
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Tutorial 07 - Lecture 45

How to design a UDT like built-in types?

Part 1: Fraction UDT

(Refer Slide Time: 0:34)

Welcome to Programming in Modern C++, we are going to discuss tutorial 7. It will be on

how to design a user defined type that behaves like a built-in type? This is the first part where

we will discuss about a user defined type fraction. So, that is a basic objective. And this is the

outline, which will be there on the left.

(Refer Slide Time: 0:60)

Now, before we get into this design, let me remind you of a few things that you have done in

the modules so far, you have seen that there are several data types in C++, which are used to

specify the type of data constants as well as data operations that we use in our program. And

if I look into the different categories of data types that are available to us, certainly there are a

number of primitive or built-in data types like char, int, available to us.

There are derived data types which are built on top of these, like arrays, structure and so on.

And then there are user defined types, user defined types are the pure addition, and one of the

strongest features of C++. So, in building types, as we have different kinds of char, int, float

bool, even we have void. In derived types, arrays, functions, even references we have. In user

defined types, the user has the liberty to define the set of nominal values of the data type as

well as its operations and its properties actions.

(Refer Slide Time: 2:33)

And this becomes really useful. Because now, you do not need to, you know, rely on a whole

lot of functions that you had to write in C, to realize the functionality of the type of data that

you are dealing with. But you can build for a particular concept of a data type, you can build

it pretty much like the built-in types that we have. So, we have often taken example, in

different places in the module of operations being done on the complex type, like add,

subtract, multiply, divide, take conjugate off, and so on, so forth.

In fact, conjugate type is also where I mean, I am sorry, the complex type is also available in

the standard library. In addition, we can ask for a Fraction type, which deals with fraction and

does several algebraic operations, there could be matrix types, which deal with matrices, their

addition, subtraction, inversion, squared matrices, vectors, and so on, so forth. There could be

a set type, for union, intersection difference, and so on. There could be several other types

like a polynomial type, there could be a rectangle type.

Now, the basic point here is that when you program with such entities in C, you necessarily

write a bunch of functions. And you have to manage the data between these functions. But

here, using the tricks of user defined type definition, and build up, you will be able to build a

type, which behave almost exactly as your int type or your char type and so on. You can do

direct IOs with them and so on.

(Refer Slide Time: 4:35)

So, the main objective here is to illustrate the process of building such a user defined type,

using a Fraction type, because that is known to all of us. So, what are the issues involved in

this design? To design a utility fraction, which will behave like an int, the broad tasks, first

task could involve that we need to have a clear idea about the concept of fraction what is

mean by fraction? We must be clear about that. We must identify a proper representation of a

Fraction object in the system in the memory. So, representation is important.

We have to identify the properties and assertions that are applicable for all objects, what is a

valid object? What is not a valid object? And so on. And finally, we need to identify the

operations for the Fraction objects. Once we do that, then we will be able to go towards the

design of a Fraction UDT. Now, obviously, for the operations, you have to choose the

appropriate operators to overload, you could just use you know member functions for doing

different operations, but we will see why having overloaded operators will really help.

And when you make such a choice, you have to be careful for example, you can choose

operator plus to add two fractions or operator output streaming to stream a Fraction object to

cout but be careful not to break the natural semantics of the operator. What I mean by that,

for example, you say operator +, but actually you are trying to do a multiplication of two

fractions, do not do that, because that breaks the meaning and the overall value of making a

UDT loses.

Because the whole idea is looking at the operator, user should be able to identify without any

documentation or anything as to what is intended. So, when we talk about string type UDT,

which is there in the standard library, we say that operator plus basically means concatenation

and certainly some operators may not be defined for a certain UDT, like for a string type

operator - probably does not make much sense.

The question is how do should you go about doing the design? Would you be able to

conceptualize everything, workout every detail and put down a design in one go, yes, if you

are an expert, you will be able to do that. But the whole purpose of this course, such tutorial

is to create the expertise. So, what I am going to illustrate is not a one shot, design and go, but

we will go by what is known as iterative refinement. That is, we will make a design, which is

more or less okay. We will implement it, test it, identify the shortcomings and then refine and

repeat this process. Here in this tutorial, I will show that at least in two stages.

(Refer Slide Time: 7:53)

So, first a notion of the fraction every one of us understands what is the fraction which is a

number of the form p/q, where p and q are integers. The important thing about fraction is, it

is, it has a non-unique representation that is 2/3, 4/6, 8/12, -2/-3 all mean the same fraction,

similarly, all of these. So, that is something which is going to create a lot of problem in terms

of a UDT, because why how will it represent in the system? How will I represent it when I

stream it to the output? And so on.

So, what we need is we need to uniquefy the representation, we need to make the

representation unique. And for that we do two things one is out of p and q we make q

necessarily positive, that is the denominator cannot be a negative number, this is the

assumption we make, and we make that p and q must be mutually prime, that is the greatest

common divisor gcd of p and q must be one.

So, that if you put that then out of all these by the first condition, this representation will go

out, it is same as this. And by the second condition these two representations will also go out.

So, you are left with only one unique representation for 2/3. Similarly, if you look at these

three, the only unique representation is -2/3. So, this is also what we know by rational

numbers in mathematics and that is what we are going to represent here in terms of the

fraction.

Another point to be noted that a fraction is called proper if its absolute value is less than 1,

otherwise it is called improper. So, there is some whole number part in that fraction, in the

improper fraction. So, if I have an improper fraction then I can take out the whole number

part and the remaining part I represent as a fraction, so, this is called mixed fraction format.

So, 17/3 is 5(2/3), 5 is the whole part 5 * 3 is 15 + 2 is 17. So, this is the basic notion of the

fraction that we deal with.

(Refer Slide Time: 10:20)

So, formally speaking, a fraction p/q for our purpose, where p and q are integer, q is greater

than 0, p and q are mutually prime, p is called the numerator, q is called the denominator, and

if a fraction does not satisfy this condition, then it is called an irreduced fraction. So, a

irreduced fraction can be reduced by dividing the numerator and the denominator both by the

gcd of the fraction.

(Refer Slide Time: 10:52)

There are several operations available for example, reduction by itself is an operator if the

gcd is not 1, then you can make the gcd 1 if q is not positive, then you can make q positive, if

p is 0 q can be anything. So, you force q to be 1 and if p is q is 0, the denominator is 0 then

the fraction is undefined. Given that we have a number of rules of fraction which you know

from the arithmetic like addition, subtraction, multiplication division or even remainder.

So, by remainder what you mean is, you divide one fraction by the other first fraction by the

second take the integer part of it multiplied with the second fraction and subtract from the

first fraction. So, this basically is a % b is a minus read in a context of the fraction is what

gives you the remainder here are examples given.

(Refer Slide Time: 11:59)

So, there are some rules of fraction also, like we know of invertendo, that if you flip the

numerator and denominator of two fractions which are equal then they remain equal. So, we

define that to be a flip operation or inversion operation. Componendo is adding 1 to a

fraction, which is basically prefix or postfix operator increment operator, Dividend is

subtracting 1, so, it is prefix or postfix subtraction operation. So, these are very naturally map

on to the different operators that we have in our integer domain.

(Refer Slide Time: 12:45)

So, with that if we have to now talk about the design of the Fraction class, then certainly there

will be two members. n_ for standing for numerator, which is of type int, because it can be

signed and d_ which is the denominator, we take it as unsigned integer because we said that it

has to be greater than 0 it cannot be negative. So, then what are the operations that we will

have? Obviously, we will have the usual construction destruction copy, construction copy

assignment and so on.

We can have different unary arithmetic operations like taking the negative of a fraction doing

a componendo that is adding one subtracting one, we can do binary operations of add,

subtract all that, we can do Boolean relational operations that is comparing two fractions less,

less equal to and so on, certainly we can do read and write, we can invert a fraction, fraction

that is flip it numerator and denominator, we can convert it to double and so on.

So, these are some of the very quickly identifiable operations of a Fraction type that we come

to which have close simile, in terms of the interest not in every case, for example, it does not

have an invert kind of functionality. But most others are basically borrowed from the int data

type.

And along with that, we need some convenience functions like GCD and LCM, GCD because

we need to check for the validity of whether a fraction is reduced. Otherwise, we will have to

reduce it, LCM is required for adding subtracting functions and so on least common

multiplier and we need a reduction operation. These are basically what your implementation

is going to need. So, this is your basic design that you identify. So, that is the first step we

have clarified the notion, we have decided on the representation, we have decided on the set

of operations and their properties that we want to realize.

(Refer Slide Time: 15:03)

So, with that, let us, let me do a first version of the interface design for the Fraction. So, I

need a, we have a Fraction constructor, naturally, I need two numbers to construct a Fraction,

so I have defaulted both of them to 1. So, that I may not give any parameter, in which case it

will give me the unit fraction 1/1, which is the default constructor. Otherwise, I can give 1 the

first parameter, or I can give both the parameters, there is a destructor, which does nothing

copy constructor, copy assignment operators, these are routine.

Naturally, I need a read write function, which will take a fraction and write it to the cout.

Similarly, a read function which will read from the reader fraction from the cout as a pair of

numbers. So, here you can see that, at the first go, I am not attempting to get into the different

operators, I am just identified each and every operation, I am giving it a name for the member

function and identifying what will be the signature.

Now, up to this point, these things are almost generic, and irrespective of whether it is a

Fraction or a complex or any other we will have similar functionalities, but now we have say,

I want to do a negate. So, when I decide on an interface member function, there are primarily

based on the functionality, there are primarily three things to decide, one is what is the

parameter? So, if it is a unary operation, then it does not show a parameter as a member

function, because the object itself is the parameter on which it applies.

If it is a binary operation, then it takes only the second operand as a parameter, the first

operand is the object itself on which this member function is invoked, you already know that.

So, this is how you decide on the parameters, then you decide on the what is the return type?

The return type typically, here is either you have returned by value, when will you have that

when that operation computes something, which is a new object, and your current object is

not changing, probably not changing or it may be changed, but probably it will the current

object will not change and you are having a new object.

So, here, when I do a negate, say, I have a fraction 5/3, and I want to do a negate on that. So,

I should get a fraction -5/3. So, this is a new fraction, which has to be created. So, I have a

return by value and the original fraction should not be disturbed. So, I write a const. So, you

will typically see that if it is not necessarily always but typically, when you have a return by

value from such member functions, you will that member function should preferably be

constant.

(Refer Slide Time: 18:20)

So, these are const. Whereas if I do componendo, I am adding 1 to the fraction itself. So, I

want that fraction itself to change. Therefore, neither can it be const nor can it return a

different fraction, it has to return itself. So, it has to return by reference. So, this is the basic

consideration that you do for designing addition, subtraction, all of them, all of them are

const member function, because you do not expect the parameter to change because of that,

all of them return by value, because we expect the result to come as a returned object as a

new object.

(Refer Slide Time: 19:06)

Obviously, you can do equality inequality, all comparison checks, trivial to say that they are

all constant member functions because they should not change the fractions that they are

comparing. They will all return bool quite straightforward. If I invert a function, then, I am

sorry, if I invert a fraction that take 1 by that fraction, then I will get a new fraction. So, it is

written by value and it is a constant member function.

Double is a special member function I am saying which will take the current fraction and will

return its value in as a double number. This is kind of conversion. In addition to that, we

define some unity fraction and zero fraction, because they will come in ease for writing the

code. And we have the support function for GCD, LCM. These are not dependent on your

Fraction class. So, they are static members.

And we have a function which does reduction on the current Fraction object to bring it to the

normalized, reduced form. Remember that these parts, these members are not a part of your

interface, that is the user is not going to use this. So, you will typically have them as, as

private and you may not mention that in the part of the interface just as together, I have

written it here.

(Refer Slide Time: 20:51)

So, having done that, the next is to, so I have a design now all the interface. So, now I will

have to implement in terms of the two members data members n_ for the numerator and d_

for the denominator. So, these are very trivial implementations. For example, this is a

constructor, which has to construct and do a reduce, you will see something interesting going

on here, because when you call the constructor, the denominator is int.

So, it is possible that I call the constructor with set 2 - 3, but I cannot have a fraction 2/-3

because the denominator is a signed number here, whereas in my representation is an

unsigned integer, d_ is unsigned, so, I cannot take -3 and put it to d_. So, what I have to

check before the data members are initialized that if d_ is negative, then I have to flip the

sign. And if d_ is negative, then I have to flip the sign up. And also to keep, so, if it is given

us 2 - 3, eventually I make it as - 2, 3 and construct and then do the reduction so that if I have

4 - 6, then I actually will get - 2, 3 in the representation.

There is nothing great in terms of the copy constructor because there are no resources

destructor or copy assignment operator their routine, in terms of writing, you will write one

component and then decide and write a slash to write the second component 2/3. But putting

some conditions that if the numerator is 0, then do not write it as 0/1 or 0/5 it is better to write

0. Or if the denominator is 1, then it is a whole number. So, it is better to write just the whole

number.

So, coming to negate, you just have to flip the sign of the numerator, in componendo you

have to just add 1, you already now can see that why would we had this static constant

Fraction, I can add unity, I can subtract unity and I can very easily realize this different

member functions.

(Refer Slide Time: 23:22)

The Add function, you can go through carefully taking the LCM and so on. But it is exactly

the formula as we have already given in the section of operations you can so that is just coded

will give you this, you have a new Fraction created as a sum of the two Fractions and you

return that. Subtract you can write in a similar way, but is a very compact way to write is you

can negate f2, that is f1 - f2 is same as f1 + (-f2). So, you can just negate and use the add,

which makes the code more compact and readable. Multiplication is simple. So, is division, I

am again using invert to use multiplication for getting division. And this is the remainder you

have to follow that formula for this that is nothing great in terms of C++ here.

(Refer Slide Time: 24:23)

Similarly, the comparison operators are very easy equality and inequality can be checked

directly and for less or greater, you can use the subtract operation and see the sign of the

subtraction. And you can see that one once you have some like this is one operation you

implement, this is another operation you implement and this is a one the other three you can

implement in terms of actually you can may not implement this also. If you implement two

then everything else can be done as a combination of them. Similarly, for invert few have to

remember that if d_ is 0, then you cannot invert a 0 fraction. So, you have to throw an

exception, you can convert to a double and so on.

(Refer Slide Time: 25:16)

So, this is a pretty straightforward implementation, this is just the code of GCD, LCM, which

has routine code. And this is a reduce that the reduce reduction tells you that if, if d_ is 0,

then it is an error. If d_ is negative, then you have to flip the numerator and as well as the

denominator, if n_ is 0, that is numerator is 0, you have to force denominator to be 1 and if

they are in reduced that is they have a GCD greater than 1 then have to take the GCD and

divide both.

(Refer Slide Time: 26:06)

So, your whole reduction process which is encoded in this. having done that the next thing

you need to do for an UDT is to generate a test. So, in a test what you do? You write to every

operation that you have written down, you write down sample cases for that. So, here is a

sample case to construct a function with two parameters, fraction with two parameters with

one parameter with no parameter a fraction by copying and so on, so forth. Similarly, you can

you are trying out negate, preserve, componendo.

(Refer Slide Time: 26:43)

So, you just keep on doing each and every operation and write a code and generate output and

see whether that is being satisfied, that is being printing correctly. So, these are all tests are

written to actually be positive pass. And what you see here, you have to trace that program

along with this output to be able to see that you are getting each and every output as you are

expected. So, this is our version, first version of the design.

(Refer Slide Time: 27:11)

And we had promised that we will refine it and use operators. So, let us see the context.

Suppose with this version, I take an example of three fractions f1, f2, f3 that I have defined,

and f4 is given by this expression, which actually turns out to be this value, how do you write

it in this design, turns out that it is such an expression, horrendous looking, you can get lost

any time in terms of using the operator name, parenthesis and so on. And it is very error

prone.

(Refer Slide Time: 27:50)

And that is a motivation for you to jump to version 2, where the improvement that you do is

for every member function that you have used, try to identify what is the appropriate operator

that can be used. So, naturally for right and read, this is trivial. So, for. Sorry, this names are

swapped, I will correct them. So, preserve is a positive, negate is a negative, then you have

the pre-increment, which is componendo, then you have dividend. Incidentally, you also have

post-increment, post-decrement. So, they are those can be called lazy componendo and lazy

dividendo.

(Refer Slide Time: 28:40)

But what is more interesting is you can have all your addition, subtraction, all these all these

operations, now written in terms of operators. And just to remind you on whether they should

be member function or they should be friend function, just recall that the shortcoming of

being a member function is that the first operand has to be a fraction type. Now, our

constructor here is explicit, which means that we will not allow to take an integer and

implicitly convert that to a fraction.

So, obviously the first member is a fraction can be a very good assumption and therefore, we

do not provide the friend form of the operators which you may provide. There is no harm, but

this is you can hear it just suffices to have member function operators overloaded for your

addition, subtraction, binary operations.

(Refer Slide Time: 29:43)

Then you do have your, you know advanced operators where you x assign x plus equal to y

meaning x assigned x plus y and so on your relational operators and so on. So, all the time

doing is I am just replacing the member functions that I have already designed by identifying

the proper operator which can be used in this case.

(Refer Slide Time: 30:08)

So, I have this exclamation for negate, I have operated double for the conversion and so on.

And I have mapped reduce to this a little unnatural, because you do not have a notion of

reducing int, but I have mapped a dereferencing operator because kind of it takes content,

dereferencing operator takes content.

So, reduce is taking out the proper content so, on this but since this is not on the interface of

your design, you may just retain the name reduce also because users will never use this. And

there are several other operators which will not get mapped like bit-wise operators or shift

operators and so on.

(Refer Slide Time: 30:53)

So, next are just replacing the implementations. And as you will have to go through this try

this out thoroughly, we will see that several of them are just named replacement, but several

of them particularly when it comes to say, writing this operator, operator subtraction, or

writing, say, operator division and all that, you will find that you are even the expression of

implementation would be much easier.

(Refer Slide Time: 31:33)

Go through this and he will have a good sense of this. And you can see that how in single line

in just two lines, you can write the advanced assignment operators, how quickly you can

write the Boolean, the relational operators and so on, and everything is now in terms of

operators as of your int type.

(Refer Slide Time: 31:53)

So, this is your complete implementation, go through that try this out. And again run this

similar test utility to test out if things have been properly implemented. Of course, the

expressions will now change for example, now, I earlier you were writing negate f1.negate,

now you write -f1, you are writing say f1.componendo now you are just writing ++f1 and so

on. So, things become more algebraic in nature. And you can have a complete test application

based on that through which you test.

(Refer Slide Time: 32:27)

And this is the total application I have given here. And as you test you will be able to get this

output, try this out and you will see that very clearly.

(Refer Slide Time: 32:49)

Now, there are one thing which you might want to also test is what happens if you have a

failure? For example, what if somebody tries to construct a fraction with a denominator

which is 0. So, naturally that those things will throw in your code. So, to try them you have to

use the try, catch block and then see that actually, whether those messages are being got. So,

here are examples of constructing with a denominator 0 or trying to divide by the 0 fraction

or trying to take remainder with the 0 fraction and so on. And you will see that all of these

will also pass because they will they are throwing the proper messages.

(Refer Slide Time: 33:33)

Now, before we conclude let us get back to the example we took after version 1, that what if

a high have three fractions and just an apparently not very complicated algebraic expression

with these fractions and version 1 lead to such an expression, in version two, it reduces to

exactly as you write the algebra that is the key advantage of being able to overload operators

with proper meaning. And that is how your version 2 will turn out to be true UDT because it

is now allowing you to use Fraction just like you used the int, float these kinds of types.

(Refer Slide Time: 34:25)

So, in this part of the tutorial and we will continue in the next tutorial also show you with

building of other UDTs, but we have discussed about the general issues in building a data

type and why we need to build that and we have shown how to build a Fraction data type by

iterative refinement. Thank you all very much for your attention. See you in the next module.

