean success,

otherwise, you read it returns with end of file marker, which is a special character, which is

the marker put at the end of every file meaning that this is a point where there is nothing

more in that file structure. So, suppose you could not close because your disk is full. So, it is

not possible to flush out the buffer and write the remaining data on to the file because this

does not have space. So, in that case, your fclose will fail and you will get EOF as a return

value.

(Refer Slide Time: 24:00)

So, this is the basic you know process. Now, I will quickly go through the functions. So, you

know the printf, so, I will not detail it any more, you know the use of formats. And so just

you know remember that in this library, the function names are done in a very systematic

manner. So, f at the end of this name, whether you are doing print, or we are doing scan is

meant to represent format.

So, it shows that formatted. You are doing it with formatting which means that it will have a

format string to say how the conversion has to happen, whether it is for output or is for input.

And if you have a f or an s at the beginning, f means that you are doing it with the file, s

means you are doing it with a string buffer. A string buffer could also act as a source or a

destination of your read write operation exactly in the same way. Rest of it is exactly like

printf as you have used where by default, your file is stdout, which is always open you do not

need to defer, you never need it to open the file because stdout is always open.

Similarly, when you do scanf when you are doing reading, you have the similar format stuff

specified and you do not need to open it because it will always use stdin and that is always

open when your program starts. So, that is the basic process.

(Refer Slide Time: 25:38)

Naturally both printf and I mean all kinds of printf and scanf they do the operation of writing

or reading and they return a value, for printf the return value gives you how many characters

you have written and for scanf it gives you how many data elements that you have converted

and read.

(Refer Slide Time: 26:01)

So, these are the, so, this is the different kinds of format conversion you have this app shown

in terms of a diagram. So, it always starts with a percentage then you have a flag for

alignment and so on. You can specify maximum width for scanf, minimum width for printf

you can provide precision for a printf and then you provide the size which is mean how much

size you want basically. And then you have the conversion code which you have to align with

the type of the data that you are printing that you already have seen in the printf.

(Refer Slide Time: 26:40)

So, here is an example which you can try to run these are different types of data and these are

printf on those and you can see what are the values that are being printed. Just be careful with

this particular line because unless you have a 64 bit machine this particular data type

declaration and the corresponding percentage %llu writing will not work. It works only in the

64 bit type. So, if your system does not have that, then just comment out these two lines and

rest of the code will work you can see what kind of data you get.

And you have all different types of formats that are possible both in terms of the data type as

well as the way you want to visualize. For example, %d, %x, %o, all work with each type,

but they write the data in different forms. So, same 17 with %d is written as 17, but with %x

is written as 11 because it is hexadecimal. So, 11 is 1*16+1, 17. Similarly, if you do

percentage o it will be written as 21, in the octal system two times 8 is 16+1 like this. So, you

can you can easily use that.

(Refer Slide Time: 28:03)

You can use these, but if you have user defined data type like a complex as we have seen,

then you will not be able to extend printf for doing that you have to take them component by

component and use them you have seen this before.

(Refer Slide Time: 28:18)

Here I have given some charts, which certainly I am not going to go through right away. This

chart is for your reference, So, that if you want to use a particular type of format, you can get

all the information in this charts of different flags, formatting options of padding justification

and so on.

(Refer Slide Time: 28:40)

Similar exercise will also apply to read in terms of scanf exactly as you have done, the

formats are more or less similar, the format codes are more or less similar. And here I have

shown just to be confirmed that what you have read, what you have read is what you are

getting, I have shown the corresponding printf as well, you can just run it and get comfortable

with the common formats of data that you have.

(Refer Slide Time: 29:10)

Again the similar conversion chart for the scanf which you can refer to and when you do

scanf you could for example, you have given scanf for two values as we are here. So, as I said

the scanf will return how many data elements you have converted. So, if you have given for

two and you have provided only one data, then certainly you will have an error or so, if it is

one or you have not provided any data, you have just tried to kind of say that there is no data.

So, then also he will have error. So, with scanf you can use this kind of checks to see that

you have gotten as much data as you had actually needed to have from the input.

(Refer Slide Time: 30:04)

IO could be unformatted also like you can read character wise and these are the different

types of functions that are available. If you are doing it with terminal, it is getchar and

putchar which does input-output of individual character otherwise with any stream you will

have getc or fgetc, (now, the naming convention). So, getc will get it from a steady in fgetc

will get it from a file similarly, putc, fputc, ungetc and so on.

(Refer Slide Time: 30:35)

Here is a text file example given which I will not go through, please try it on your system and

see how you get.

(Refer Slide Time: 30:46)

Besides this, you can also have direct input-output that is particularly what you want to do

with a binary file is take a chunk of data and directly write it. So, here for that you use

different functions possibly fwrite, which takes a buffer like this. So, you need to specify that

what is the units in that buffer. So, I said there are three units: total sizes, its size of int,

So, every chunk has to be size say 4 bytes, and there will be three such and it has to go to this

stream. So, it takes in this way, it takes three chunks of ints and put it to the output. So, that is

our basic operation, you can see that this is where your marker was before you started doing

it and this is where it goes after you are done with it. So, directly using fwrite you can

directly do that. Similarly, there is a version called write which works which does not need

the spout which will work with stdout.

You can do similar stuff with directly taking a structure and writing it in using the fwrite.

You can do the inverse by reading using fread again you need to have the buffer into which

he will read, the size of every unit and how many units you want to read. And then finally the

stream these diagrams will obviously corresponding to fread there is a read which can happen

with the stdin.

(Refer Slide Time: 32:28)

You can read by structures also. So, these are all, here you are not parsing it in terms of

specific characters you are just you know taking things in block and reading or writing them.

So, here are the two major functions fwrite and fread which I have already explained here are

the details you can go through.

(Refer Slide Time: 32:51)

Naturally for you know, for using the + mode, the update mode, you need to reposition the

marker. So, it is possible that you have done some tasks and you can reposition. So, there are

at certain functions to do that you can rewind, which will bring the file marker from wherever

it was to the beginning of the file, but it can be done specifically at different points also.

(Refer Slide Time: 33:20)

You can actually note the current position of the file marker also by a function called ftell,

you can reposition the file marker anywhere by doing it fseek operation you can set it to a

point you can set it to the end you can set it to the beginning and so on. So, rewind is

basically a special case of seek operation. So, these by this you can reposition your marker

and then again restart read or write as we had explained in the update operation.

(Refer Slide Time: 33:54)

So, these are the common functions which we will need for doing this ftell, fseek and rewind.

So, this brings us to the end of this naturally input output standard io is a very very big topic.

So, I just tried to give you the basic idea of association between file and stream and the

buffered input or output that typically goes on through the system for performance. And

going forward. We will see the same view in terms of C++. Thank you very much for your

attention.

