Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 36
Exceptions (Error handling in C): Part 1
(Refer Slide Time: 00:31)

%
@ Weekly Recap

o Leveraging an innowative sclution to the Salary Processing Application in C using

functicn pointers, we compare C and €4+ solutions to the problem

o The mew C soluticn with function painters is used o explam the mechanism for

dynamic birding (polymorphec dispatch) based on virtual function tables

o Understood casting in C and C++

o Explained cast operators in C=+ and discussed the @als of Costyle casting

o Studied const.cast, static cast, reinterpret.cast, and dynanic.cast with
wamples

o Understood casting at run-time with RTTI and typeid cperator

o Introduced the Semantics of Multiple Inhentance in €+~

o Discussed the Diamond Problem and solution approaches

o lllustrated the design choice between inhertance and compestion

Welcome to Programming in Modern C++. We are in Week 8 and | am going to discuss Module
36. In the last week, we have talked about a variety of things. We have discussed about the
virtual function pointed cable, how was it implemented, and for three modules, we have
discussed different aspects of typecasting in C++ including polymorphic runtime casting. And in

the last module, we have discussed about multiple inheritance.

(Refer Slide Time: 01:04)

'1
r& Module Objectives
Y

o Understand the Error handling in C

So, with this we kind of covered a major part of the primary features of C++ programming which
you need to know. We will digress little bit, step aside. And in this module and the next, we are
going to talk about how do you handle errors that happen in C or C++ program. In the present
module, we will talk about error handling features available or styles available in C. And then in

the next module, we will see how they are again refined significantly in C++.

(Refer Slide Time: 01:42)

{5} Module Outl
vB: Module Outline
i

This is the outline and will be available on our left panel.

(Refer Slide Time: 01:48)

ption Fundamentals

Exception Fundamentals

Now, let us, let me start by defining few fundamental notions.

(Refer Slide Time: 01:55)

o Conditions that arise

Infrequently and Unexpectedly

Generally betray a Program Error
Require a considered Programmatic Respanse 5
o Rum-time Anomalies - yes, but not necessarily Uil

r
-
‘. 8

o Leading to
o Crippéng the Program
May pull the entire System down
o Defensive Technique

Crashing Exceptions verses Tangled Design and Cods

The first thing that you must notice is | am using a word exception. We have in C programming
talked about errors. Now, there is a subtle difference between errors and exceptions. Errors are
normally what you know is a, it could be a programming error, it could be that the logic is not
working correctly. It could be that you expect, you do not expect the stack to be empty, but it has

become empty at a certain point, so the data is not appropriate.

Whereas an exception is often something which happens due to maybe external factors or factors
in your program, but normally, exceptions should be infrequent, unexpected. And many a times,
they are crippling, they could put the entire system into difficulty and so on. Now, this
dichotomy of terms continue to remain, because as C evolved, the separate notion of exception

or separating exceptions for the normal programming error was not there.

So, in C, you will find that all kinds, whether it is your programming logic error, whether your,
whether it is a error due to a data being too large or too small, or it is an error because something
has gone wrong in terms of your hardware, yeah, somebody has pressed control C or anything,

all were treated as errors.

So, C talks about error handling, whereas C++ tried to build up on that and take out as much of
these error situations, common error situations out in terms of what is defined as exception and
still review with the scope of handling your program errors but others are handled in a very
structured manner. We will talk about that in the next module. But that is why | say that you
know at times you might feel confused with this use of word error and the exceptions, but they
kind of are talking about the same thing, but errors are what we commit and exceptions often are

what infrequently, unexpectedly happens.

(Refer Slide Time: 04:56)

|
L@ Exception Causes

o Unexpected Systems State ¥

Exhaustion of Resources _

Low Free Store Memery |
Low Disk Space
Pushig to a Full Stack ¢
o External Events v
cv /
Socket l‘.-ﬁnr"v
o Logical Erroes +/
Pop from an Empty Stack v
Rescurce Errors — the Memery Read /Write
o Run time Errores v
Anthmete Overflow | Underflow
Out of Range
o Lindefined l.)pr'.m:-.'n"'

Divisica by Zero

Now, what could be the cause of an exception? There could be several, and a majority of them
have listed there. It could be due to unexpected system state, that is you have run out of free
store, you have run out of disk area, you are trying to, you have an array to hold a stack and you
are, you have filled up that array already. You are pushing to your full stack. So, these are kind

of, you are running out of system state.

So, some of them at least is not under a programmer's control, while programming you would no
conceive this. Some maybe if you are cautious or maybe not. There could be external events like
control C to terminate a program that would be an event on the network socket and so on. There
could be simple logical errors. This is what | was saying that more common errors, you are
trying to pop from an empty stack, your resource errors like memory leak, memory read write

errors and so on.

There could be run time errors like divide by 0, underflow, overflow, out of range. Undefined
operation divide by 0 actually. This is undefined, not exactly run time error. So, there could be
different cases of exceptions, root of exceptions. And the programmer has to handle all of that

together.

(Refer Slide Time: 06:23)

|
{‘@ Exception Handling?

o Exception Handling is a mechanism that separates the detection and handhing of
circumstantial Exceptional Flow from Nommal Flow
B -
o Current state saved in 3 pre-defined Jocation s

o Execution switched to a pre-defined handler

!:wp!-m- Are L+ § means of Separating enor reparting from ercor hanlling

- Bjarne Stroustrup

Now, in the world of C, this, in that since the programmer has to handle this, so there will be

code detect such errors happening, to take care of that, to handle that, come back to continue the

program. So, this part is what is now called an exception flow. And normal flow refers to if
nothing of this happened, then whatever the logic that you wanted to write. In C typically, these
two are entangled twice, one into the other. In C++, the attempt has been to separate out the
exception flow from the normal flow. We will see that, we will check that on the next module

after we have seen the style of C.

(Refer Slide Time: 07:12)

Fal
B Types of Exceptions
i

o Asynchronous Exceptions

Exceptions that come Unexpectedly
Example - an Interrupt in 3 Program
Takes control away from the Executing Thread context to a context that i differen B%

from that which caused the axception

» Synchronous Exceptions

Planeved Exceptions
Handled in 3n arganized manner
o The most comman type of Synchronous Exception is implemented as a throw

S

There are exceptions are primarily of two types, asynchronous and synchronous. Asynchronous
is which has no logic, no relationship with the current execution thread. So, that come in
unexpectedly, like interrupting a program, taking a thread away from the context, and so on.
Whereas synchronous exceptions are mostly planned exceptions. They are handled in an
organized manner. And most common type, as we will see, is implemented in terms of a throw.

This will come in details. | am just trying to give you a basic overview to the whole idea.

(Refer Slide Time: 007:55)

2
{‘@ Exception Stages

o Synchranous (S/W) Logical Error
o Asyachronces (H/W) leterrupt {S/W Inteerupt)

o An Exception Object can be of any Complete Type - an 10t 10 2 full blown C++ class

ovpEct

o Polling - Software Tests
o Notification — Control {Stack) Adjustments
4
o Ignore: hope someone else handles it, that is, Do Not Catch
o Act: but allow others to handle 2 afteewards that is, Catch, Handle 30d Re- Theow
o Own take complete ownership, that is, Catch and Handle
5]
o Comtinue Execution. |f handled mside the program
® Abort Execution: I handled outside the grogram

Now, typically exception is considered or error handling is considered to be in five stages. First,
the incidence of the error, the error will have to happen. It can happen synchronously, logical
error, or it can happen asynchronously, which is the hardware error, like run out of memory, run
out of disk space, socket event, and so on. Once that has happened, then you create an object and
raise that exception. You have to tell somebody either later part of your own function or the

calling function that something has happened which was not desired.

So, you create an object which is indicative of that and you raise that exception which this object
could be a simple integer value that, | mean, we often say that from main return 0, it means
health. If I return minus 1, if I return minus 2, it means that something is wrong. So, that is the

notion of the object.

If 1 give, return an int, which is -1, it says that, well, not everything is fine. Then if you are
raising that, then it has to be detected. That somebody has to respond to that, somebody has to
check that | have returned -1. So, that is polling, it could happen through notification also, we

will see more of that later.

And then you have to handle that exception. There could be several strategies which are specific
to a particular situation. You could ignore, it may be okay. | know that, that is fine, | do not care.

It could act that do something and also let others do more things. So, you do something and
maybe call other function to do more or you can take total ownership, is okay. | have understood
what the error was, | have taken care of that and now it is all handled, we can proceed. And
finally, to recover, that is, if it is possible, that is what is desirable that you continue with the
execution, or if you cannot, then you abort. So, these are the basic five stages of an exception or

error handling that one has to deal with.

(Refer Slide Time: 10:23)

|
{:& Exception Stages

And | will show you a simple example. So, function main calls a function f here, f has a variable
internally which it checks to see if an error has happened or it sets if an error has happened. So,
these are different function codes that go in that. And if the error has happened, then it returns -1.
So, when you check this value error and you find that error has occurred, that is the instance,
incidence of the error, stage 1. Then when you return, you have generated the exception object,

which is an integer value -1 and you are raising it. The control comes back here.

Then you are checking if it is not 0. If it is 0, then everything is healthy. If it is not 0, then an
exception has happened, so you detect. Then you write a piece of code to handle that whatever
needs to be done, and then you proceed again. Maybe we will call that function again or do some
other function, and so on. So, this is, this structure simply tells you in principle what are these
five stages that they do.

(Refer Slide Time: 11:56)

"é“ Error Hand| C
v Error Handling in
=

Error Handling in C

So, this was the overall general idea about exceptions and errors. And let me talk specifically

about what you have in C.

(Refer Slide Time: 11:55)

o Support for Errce Handling in €

> C language doss ot provide any specific feature for aror handling. Conseguenty,
developers ae forced 1o use normal programmng festuess in 3 disciplined way 1o handle

arrees, This bas fed to industry practices that the deveicpers should abide by
C Standard Libeary provides 3 collection of headers that can be used for handling errors in
different contents. None of them 15 complete in itsalf, but together they kind of caver med
stuations. Ths agan has led to industry practices that the developers shoukl foflow
o Language Features \
y
0 Return Value & Parameters |
> Local goto)
o Standard Libeary Support \
o \
R #
Global Variables { <eryho.n>) \
Abnomual Termmation (<stdlib b)
Conditional Termination | u::p;l.f b))
Non-Local goto (<setgpp . h>)
Signais (<aigngl b)
» Mt v

Now, as a language, C has not provided any specific feature for error handling. It was not

considered at that time, and henceforth, the language has no feature for error handling. The

developers have to use the normal program code development styles, like the one we just saw to

handle errors. So, over time, what has happened, there are common industry practices which

have emerged which the developers should abide by, several companies have coding styles
where they say that you will have to handle this error like this, that error like that, and so on and

so forth.

When it was realized that C language has no support for error handling, several C standard
library headers started coming up to deal with different types of errors in different contexts. But
there was no comprehensive support, because the language is already there fixed and you are
providing library to support. So, each header library, standard library deals with certain aspects

of certain types of errors, but not together complete in itself.

So, the onus still lies with the programmer to decide which particular library to use in which
context. And if you do that properly, then most of the error situations can be handled pretty well
in C as well. But the best that |1 would advise is follow the industry practices, because that is a
most important, then you will not, you will be consistent with your fellow developers and you

will not need to reinvent the wheels.

Now, if we look at the language features that the only thing C has is it can return a value, single
value or multiple parameters, and it has something called a local goto, local goto, which we
normally say do not use. So, this is probably the only situation where we will advise that you
may use gotos locally. And then there are different standard, you can see that there are five types
of support | have talked of Global Variable, Abnormal Termination, Conditional Termination,
Non-Local gotos which is a new concept and signals, each one come from a different library

component, different header.

Some are like the setjmp, assert, signal, errno number, these are specifically created for error
handling standard library of course and several other things as well. So, now we will go over

and look at each one of them, what do they do and how they can be used for error handling?

(Refer Slide Time: 14:46)

o Function Return Value Mechanism
Crested by the Callee as Temporary Objacts —
‘

'assed onto the Caller

er checks for Error Conditions

e gnoced and lost

1oor ALY,

o Function {output) Parameter Mechanism \ oA e
X s
Outbound Parameters \F\‘(1) Ry A
Bound 1o Arguments ! }} /
Offer multiple logxcal Retum Valoss (‘ S \
RLA 7) Ty
v i 1\ A }) ',__'4__,)" h‘.‘ s

The first one, return value and mechanism is very simple. The caller checks for error condition
and when you have an error situation, you return the error object as we just saw. The return value
can be ignored and lost, that is a problem. And return values are temporary, so you will not, if
you do not catch it or if you do not take action on it, as soon as the control from the function
comes back, you will lose that information. If you now once you have that, if you want to use
return value to give you the status of what has happened in the function, then you lose the basic

value of the function. So, what | am meaning is | have add, say int, int, int.

Now, how do | use return value to check whether add has happened properly or it had a
overflow? It is adding two integers, it might have an overflow. So, how do | check that? If | want
to return a status value here, then I lose the basic property of the function which is to give the
added value of the two numbers passed to it. So, what something unnatural that we can do is we
can have more parameters. This is an explicitly outbound argument where | can pass an integer
value back to my caller to show whether the function is done successfully or not. But it is a huge
problem, because he will use the function as C add(a, b). Now, you have to use it as C is add(a,
b, &error).

Even that does not work, because you are not being able to check this error. So, if you have to
check that, you have to do if, you have to first do C add all this, then you have to check the error

that has come up. Take actions, it is a big mess. The whole beauty of functions get lost, but that

is the best that you have if you are using function returning values.

(Refer Slide Time: 17:47)

int Push(int 1) {
T (top, == size-1)

“return 0;

alde et

stack_[+top] = 1;

return 1,

\ -
H

ist zain() |
int x;

if l.'Pthl_)_ﬁ’i_:

Like here, | have changed the signature of stack to return an int, so that if the stack is full, then

you return a 0, otherwise you return 1. So, always after push you have to check that to detect and

to be able to handle.

(Refer Slide Time: 18:12)

o Local goto Mechansm
o {Ar Source) Gets Control out of a Deep Nested Loop =
(At Destination) Actions from Maltiple Points of Error Incepticn a
-

o A group of C Features
goto Label
¢ breaX continue

o dofault avitch case

Local gotos or simply gotos for now has always happened C programmers, has helped C
programmers to kind of get out from a very deeply nested loop or to refactor the same code,
same error handling code from multiple places together. So, under this, I will put all different
kind of control statements like goto, break and continue which are things that you do for error
handling, that if some error conditions happen, you break from a loop or you continue in the next
iteration of the loop without doing the rest, you can, have default in case of switch to take care of

situations that are not expected and so on and so forth.

(Refer Slide Time: 19:05)

n
{—@ Example: Local goto

So, for example, this is just a sample code to show you this | lifted from the WINSIG.C, source
of certain version of Visual Studio and a lot of the code | have skipped, because it is a huge code.
| just wanted to show that, well, in different points. The programmer is checking for different
error conditions like sigact support, not exceptions in the hostways, exceptions in the hostways
and so on. And doing a goto to a common level, gotos are bad we know. But this kind of a
discipline uses code, because otherwise we would need to write the handling code of what
happens on that error right at that point, which will be lot of code repeatation. And as you know,
any code repeatation is bad.

(Refer Slide Time: 20:10)

So, this is another style which is often used. So, this is just to show you in terms of visualization
that this is the program code, and if an error happens and all of these are gathered into one point,
so which gives you a power to refactor. And if it is okay, then it gathers to a different point. So,
you have only two program points where you may need to fix what you do. But from everywhere
else, the success and failure fall into these two buckets. So, that is industry recommended

practice of using gotos for handling errors.

(Refer Slide Time: 20:47)

@: Global Variables

o GV Mechansm
Use a designated Global Error Varable
Set it on Error
Poll / Check it for Detection

o Standard Library GV Mechansm

ermmo.h>/<cerrno

Now, let us go into the different features that the libraries provide. The GV Mechanism or Global
Variable Mechanism is several library functions practice this that if they come across an error, if
they happen to have an error, then they set a global variable which is provided in the errno.h. So,

an example will make it clear.

(Refer Slide Time: 21:14)

|
@ Example; Global Variables

Here, | am trying to do a power function, x to the power y. So, x and y are some values. Now,
when you do that, before that you set errno to 0 and you have included this header file. errno is
defined in that header file, is you are not declaring that variable, you are just setting it to O, it is a
global variable. So, if pow has some kind of a problem, say it is not of the proper domain where

pow can be used. It will set errno to enumerated value EDOM error DOM.

So, if after pow, you find that errno is EDOM, then you know that this error has happened in
pow and you can decide what to do. pow is taking power, so it can potentially make the numbers
very big, so it can easily go out of range. So, this is another which tells you that it has gone out
of range and you can check that and do this. Otherwise, you know that everything is correct and

you can proceed with the result.

So, this is a standard practice that several C standard library functions follow and you can get if

the function has worked properly or not using this GV Mechanism. And naturally after you have

found an error, naturally what you will have to do is to reset the error no again to 0 so that you

can find the next error.

(Refer Slide Time: 22:47)

Fat
@ Abnormal Termination

o Program Halting Functions provided by

stdlidb. h>/<csudlid

> Catastrophic Program Failurs

e exit() V

Code Clean up via avexis() Regstrations
. = - R

o atexit()

o Handlers called m reverse order of their Registrations

Let us move to the next one which is abnormal termination. That is this you take care of course
of if you have come to a point where there is no other way than to terminate. There are two ways
to terminate, two functions to terminate a function, terminate a program. One is called abort,
which is called catastrophic program failure. There is nothing that else that you can do. So, you
just want to go out of this. You call abort, it does nothing. But there is another which mostly you
should use, which is known as exit. Exit can take care of a few things using at exit registration.

So, let us see what is at exit.

(Refer Slide Time: 23:36)

Pl
L@;i- Example; Abnormal Termination

Here is a main function. Here are two functions that | have defined as handlers. What is
important to note is | have called the library function at exit and passed the pointer to the first
function. What it does atexit internally maintains a stack of function pointers, so it will put it
inside the stack. Then | have done atexit once more. A second handler is also pushed onto the

atexit stack.

Then | do exit. If | do exit what it does, it goes to that stack, pops up the first function pointer,
calls it. So, you will get_atexit_handler 2. Similarly it takes us next, calls it. So, if you can see
with this atexit mechanism, | can, before | go out I can try to do some wrap up, maybe some
memory was allocated which now need to be released and all that. Those can be done using these
handlers. And for moving on to C++, please understand that this atexit mechanism is which
makes the invisible call to the destructors possible when you go out of the function scope. But if

you instead of exit, if you call abort, this atexit registered handlers will not be called.

(Refer Slide Time: 25:27)

o
iﬁi Conditional Termination

o Diagrostic ASSERT macro defned in
8800 A/ <cassart
o Assertions valid when MDEBUG macro is not defined (debug build is done}

o Assert calls intermal function, reports the source file detads and then Termunates

There is a conditional termination also. You can, you have a feature in assert, where you can

assert a certain property under the debug build.

(Refer Slide Time: 25:36)

Pt . o
@ Example: Conditional Termination
L

So, you do that using the NDEBUG definition of the compiler. So, debug or NDEBUG,
NDEBUG means do not debug, debug means debug. So, | have kept it commented. So, | am in
the debugging build. And I say assert and | say some condition. So, if that condition fails then it
will assert, that it will terminate the program at that point. So, assertion failed because here, if

you looked at then i as 0 and | do ++i, so | became one, so it is not equal to 0. So, it has failed
and it gives a file name, the line number. All of these | can easily print. This is from Microsoft
Visual C++. This is a simple output from online GDB. You can check what kind of output you
get on your compiler. Now, the advantage of this assert is we are using this, at compile time, you
can see conditions at different places.

(Refer Slide Time: 26:45)

But well, this is how the visual studio screen looks after the assertion has failed.

(Refer Slide Time: 26:53)

|
@ Example: Conditional Termination

Now, the advantage of assert is that if you have checked everything and you are okay, then for
the release build, you can just erase the assert silently. All that you need to do is to set
NDEBUG, define NDEBUG. If you define NDEBUG, then this part is under ifdef condition, and
therefore this part will not come in the compilation, it is not in the source. So, in the same case,
now you do not have any assertion happening. Now, you have the actual output that is going on.

So, this is very good for conditional compilation.

(Refer Slide Time: 27:31)

i |
{:& Non-Local goto

o sat jap() and longizp() functions provided in <zet jup.h> Header along with

collateral type jnp.buf Al
¢ set |ap(jmp.buf) s

Sets the Jump paint filling up the jap_buf cbject with the current program coatexi

o longinp(jmp.buf, int)
Effects a Jump to the context of the jap_buf object
> Control return to set inp call last called on jop_buf

The most important and closest to C++ is what is called a non-local goto that is a local, with
local goto, you can take care of error which is within f function. But what you have called a
function and that function has an error, how does that information come back to the caller? That
is the basic question. So, it uses two calls, two functions, one is called setjmp, one is called

longjmp.

Setjmp sets a point in the caller, where, in case of error, you would like to come back and long
jump is in the called function where you say that, well, I have an error, so | want to go back to
the caller where the setjmp was done. Now, suddenly you have two different environments, two
functions. One is a calling function, one is a called function. So, when you are doing longjmp
you are in the call function. So, how do you know the environment of the calling function? So,
you use a jmp_buf, which stores this environment information. That is the simple idea and we

will see how this has got, has been imbibed in C++ in terms of a beautiful exception mechanism.

(Refer Slide Time: 28:50)

|
r& Example: Non-Local goto: The Dynamics

Y

So, this is how you do it. This is the header, this is the jmp buffer that | have defined and you do
setjmp, jump buffer. So, at this point, the buffer gets the environment of the main. And | am
doing it for the first time, so it is 0, which means that everything is good. So, | say that g is being
called, call g, the control comes here and the execution starts. If | assume that there is no error,

then the execution will go till the end.

If there is an error, then this long jump will happen. So, let us see the subsequent progress. So,
here | have assumed that there is no error. So, | have set the return point, I have called g naturally
the control comes up to this point and goes back to this point. So, you say g called, then g started,

g ended and g returned. This is the no error path.

(Refer Slide Time: 30:10)

rﬁ’ E Non-Local The Dynami
L + Exampie: Non-Local goto: |he Dynamics
2

Now, suppose | have set this error to true. | am just using a variable to simulate an error
situation. So, again the setjmp is setting the buffer with the environment to 0 it is called. So, the
control comes here. We are in a new environment. g started. So, g called, g started. Now, the
error is true. So, you do a longjmp. What it does? In the longjmp, it uses the environment from
the buffer and goes back to that same point, but with a non-zero value. So, it goes back to this
context of setjmp with 1, which means that the else will now get executed. So, this part of the
function does not continue and we say that function g has thrown and only the failed will happen
now. So, g called long jump executed and setjump text to the handler. So, this is the basic

mechanism of what is called nonlocal go to or setjmp, longjmp.

(Refer Slide Time: 31:31)

Frisaf ("This 1ise sheuld sever appesr (o)

¢ (oorpapl)) ==) |
leatiep' 13 lrizializieg a)

pristf{*Thts line sheeld pever appear 'a*)

priatd(* 'aet e’ was Jet yaaped tate, \3*)

It is somewhat counterintuitive. So, practice this example. So, | have given another example for
you to practice and understand what is going on, but it is a very powerful mechanism and we will

see how it seamlessly gets into C++ where you do not have to remember all this buffer and all

these values and so on.

(Refer Slide Time: 31:42)

o Header <signal.h
¢ ralsel) -
Sends a signal to the exscuting program s
~

o sigpal()
Registers interrupt signal handler
Returns the previous handler associated with the given signal

o Converts h/'w meermupts to 5/w intemupts

n
{:& Example: Signals

The last is signals which you can send a signal to an executing program and you can have a
handler for that signal. Signals are particularly used if you have studied operating system, you
must have talked about signals quite a lot. Signals are particularly used to convert a hardware
interrupt into a software one. So, here | show how to do that, include signal define and handler
which should, what it should do if that hardware event happens, then this is a function pointer for

the SignalHandler and put a previous handler and then do signal.

So, | have actually forcibly sending signal abort to myself with this SignalHandler and this signal
function returns me whatever was registered as a last function. Because it can, at a time, it can
have only one registered function for every type of signal that you have. So, what will happen at
this point? This has got registered. So, when | go to, when | get this signal abort, which I have
sent myself, I will have this code executed which is say that application is aborting, and then you
come and abort, you leave everything and go ahead. So, these are the different mechanisms that
are possible.

(Refer Slide Time: 33:29)

|
{:& Shortcomings

o Destructor-ignorant

Cannot refease Local Objects i.e. Resources Leak
* Obtrusive
o Interrogating RV or GV results m Code Clutter
o Inflexible
o Spoils Noemal Function Semantics
« Noa-native

o Require Library Support outside Core Language

So, we have seen a number of C mechanisms, but they help you in error handling and that is how
the C programmers survive. But certainly, they have a lot of shortcomings like they are
destructor ignorant, they, it does not, they will not destroy the objects when long jump is going
out of scope, they are obtrusive, that is, they are mixing up with your normal logic as we have

saw in, seen in return value mechanism or in global variable mechanism.

They are not flexible, because normal function semantics is getting lost, because you have to
have value parameters and so on. They are non-native, because they are not part of the language
and they are coming as library support and so on. So, these shortcomings will be solved when

we actually go on to C++ error handling exceptions in the next module.

(Refer Slide Time: 34:13)

{4 Module S
L : NOQUie summary
il

o |ntroduced the concept of exceptions

o Discussed emree handling in C

o lllustrated vanous language featuses and hibraey suppars in € foe handling errors

o Demonstrated with examples

So, to summarize in this module, we have introduced the concept of exceptions and particularly
discussed error handling in C, and illustrated various language features, but primarily library
support in C for handling errors with examples. Thank you very much for your attention and see

you in the next module.

