
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 40

Functors: Function Objects

Welcome to Programming in Modern C++. We are in week 8 and in the last module of week 8,

module 40.

(Refer Slide Time: 0:37)

In the last two modules, we have discussed about templates as a generic solution for data

structure reuse, and looked at various algorithms for template instantiation and template

parameters and how to use class template in inheritance hierarchy had examples.

(Refer Slide Time: 0:54)

In the present module, we are going to look at something new, new for your thoughts that is

called Functional Objects or Functors. And what is their utility in the Standard Template Library.

(Refer Slide Time: 01:11)

This will be the outline which will be available.

(Refer Slide Time: 01:14)

Now, first as we mentioned about function, we will use a little bit of a generic term say callable

entities, something that can be called. So, I say a callable entity is an object that can be used in

the same syntax as a function call and it will support in a way the function call operator simple

parenthesis that is how we get to know that something is a function.

We say int add(int, int) this is the signature and then we say add(5, 3). So, what tells me that add

is a callable entity this pair of parentheses so, that is called the function call operator. These are

typically known as function objects or functors also. Some authors distinguish between them

with subtle differences in meaning, we will use them interchangeably depending on the context.

(Refer Slide Time: 02:22)

Now, there are several callable entities in C++ which look like a function and call something and

does similar stuff, naturally, you have seen function-like macros that are C functions global or in

the in the namespace, you have member functions you have static, non-static pointer to function,

member functions which are static, non-static and so on. So for pointers to member functions

that are static, non-static you can have references and you have functors which are objects that

define a function call operator.

(Refer Slide Time: 03:06)

So, firstly let us look at function pointers which have which have a very similar behavior. So,

what is a function pointer, we have already studied it is address of a function, it could be address

of an ordinary function that is a C global function. It could be static C++ member function, it

could be non-static C++ member functions.

So, these are the three categories that we have seen. Leaving aside macros which are more

syntactically like a function, but it is not exactly a function because it does not go to the stack

frame and all those protocols. So, a function pointer points to a function with specific signature,

it needs to know what is the signature, that is list of calling parameter types, the return type, the

calling convention, whether it is a C convention or a C++ convention or some other specific

convention, which is defined by the vendor and so on, so forth.

(Refer Slide Time: 04:51)

So, these are typical function pointers in C, you can define a function pointer and use that you

can use different calling conventions here there will be C calling convention which is C

declaration. Microsoft Visual C++ use some additional calling conventions for the Windows API

particularly, you can assign address to a function pointer, you have a function pointer here you

have a function, you can assign that address by doing ampersand and I had mentioned earlier as a

shortcut, since, you can only take the address of a function nothing else if you just write the

name of the function also it is taken to be the address of the function. Then you can compare two

function pointers and get true or false and call a function invoke a function pointed to by a

function pointer. So, these are these are the things that a function pointer typically will allow you

to do.

(Refer Slide Time: 05:41)

So, function pointers in in C, you will do it in two ways possibly one is directly you have defined

a function pointer, you have a function you assign it to the function pointer that you have defined

here and then use that function pointer to dereference and invoke the function or you can type

def it by this function pointer name. So, you are aliasing with the type then define a function

pointer f of that type set a function pointer to that set a function to that and invoke f. So, these are

the two typical ways that you will be using it in C.

(Refer Slide Time: 07:27)

How about in C++, in C++ you can have function pointers as well as you can have function

references. So, you can have function pointers like you had in C, but you can also have function

pointers, which are of a certain specific class a class member. So, you are saying that this is a

function pointer A::*pt2Member says that pt2Member is a function pointer to a member function

of class A because a member function of class A only can be referred to as A:: where A is some

class.

So, in that if I define a class A and have a member function there, I will have a calling

convention of C++ in this case, then I can assign the actual DoIt function to the function pointer,

by taking its address the name of the function is A::DoIt I do ampersand to get the address and

put it to the function pointer, mind you this function pointer is defined for a member function of

a so, I cannot take a member function of another class B and assign it here that type error.

I can compare two function pointers provided they match in their type, I can dereference the

function pointer and I can actually use it for invocation. So, what I am doing is I am

dereferencing this to get the function, I am dereferencing this pointer to get the object, then the

object (.) dot member function is an invocation. That is a simple way of doing this just passing

back into the basic syntax.

(Refer Slide Time: 08:26)

So, if we now summarize that, what are the things that the function pointer can do the operations

we see that we can assign, we can compare two function pointers, we can call a function, we can

pass a function pointer as a parameter, we can return a function pointer from a function, we can

have an area of function pointers, and these are involved in a variety of programming techniques

that we can replace and switch if-statement. If this type of this kind of things can be replaced by

function pointers, it can be used for late binding or it can be used in the case of callbacks. So,

these are all very similar mechanisms, but all of them use function pointer and used in different

programming context.

(Refer Slide Time: 10:03)

So, these examples we have seen before, but I am just bringing them in the context of the of the

function pointers. So, here, I am trying to evaluate an expression involving the different numbers

and operators. And I have 4 different functions for doing that. And I have an opCode, which says

which operator is this, depending on the operator, I call one of these functions. In the other case,

again, we have all these functions but what we do is we define a function pointer generically,

which takes two floats and returns a float, which is the common type signature of all these 4

different operation functions.

And then what I do is, instead of doing a switch on the just type, we say that we will do a switch

on this function, ampersand plus so instead of writing it through the code, within quotes, plus, I

write it as a function pointer for plus, so I am saying that take a b and do a plus take a b, do a

minus right that. So, this kind of switch which is a nesting of if-else statement is replaced here,

because here you see there is actually no switch remaining.

All that is remaining is just call this function pointer, because in that function pointer you have

already specified the actual function. So, here what you need as a two level, first specifying the

code and then doing an if-else can be simplified and made more semantically meaningful. So,

this is the first context in which function pointers can be used.

(Refer Slide Time: 13:11)

The other is what is known as late binding. Late binding is I talked about this in some other

context as well and we have a separate tutorial on this as well. So, well that we are saying is, if I

am trying to do a dynamic binding of my function, dynamic linking of my function, what does

that mean that I do not want to put the function as a part of my executable code, I just want to

know that this is my signature and at the runtime, I will go to the system and find out what is the

available implementation of that function and call that.

So, the normal function binding is static, it is early because as soon as I see the function, I need

to know what is a function body here I am saying no, all that I need to know is just like the

compile time I just need to know what is the signature, but the function body can be supplied

later on, which means it can be replaced even after I have written the code.

So, for that the mechanism is to use a specific header dynamic linking function is the name of the

of the header dlfcn.h and with that, you open your library and get a define a function pointer

which takes a void gives me a void because you do not know in general what the function can be

so, you assume that it is only can be void. And then what you do you provide the name of the

function that you want so that it can go to the library, go to the library and find out a function by

that name and give you that pointer and then you call that function.

So, this function which you find in the library may have been generated after you have written

the code for calling it which is not the case with the early binding. So, when you do that, you

have got it refines and returns a void* pointer which you cast to your function pointer type and

then you call that particular based on that particular function pointer, which will actually call the

hello function that you have provided at a later stage. So, this is the, this late binding is required

to provide any user defined linkages to any user defined code at a later stage.

(Refer Slide Time: 13:27)

You have also seen late binding in terms of virtual functions, because you have seen that if you

have a virtual function, then you do not actually know the compiler actually does not know

which function it is going to invoke, whether it is the base class function or the derived class

function, it depends on the type of object that it is actually pointing to.

So, both of these situations are in two different contexts, but both of them actually give you the

same meet the same functionality of late binding, which means that the function to be called is

not decided at the compile time, but it is decided at the runtime given what particular function

body is available. In the first case, you find out by searching the library explicitly, in the second

case is happens to the virtual function table and the runtime type of an object, but they are the

same. So, this is the other context where function pointers are used.

 (Refer Slide Time: 14:49)

So, combining this you can also have callbacks in the applications using function pointers. So,

what do I have, I have a main, I have a function f, which actually does nothing. I take that I have

a function pointer and I call the function g. Now, this is my this is my main, so this is my

application code.

(Refer Slide Time: 15:56)

In the library what do we have I have the same function pointer and the signature is very simple -

take a void return a void this is all that it has. And I say that the library has provided me a

function g. Now, this function g needs to know the function func which is the only the user

knows. So, until the user has provided that the library cannot actually do anything. Now,

naturally you cannot make it a function directly because then to build the library you will require

the body of that function which is does not exist. So, you are u making use of this function

pointer here. Now, what happens if main knows that the library will need to know a function

pointer which is known as func.

(Refer Slide Time: 16:30)

So, the user application programmer will need to set that func to the function which wants get

called from the library. So, the way it happens is here from main you call g and g calls this

function back it goes back and then it comes up. So, the library is achieving its objectives by

using a function which you provide to it at a later point of time and in invocation you can have a

different search function. So, this is exactly what we saw in terms of things like quicksort that is

provided by the C standard library.

(Refer Slide Time: 17:58)

So, this is how it goes, you start doing main, main calls g control goes into the library, then it

comes it does something comes to the function pointer. So, it tries to invoke the function which

we have set to f here, which you have set to f here. So, it actually calls f and as you do that, then

as you do that your function f is executing, as f executes, it comes to an end, the control returns

back to the library. So, this is this is the callback happening.

So, what is happened is the library has called back into the application code and has got a

functionality done embedded in it. And once this is done, then g comes back to main and the task

has been completed. So, again, using the function pointer, you can have this kind of callback

mechanisms. So, you can replace the if switch, you can do late binding, you can do callbacks, all

of these you can do with function pointers, which is the most which gives you a lot of flexibility

in terms of the way you do the entire thing.

(Refer Slide Time: 19:48)

So, C uses this for actually giving you a generic sort function, which is qsort which is available

in the standard library of C where you give a pointer to base which is an array containing a set of

elements you do not know well, at the time of writing quick sort you do not know whether you

would want to sort an array of integer or of double or of a student or what.

So, what you specify is, you specify how many elements are there, which you need to know, you

specify the size of every element. Look at you are you are referring to it as void*. So, it what you

can get is only you know, you have a pointed to something you do not know. And then you are

saying this is the size.

So, you can take the size one after the other. So, many bytes together form one element. But to

able to do quick sort you need to be able to compare two elements of the type you have given.

So, you need to provide a compare function. And you provide that as a function pointer because

the library at the time of writing qsort does not know the type that you will compare.

So, the library cannot write that. But all that it can say that it takes two pointers to two elements

does not know its type. So, the only way it can refer to it is that constant void* that is pointed to

constant objects of no known type. And the result should be an int, which gives you whether it is

less so it is more or is equal.

(Refer Slide Time: 21:12)

Now, when the application programmer actually wants to use it, the application programmer has

to provide that function it has to say that this is my function and the application programmer

knows the type of element it has to compare. So, it casts into those types from void* does the

comparison here it is cast to int. So, in comparison will happen if it is greater sets 1 as a return

value otherwise if it is equal 0 if it is less minus 1.

So, this function now becomes eligible to work as a compare function pointer. So, this is

something that the user is providing. So, you are going to use this as a qsort is going to use this

as a callback to ask them that okay you have given me elements, but how to compare them. So,

that is precisely what the qsort does it takes your array as void* to match this takes the number of

elements take the size of every element, which you have taken size of filled 0, you could have

done size of int also and then it takes this function pointer which it calls back to. So, this is the

basic mechanism by which you can have user provided functionality to the library, this is what C

has done always.

(Refer Slide Time: 21:25)

Now, there are a lot of issues with that because there is no value semantics there is no proper

way to compare all functions which take a void and returns a void are considered to be of the

same type which is which may not be what you want. And the type checking is almost not there,

to this is the point I mentioned two function pointers having identical signature is necessarily

indistinguishable, and you cannot capture the parameters.

(Refer Slide Time: 21:55)

Now, that is the these are the issues that functors solve. So, what is a functor, it is a smart

function, it is a it is an object, which may or may not have states and it encapsulate a C or C++

function pointer. It uses template. It can engage in polymorphism. It has its own type and the

most important it overloads the function invocation operator. Typically, function functors are

faster than ordinary functions, they can be used to implement, callbacks and we will we will see

later on that they are part of a design pattern called Common Design Pattern.

(Refer Slide Time: 23:05)

So, these are these are some of the basic functors. For example, here just note the notation, this is

a name of the operator and this is a function parameter. So, the operator function call takes

nothing gives you nothing whereas here, the operator function call takes two integers gives you

an integer. So, like, like the way double does. So, these are the basic functors that you have. But

we will be interested in something which is more interesting.

(Refer Slide Time: 24:40)

So, this is, this is the one slide memory that you should keep in mind. So, there is an

AdderFunction, which is written in classical way, a global function. This is an AdderFunctor

where what I have done is I have overloaded the function call operator to do this addition

operator addition operator.

Now, let us see what happens. We have x, y, we call the adder function. This will call this

function at the two numbers give me the result. We all know that. I have a class adder functor.

So, I have instantiated that as a AdderFunctor object aF. And then I call aF(x, y) which is a

notation which will shock you because aF is an object, but I am using function call syntax with

that, how what does that mean, that means simply that aF being an object will take its operators

as a shortcut of the detent notation.

So, aF, this operator means that aF dot (,) operator function points function call, so which means

basically this function and the function will get invoked. The advantage now is that you can

actually overload this operator for different types. You can overload this operator for different

number of parameters. And added to that since this aF is an object, you can actually have a state

of that, you can remember what that function was doing earlier and what is going to do next. So,

this is a big, big, big advantage.

(Refer Slide Time: 26:47)

So, let me show you some examples from STL. STL has what is known as a, so this is the task, I

want to fill up a vector with random numbers. I am using an STL component known under

algorithm which gives me different algorithms. This algorithm is a generate algorithm. What

does it take templatized takes a ForwardIterator that it will start from the left, go to the other end.

And it takes a class Generator.

Now, generate takes the operators beginning and end. And this generator, which actually is a

functor, which will do an operation, which will do a callback. And then what it does is it goes

from first to last every time it is actually incrementing it. It is an iterator. So, it is going off to one

after the other. And at every point, it invokes this function pointer, functor actually, to generate a

number and gets that.

So, using this, and say, using a very simple generator like a, like the rand function in the library,

you can write for a vector V, this is your iterator, begin this is your iterator end call rand as your

functor, which will be called every time you go over this generation, and do generate. So, what it

will do, it will start from the beginning of the vector keep on calling rand at every element and

putting that value, the vector will get filled with the random values. So, that is how a functor can

be used to write very simple and intuitive and compact code for us.

(Refer Slide Time: 27:58)

Let us look at the sort. Suppose I want to sort a vector of double by magnitude. I again, include

algorithm which has a template algorithm for sort. What does it need to know, it needs to know

the beginning and end of the iterator, I am using random iterators here, because I need to know

what part, some sequence - it could be an array, it could be a list, whatever, I do not care.

But I will iterate and go from here to here and to be able to sort that and I need to know a

compare comparison functor like we needed in qsort to be given in a complicated manner. So,

what it will do in this first and last specified, it will go over this entire collection and actually use

the comp functor to do the comparison and do the sorting. So, that is a nice beautiful solution and

we can compare it with the quick sort solution to see what you get this is left side is the solution

in C and C library use in the quick sort example.

(Refer Slide Time: 30:57)

This is your quicksort signature. Quite complicated users do not know what it means, this is your

sort signature, which is very simple and straightforward. You tell the range and the compare

functor. That is all you need to know to compare to sort a range of elements. This is your

comparison functor less magnitude, this is how you have to write it in C take it in void* cast it to

double* then dereference double* and all complicated. Here you write it very simply as a

Boolean operator because it has to it is a functor. So, what it will do it will do a function

invocation taking two double and returning a bool and all that you need to do is to actually just

do the comparison of the double.

Now, the question is how I sort know that this kind of a function, this kind of an interface exists

that is why the library provides a template binary function which has three parameters, three type

parameters, binary functions, so it will get two parameters for that function. So, types of rows

and this is a return type.

So, it becomes very easy for the sort to know that you are providing what kind of a binary

function for doing the comparison. So, actual code, you just look at the call here, quick sort this

we have already seen. And here, it actually says what it does start at the beginning go up to the

end, use less_mag, I have just used struct here for place of class because I need this to be public.

So, having written struct, I may not actually write this as I am sorry, this is this is different this is

for the inheritance actually.

So, it publicly inherits this less_mag inherits from the binary function template, which says that

it is a binary function taking two double and a bool and implements it. And the interface that you

actually have to call it is so, so simple. So, this is a this is a very, very powerful use of functors in

the context of the library, know that this does not have a state because it is a functor did not need

to use any data member.

(Refer Slide Time: 31:14)

We can also have states in this. So, for example, I want to compute the sum of n elements in a

vector, vectors n elements, I want to compare that. So, what I do use here is an algorithm called

for each, that is do for every element as you go in the iteration from first to last and apply this

functor fn or it can be used for any purpose. So, it goes from first to last just applies this fn on the

current element goes to the next element. I am going to use that this for_each to add the elements

of a vector.

So, I am defining a functor adder deriving from the template of unary_function that is I just need

one parameter and it will return a void that it will not return anything. So, what does that do that

simply constructs an adder and what does the adder have, the adder has a local state a data

member sum that is it will have two things, one is it has the function call operator to make a call

every time and it has a local state sum where it can keep the sum and I encapsulate both of them

in terms of this adder functor adder.

So, I define a vector I do for_each on this this part is routine go from here to here and the as

functor I pass adder, So, what will happen? The first when this is called at the beginning adder is

got constructed of called cumulate here, so, sum is initialized to 0 this is initialized to 0. And

then it will call this fn which is this function which is adder the object function, which is the

function call operator here.

So, it calls that, so whatever is a sum x gets added to it what is x what has been passed the

current value that is added to its keys as a part of the functor I do not need to have a separate sum

variable, I again go to the next in the iteration. Again, this is get invoked. So, the sum which had

the first element now, to that the second element gets added, it goes on in this way.

And all elements get added over this time. So, this is a very beautiful way to see how functors

can be used with state. We will have a separate tutorial on this as well because this is a little bit

involved. And we will have lot of illustrations of this when we get to the Modern C++ part.

(Refer Slide Time: 34:48)

But I just wanted to introduce this basic concept of function objects where objects can have

function call operator and can be used for invoking functions with or without state. Thank you

very much for your attention. We will meet in the next module next week.

