Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 35
Multiple Inheritance

(Refer Slide Time: 0:35)

+ Module Recap

o Understood casting at run-time
¢ Studied dynanic.cast with eamples

o Understood RTTT and typeid operatar

Welcome to Programming in Modern C++ we can we are in week 7 and we are going to
discuss module 35. In the last module, we concluded the three-part discussion on typecasting
in C and C++. And in the last module, we particularly discuss this very important casting for
polymorphic type by dynamic cast, the typeid operator and the required runtime type
information system.

(Refer Slide Time: 1:03)

+ Module Objectives

o Understand Multiple Inheritance in C++




In the present module, we are going to discuss about multiple inheritance. We have
mentioned about it from time to time occasionally, but now that we are empowered with the
complete knowledge of polymorphism, particularly the runtime type detection, the dynamic
typing and so on, on a polymorphic class hierarchy, we are able to handle multiple

inheritance.

(Refer Slide Time: 1:38)

Fal
¥ Module Qutline
1

So, we will introduce the notion and see what are the consequences of that and how does C++

empower us to handle those, the outline is given here, which will be on the left all the time.

(Refer Slide Time: 1:48)

Multiple Inheritance in C++




class Student; v, // Base Clazs = Student

clazs Faculty; v {/ Base Class = Faculty
class TA: public Student, public Faculty; // Derived Class = TA

o TA inherits properties and operations of both Student as well as Facubty

So, what is multiple inheritance? As the name suggests, multiple inheritance is occurring
when in a ISA hierarchy a class has more than one base classes, more than one classes that it
is specializing from. So, consider the case of students, faculty and the teaching assistant, TA
stands for teaching assistant, now, what is the role of a teaching assistant? Teaching assistant
necessarily is a student. So, that justifies this specialization, the teaching assistant has roll

number, has a year of enrollment, course of study and so on.

At the same time, the teaching assistant is evaluating the different assignments in the courses
they are taking part in the class tests, maybe setting some of the question papers for students
and so on. So, the teaching assistant is actually also playing certain roles that the faculty
would normally play. A teaching assistant occasionally may even deliver a few special

lectures.

So, when we have to model this, we have a base class Student, a base class Faculty and when
you show this inheritance, we will have to put both these base classes on the inheritance line.
So, public Student and public Faculty the derived class will inherit from both of them, that is

the basic idea of multiple inheritance.



(Refer Slide Time: 3:30)

o Masager ISA Employes, Dirsctoe ISA Employee. ManagingDirector ISA Manager
MasagingDirector ISA Diector

sines Ieployes 1 Bare Clase = Espleyen [ T
tlsms Mazager: jeblic Bployes £/ Derived Claze = Manages

slw rectar: peblis Eaployes / Berived Cluse = Directar

tlass Matagingirecrar: pehlic Nacager, pohilic Diswstar) // Derived Class = Nasagingdirectar

o Manager inherits properties and opesations of Employee

o Director inherits propertes and aperations of Employes

o MacagingDyectar inberits properties and operations of both Manager as wall as Director
¢ MasagingDiector, by transitmty, inhents preperties and operations of Employes

o Multiple inheritance herarchy usually has a common base class

o This is known as the Diamon Hieraechy

We can see a refinement of this idea say in the scenario of employees and managers and
directors and managing directors. So, let us look at if we have employees who are managers
and who are directors, each one of them is an employee in some way, it is obligated to the
company get salary and so on so forth. Now, one or more specific persons could be managing
director. So, he or she is a manager at the same time is a director, manager in the role that he
or she disperse director in the way that sitting in the board of the company deciding on

strategic matters and so on, so forth.

(Refer Slide Time: 4:22)

o Masager ISA Employes, Director ISA Emplovee. ManagingDirector ISA Manager
MasagingDirector ISA Disctor

;‘_: (el ¢ .

= Parager

= Dirwctar

ar: pehlic Nasager, pohilic Diswstar) / # = Masagingdirectar
o Masager inherits properties and operations of Employee

o Director inherits propertes and operatons of Employes

o MacagingDiectar imberits properties and operaticns of bath Manager as wall as Director
o MasagingDiector, by transitity, mhents properties and operations of Employee

o Multiple inheritance Merarchy usually has a common base class
o This 15 known as the Diamond Hierarchy

—— T

So, here we see two different things coming out. One is at this point, we have multiple

inheritance. Now, when it inherits from two base classes Manager and Director, they in turn,



actually inherit from a common base class, that is the whole inheritance hierarchy has one
root only, which normally is what we have seen in the case of single multi-level inheritance.

But at this point, | have a multiple inheritance.

(Refer Slide Time: 4:54)

B et
eW:  Multiple Inheritance in C++: Hierarchy
=

o Masager ISA Employes, Director ISA Emplovee. ManagingDirector ISA Manager
MasagingDiector ISA Diector

—- R
M CE——
Errplope 3—:// S jv— Fauspnect
“T el r‘”/'/—

\

sines Ieployes \\ I/ Bare Clane = Bsployen Loee
tlses Mamager: jeblic Bploven) £/ Derivad Claze = Mazager

siaes Birectar: pstllc Baployes / Derived Clase = Directar

tlass Matagingirecrar: pehlic Nacager, pohlic Diswctar) // Derdved Class = Nasagingdirectar

o Manager inherits properties and operations of Employee

o Director inherits properties and operations of Employes

o MacagingDeectar inberits properties and operations of both Manager as well as Director
o MasagingDiector, by transitity, inherits properties and operations of Employes

o Multiple inheritance Merarchy usually has a common base class

o This 15 known 35 the Diamond Hieraechy

So, what I get is actually what is known as the diamond hierarchy. So, we get this kind of
diamonds structure. So, we said this is a diamond hierarchy where a multiple inheriting from

two or more base classes, which in turn has a common base class inheriting from.

(Refer Slide Time: 5:15)

o Masager ISA Employes, Directoe ISA Emplovee. ManagingDirector ISA Manager

MasagingDirector ISA Dispstor———
P

peblic Beplover—"
ar: peblic Eaplopes

Mataginglirecrar: pehlic Nacager, poilic Diswctar; /

o Manager inherits properties and operations of Employee

o Director inherits propertes and operatons of Employes

o MasagingDiectar inberits properties and operaticns of bath Manager as well as Director
o MasagingDwector, by transitmty, inhents greperties and operations of Employes

o Muiltiple inheritance Merarchy usually has a common base class

o This 15 known as the Diamond Hierarchy

So, naturally the one question that would come up strongly here is in the Managing Director,
what is the identity of the Employee? Is identity flowing through this path of inheritance? Or



is the identity flowing through this path of inheritance? We will see what are the
consequences of that, but this is just the basic definition of what is the diamond hierarchy or

often called the diamond problem also.

(Refer Slide Time: 5:41)

o Masager ISA Employes, Directoe ISA Emplovee. ManagingDirector ISA Manager
MasagingDisector ISA Deector

l Ol ry-
e
sinee Teplopes / Borw Clane = Baployen =~ Race
tlsss Yamager: jeblic Bployes ) = Munager
siams Directar: pebllc Eaployes 3 = Dirwctar
tlams Masaginglitectar: pehlic Netager, pehilic Diswctar; // Deriv = Nasagingdirectar

o Masager inherits properties and operations of Employee v/
o Directar inherits propertes and operatons of Employee Vv
o MacagingDiectar mberits properties and operaticns of bath \hna}_tr as wall as Director
o ManagingDector, by transitmaty, inhernits properties  and operations of Employee
» Multiple inheritancs Tiarchy usually has a common base class
o This 15 known a5 the Diamond Hierarchy

i
Ne

So, Manager inherits all properties of Employee, Director does so, Managing Director does
for both and Managing Director by transitivity get all the properties and operations of the

Employee right. Let us move on.

(Refer Slide Time: 5:59)

o Derived ISA Bacel, Derived ISA Base2

B!

claza Hasel;
claga Dexived: public Sssal, public Base2; // Derived Clase « Derived

o Use keyword public after class name to denote inberitance
o Name of the Base class follow the keyword

¢ Thera may be moea than two base classes

o public and privatve mheritance may be moved

So, let me now with a abstract example, show you the basic rules of multiple inheritance,

what is the semantics? So, | have, we have two base classes base 1 and base 2 and the derived



class which is inheriting from both of them. Inheritance as we have observed is public and
that is what we will continue to use, but it is possible that one or more of these multiple
inheritances could be private as well, they may be mixed in in any way. But usually as the

inheritance always tell us that it is public inheritance.

(Refer Slide Time: 6:40)

¢ Data Mambers

Denved class inhenit V:rila members of Base plasces

Denved cass may 2k data members of its owa/

o Member Functions
Derved class inherits ' member functions of | Base classes |
Darived class may avernde 3 member function of - Base class by red fimng it with the A

Derwed class may overload a member function of 1 Base class by redefinig it with the
same name, but (Twent signatire =

o Accew Specification e /
Dermed class cannot access J/w:.'» members of Base dass
Derwed dass can access protefted members of Base class

o Construction-Dastroction
A the Derived class must first call s § the Base clisses to
construct the Base'class instances T The Denved tlass - Base class constructoes are calked

i
The e

the Base class instances of the Derived class

tor of the Denived dlass st call the destructons of the Base classes to destruct

So, the basic rules, naturally these rules are extensions and in some cases modifications of the
rules for single inheritance. So, what we have is naturally the derived class inherits all data
members. Now, of all base classes because there is more than one base class, and it can add

its own, that is that part remains the same quite obvious.

It inherits all member functions of all base classes, it can override a member function by
redefining it with the same signature, it can overload the member function of any base class
by redefining it with the same name, but different signature. So, all these were already there,

now, it can be done for all the base classes of a class, that it is multiple inheriting from.

Access specifications remain the same, that is you the derived class cannot access the
members of the base class which are private, but it can access the members of the base class
which are protected. For construction, the of the derived class it must first call all
constructors of all base classes. Earlier there was only one base class we can construct that,

now, it is quite obvious that there are multiple base classes.

So, all of those constructors of the base classes must be called and the base instances have to
be created within the object before the base derived class can be constructed. And these

constructors will be called in the order in which they are listed on the inheritance listing list



that we provide. The destructors as usual will be called all of them will have to be called for
the base as well and they will be called by the same rule that the destructor will be that
destructor will be called first whose constructor was called last. So, we will proceed in that
manner. These are the basic laying down rules.

(Refer Slide Time: 8:47)

o Data Members

Derived class inhents + data membegs of  MBase classes
Derived class may 2dd data membpfs of its own

o Object Layout N
Denved class lyvout cantains instances of

Further, Desived clas

Base class

iers of 11S owm

o €44 doss not guarantee
Denved class members

Now, let us look each one of these categories of items one by one. So, you first focus on the
data members and the object layout, we have studied the object layout for inherited objects
for simple inheritance. So, it will inherit all data members of all base classes can add
members, we have talked off, the layout contents instances of each base class, there are
multiple base class earlier there was one, so, instance of that was there, now all of them we

will have to do there. and then it will also have the layout of its own class.

Now, C++ unfortunately does not guarantee the relative position of the base class instances
and the derived class member, it does not say that first base class instance, second base class
instance and so on then the derived class instance this will be followed, it may be that you
know derived class instance might come somewhere in between them it is you know
implementation dependent feature. So, always while I mean we should not normally need to
look at, look inside the layout, but when you think about it, we should not think about any
particular order in which they will happen, only thing is every instance of a base class will be

together.



(Refer Slide Time: 10:09)

F | |
iﬁi Multiple Inheritance in C++: Data Members and Object

Dtjoct Layeant

ObjrcyBrml  Obipct Bamd  Objoct Dovived ¢ (st uriont | "

=1l

So, here is an example, | have a base class Basel which has two data members int data
members i_ and data_. Base2 has another base class which has two data members j_ and
data_ and Derived class derives from both of them and multiple inheritance and add its own
member. So, if | have a base class 1 instance, it will have clearly i and data, if | have base
class 2 instance it will have j and data and if we have derived class instance it will have a

base 1 instance, it will have a base 2 instance and it will have its own data members.

Now, this relative order is as | said is not known, in general is not specified in general, the
compiler will decide that. Now, the interesting factor to note here is there are two data
members coming from two base classes, both of whose name is data. So, as a derived class
object how do we refer to this data member. So, what the data member has to do? What the
derived class has to do? The directors object has to do, is to qualify that which data member it

is it wants to access.

So, it cannot just access it as data_ this one it will have to access as Basel::data_ and this as
Base2::data_ this is the added complication that comes up because you have multiple base
classes and obviously, they can have members which are common in the name but they are

actually instance wise they are distinct and both of them will exist in the derived class object.



(Refer Slide Time: 12:07)

_’é‘. Multiple Inheritance in C++
L_{ Member Functions — Overrides and Overloads

o Derived ISA Basel, Basel

o Member Functions

o Denved class mhents + member functions of . Base classes

> Derived class may override 3 member function of Base class by redefining it

with the same signature
o Dedved class may overload 3 member function of Base class by redefimng it

with the same "-wm_" but different signature

o Static Member Functions

Denved class does mot nhedr the static member functions of Base class

o Frend Functions

Derived class does not inferit the friend functions of Base class

——————

Let us move on to the member functions. So, how does the override and overloads work?
Naturally all member functions of all base classes are inherited, they can be overwritten, they
can be overloaded by redefinition. Static member functions are not inherited as you know, so,
there is nothing special in terms of multiple inheritance here neither does for the friend
functions. So, we will not have any other special discussion about them, because as you know

that they have no role in the inheritance process because they are all statically bound.

(Refer Slide Time: 12:51)

_’é‘, Multiple Inheritance in C++
L_i Member Functions — Overrides and Overloads

Ders
103 TTRRES AN
ogl) asel:ig
Appe f Baee A
wi'a et ] rived st




,’é‘. Multiple Inheritance in C++
k_‘_i Member Functions — Overrides and Overloads

%1 Multiple Inheritance in C+4
L_‘ Member Functions = Overnides and Overloads

Let us look at an example. We have Basel we have Base2 and we have Derived class which
derives from these two base classes. Base 1 has two methods f and g and Base2 has one
method h. Now, let us look at in view of this, let us look at what the derived class is doing. It
has put an f which has the same signature as Basel::f, the end signature, so it is actually

inheriting and then overriding the function. It has not put any definition for signature for g.

So, it simply inherits Basel::g, it inherits h from Base2, but changes the signature to string.
So, it is overloading Base2::h and it has added a new member function. So, this is this
example looks very similar to the earlier one except in that all these member functions were

in the same base class now they are in two different base classes.

So, in view of this, if | look at a possible derived class object, ¢, | am not given the details of

you know, population of data members and you know, execution those are not really



important here. We are just looking at the function binding. So, c.f will be naturally Basel::f
because you are doing a static binding, c.g will be Base::Basel:.g because you have just
inherited it. Here you have got it from derived. So, you have the overridden function which

you will be able to call, here it is the same.

If you call c.h with a string, you will get the derived class h function you have overloaded.
So, in that process you have also hidden the Base2::h int, we have seen and if we have to
make it expose it, we can use the using function we will soon using feature we can
immediately see, and actually the added member function can always be invoked. So, this is
the basic extension of the simple rules that we had earlier. And we can make use of them to

decide which function will be called on which different object.

(Refer Slide Time: 15:51)

,"ﬁ", Inheritance in C++
P22y Member Functions - using for Name Resolution

,’é‘. Inheritance in C++
P22y Member Functions - using for Name Resolution

“"Iul el {1}
Parellist &, iat b);




Now, let me complicate this example. There is a mental line here, on the left, | show how the
base classes may have different members so that your whole resolution process may get
confused. What we did in the last example, though, we had two base classes, their member
functions were having independent names. But now, we assume that they have common
names. And if you look at f from Basel and Base2, they have same signature. If you look at g

from Basel and Base2, they have different signature.

Under this scenario. If | look at a derived class object, which has inherited from here, | am
not talking about any overloading overriding anything, just trying to look at the semantics of
what do you inherit. Now, if I do c.f, then the question is which function Basel f or Base2 f,
which one am | talking of? We do not know, there are both functions have been inherited in

the derived, so the compiler is confused.

Similarly, if 1 do c.g as 5, then well, you would say that because it is 5, | am possibly using
this, but there is some confusion with g as well, because g is also inherited inside the derived.
So, in these two cases, will the compiler be able to resolve rightly just based on the fact that
the signatures are different? So, you have two g functions in derived which are not overloads

in derived, but they are kind of coming in the form of overload from the two bases.

Finally, if I have f c.f 3, we will again have that kind of confusion between Basel and Base2.
These are not | mean kind of exhaustive list, but these are indicative, which show you what
are the possible confusions that can happen. So, on the right, I tried to disambiguate this, the |
do not change the classes, neither the inheritance, now multiple inheritance, but | specify,

since | have two f functions, | specify which f function I am going to use.

So, | say that | am going to use Basel::f, which will hide Base2::f, it will hide this one, it will
allow this one. Similarly, | would say that I am going to use the g function of Base2. So, | am
going to use this and therefore I will hide this one. So, now if I do c.f, then I will call Basel::f
because | am using that, if I do c.g, | will get Base2::g, because | am using that, the other two
functions are hidden, but mind you they can still be called by fully qualified with the name of
the base class that if | want to call the function f of Base2 I can still do that by qualifying that

function not as f but as Base2::f, same thing I can do for g.

You have seen this in terms of the general using the use of using feature here that is just
extended and it takes care of. So, in the design, you will have to take care of the fact that if

you are having two functions coming from the two base classes, which have the same name,



you have to make sure which is your default choice for the derived class as an inherited

function, and then you can override overload that as you want.

(Refer Slide Time: 20:25)

%‘, Multiple Inheritance in C++
PR Access Members of Base: protected Access

o Access Specification
Denved class cannot access private members of 1 Base class

Denived class can access protected members of Base class

,ré'! Multiple Inheritance in C++
L 4 Constructor & Destructor

o Comstructor-Destructor

Denved class inhents  Constructars and Destructor of Base dasses (but m 2
different senantics)
Derived class cannot overkead a Constructor or canniot overnde the Destructor of |8
Base class
o Construction Destruction

o A constructor of the Denved class must first ca constructors of the Base classes
1o construct the Base class instances of the Denved class

o Base class constructors are called in (3

o The destructor of the Derived class mast call the destructars of the Base classes to
destruct the Base class instances of the Derived dlass

Now, in terms of access specification, it is simple that private members of base classes cannot
be accessed, protected members can be accessed by the derived class, there is nothing new. In
terms of construction, destruction, derived class will inherit all constructors, it should be able
to call on constructors, but it may be in a different semantics because it has to build that
object inside its own space. It cannot overload a constructor or override a destructor of any

base class, you already understand that.

In the process, the constructor of the derived class must first call all constructors of all base
classes to create the base class instances, and then the derived class instance will be created



they will be called in the listing order I mentioned. And the destructors will be called in the

reverse order of construction.

(Refer Slide Time: 21:26)

+ Multiple Inheritance in C++: Constructor & Destructor

clase buasl § protect
AT Babel

Baswi() | zmut <

Dbject Layout

Object b1 Obyect 52

1ase Paael § protectad: it 1) S2t data,
A i ¥

/ palie: Basadlint o, Je2 85: 4 {a), dama () | cost o€ "Basel::Basel(} %0 | ’
Baswl() | eoet € "Raneli:Ramnill *; | |
b iy
|
class Buased | ® §_; tet daty_ < 4\'K l;
o be ) a), dana 03 | ecer o "Fanad;:ase2{} Yl "’ b | <l
& s
| eeat o< Eunal;: Aase2() % | hya |f7‘ N LAY
3 ) — u I \ | ,‘ !/ — "
P\
\ ~ -
Nlses Derived! poblic Baset ;Lc.}r’.fu-.' { 1ot 2, e

pONie: Darivedilnt £, im 3¢
S asei e el A7) | s
B !.-.W.AE.'/:'. o

Terived() | cest << "Dezived: ! Darte

Dbject Layout
Object bl Obyect 52 Ofijoct d

H &

EE

:




Dbject Layout

Objoct bl Obygect 52 »Eyyx_‘.n

So, if we do that, then we have a Basel, the earlier example int i and data Base2 int j and data
here, and | have a multiple inheritance here, which adds another member. So, if | construct a
Basel object, I will get something like this, | do a Base2 object, | will get something like this.
And if | do a Derived object, then I will get this Basel. Why | will get the Basel? Because

the x y have passed to Basel that is explicitly constructed Basel.

Whereas if you look into this list, this is an important point needs to be looked at. If you look
into this point, the initializer list for the derived class, | have explicitly constructed Basel
have used the non-default constructor of Basel, whereas | have not mentioned anything for
Base2, it will also have to get constructed. So, if I do this, then it is mandatory that the base
class that I am not mentioning the constructor of the base class that I am not mentioning must

have a default constructor. Otherwise, naturally the compiler will give error.

For example, in this situation, in this case, you could not have written this, say you wanted to
write base, you wrote Base2 x y and then k underscore z, if you write this, the compiler will
give you an error because Basel if you are skipping Basel, then Basel needs a default
constructor which it does not. So, given that naturally, when | constructor for this, x y will be
used to construct Basel, the Basel object, the Base2 will be constructed by default 0 0, so |
get the 0 0 and 2 will go to the added data member. So, it will be here. Again, remember that
this order an organization is not something that is standard specified. | have just taken one
scheme to do it in the order of the base classes, but some compiler might do it in a different

manner. You can check out for your compiler what it does.

(Refer Slide Time: 23:59)



Fal , -
@ Multiple Inheritance in C++: Object Lifetime

Now, for the same example, let us look at what will be the object lifetime construction,
destruction. So, now along with the data members, we have also provided the constructor,
destructor has been provided with cout to actually tell us what is going on. So, when |
construct this derived class object naturally first, the Basel object will have to be constructed.
So, you first that constructor gets called and you will get 5, 3 as set to the base 1 part of the

instance.

Then naturally based 2 gets called you get 0 O which is a default constructor that gets set.
And finally, the derived class constructor is called which sets 2 into the whole into its own
data member, destruction happens in the reverse order as is expected. So, this you can see
that except for the order of the base classes the objector construction destruction the lifetime

happens exactly following the same rules as we had for the single inheritance.



(Refer Slide Time: 25:28)

Diamond Problem

Diamond Problem

o Student ISA Person ==
o Faculty ISA Persen / 3 "\,.
o TA ISA Stuckat; TA ISA Fculty

e
-
.// \ | Shadot \
/ / \ .
/
[ Person 1 \ TA
\ K\‘\L\’————«L/
y \ | faalty [/
N / \ /
cInsd Farses; N S Cas = Persse
s peblic Perece; =7/ 3use | Darived Cl
class Facelry: pablic Peraen; Base / Durived Class ¥
Class TL podlic Evodest, podlic Faculty; // Derived Class » T3
o Student inherts properties and operations of Person
o Faculty inhents praperties and operations of Perscn
¢ TA inherits properties and operaticns of both Student as well as Facuity
o TA, by transitivity, inhents properties and operations of Person !

So, that lays out lays down the basic properties of multiple inheritance. Now, we will go back
and look into the diamond problem. What is a diamond problem? Diamond problem is you
have a common base class of your base classes that you are deriving from. So, the question is

in the object of the class TA, which person will be taken? So, let us see what happens if you
just code this.



(Refer Slide Time: 26:00)

Fal .
iﬁ-i. Multiple Inheritance in C++: Diamond Problem

s Twe lstances of e clows sbyect (Fezmon] I & TA sbyect] |

If we just do not think about anything just code this part. So, you have a Person which has a
parameterized constructor, you have derived Faculty and Student from that and you derive
TA from Faculty and Student and just put cout in the constructors, so that you know what is
getting constructed. Obviously, Faculty will have to get constructed first for the Faculty,

Person will have to get constructed.

So, Person gets constructed, Faculty gets constructed. Then the Student has to get
constructed, but the Student also has a base class Person. So, Person is again constructed,
Student is constructed, TA is constructed. So, you get into a difficult situation that the same
key object has two instances of the Person object, which certainly is not going to be

manageable. This is a semantic contradiction that the diamond problem throws up.



(Refer Slide Time: 26:57)

Multiple Inheritance in C++
virtual Inheritance — virtual Base Class

it <C "Parass: Persselint) << wedl; |

t < TFarsco: Farsenl)® C endl; | /) Dataalt coor for virvaal Lobetitance

%1 Multiple Inheritance in C++4
L‘d virtual Inheritance — virtual Base Class

peblle: Peewcn(tat x) [ coup << "Paress: Persse{int)® << wdl; |

Fersea () { oot < Farsco: :Fereinl)® <«C endl; | // Dataule ooy for virvaal Lobetitance

So, to avoid that, what we do is we introduce virtual base classes. What is a virtual base class,
a virtual base class is one which you want to use for multiple inheritance from, right, Faculty
is a virtual, I want Faculty to be a virtual base class because it needs to be used for derivation
multiplying. Now, when Faculty derives from its parent, when Faculty derives from its
parent, it uses this key word virtual. The sense of the virtual is absolutely different from the

sense of virtual functions, or runtime polymorphism.

What this means is when | and you do the same thing for Student as well, so these are the
virtual base classes, and you do the same thing. What | have done is | have added a default

constructor in person, which | will explain why | did. Now, if | do the construction Faculty



we need to construct Person. So, once Person is constructed, Faculty is constructed, then the

Student has to be constructed.

Now, what the Student sees is it is inheriting from Person, but it is virtually inheriting. So, in
the context of TA, the compiler will check if an instance of Person has already been created.
If it has already been created, it will not be created again, the same instance will be used,

unlike the previous case, where two separate instances were being used.

Here, the same instance will be used by both Faculty and Student which solves the basic
problem of multiple base classes, base class instances in the derived class object for a
diamond configuration. And rest of it is simple. Now, you will have only one instance of TA
in the ..., only one instance of person in your TA object.

(Refer Slide Time: 29:04)

.’é‘, Multiple Inheritance in C+4
L.{ virtual Inheritance with Parameterized Ctor

So, virtual base classes solve that. Naturally | did that through a parameterized, constructor, a
default constructor, you can use parameterized constructor also. But if you do that, then your
responsibility would be to call that constructor of the route, the Person, so what will that
mean that we will construct this by the parameterized constructor and then the Students then
the Faculty will be constructed and the Faculty will already find that a Person object exists. It

is virtually, it is a virtual base class specializing from Person.

So, once it finds a Person it will not create another Person so the same Person will be used
here. But this is the additional that you need to do if you use parameters in your base class
root class, then you'll have to explicitly call that and first create that object. So, that, that

instance so that that can be subsequently used by the base classes.



(Refer Slide Time: 30:11)

Fa . .
-kﬁi- Multiple Inheritance in C+4+: Ambiguity

flaclade<tortrens

uning tasmspace wt

[0 T 1 aricn ol Th- taacal), witch of Etiadess - sanchl) oF Faceiliy- Swmca () weadtl e Wberiied) |

This is in terms of diamond, there could be other issues to deal with, for example, you have a
teach, which you override in Student and Faculty and in TA, fine, good enough it will work.
What if | do not provide this? So, the question that I leave with you is, which of the teach will
be used? Or how would you resolve that problem. So, it is not easy if you get into diamond, it

IS not easy to always handle this.

(Refer Slide Time: 30:47)

Here, | leave you with an exercise. So, where a | have a multiple inheritance scenario, | am
sorry. | have a multiple inheritance scenario where you have a diamond and we have different
functions foo and foobar in the context of this classes. And you have to create objects A, B,

C, D and so on and create different types of pointers and try to access them to see what kind



of function binding you actually can get, | have not worked this out for you. We have done it

extensively for single inheritance, you should be able to extend that for multiple inheritance.

(Refer Slide Time: 31:46)

+ Design Choice

Design Choice

-
/ / 9
v g4 -
dernd b -
— y——
/ / /"
o Vi V. - ok
oman Mae - ermam P o
e Yo Bl A 2 2 121
T [ . ™ - r—— P ed -~ - ~e y
o Wheded Hierarchy snd Engine Hierarchy interact
o Large number of cross links!
o Multiplicative opticns make modeling difficult .

[ ——Te



o \ { . r
[ '. e ‘ - ..l\ - \'( e | et v e ~g vy

T
o Wheded Hierarchy snd Eagne Hieraechiy teract
o Large number of cross links!

o Multiglicative apticns make modeling difficult

Now, having done this, the question is, does multiple inheritance really solve a huge lot of
problems? Here is a simple instance of ..., well, with this diagram, we will possibly not
consider it simple but it is a simple real world. | am talking about vehicles and | am talking
about two dominant properties of vehicles. One certainly is of wheels, we have always talked
about 4-wheeler 3-wheeler 2-wheeler and based on that a lot of things differ, price, comfort,

licensing and so on so forth.

But what has become very dominant for last couple of decades is how it is fueled? What is
the engine type? Is it a petrol vehicle, fossil fuel vehicle? Is it manually driven vehicle like a
bicycle or is it an electric vehicle? So, if you try to given these two, now, naturally there are

several combinations of these properties that can happen.

For example, an electric car is a four wheeler which is electric, if Toto is a three wheeler
which is electric a and common auto rickshaw is petrol fueled and his three wheeler. So, you
have a mesh of multiple inheritance happening, which naturally make it kind of a mess of
understanding.



(Refer Slide Time: 33:19)

Pt "
@ Design Choice: Inheritance or Composition

o Vehcle Hierarchy

— ) —
o Wheded Hierarchy e Engine as Companenty/
i

o Linear options to simphfy mbdals
<
o |s ths dominant? '.”‘

So, one way we can look at is this modeling is not very suitable to handle because for all of
these you have to do virtual base class this that. So, what we suggest is when you have this
scenario, choose one property which you consider the most dominant property and have a
single inheritance structure based on that, use the other property as a data member, that is as a

component. So, engine becomes a component if you create the hierarchy based on the wheels.

So, you have WheeledVehicles, FourWheeler, ThreeWheeler, TwoWheeler, and different
instances. And then each one of them has an engine property or composition. So, what I am
doing is instead of doing ISA for both, I am doing ISA for wheeled, and | am doing HAS A
for the engine component. So, this is a design style, which often is used instead of using the

complications of multiple inheritance.



(Refer Slide Time: 34:21)

P "
ﬁ- Design Choice: Inheritance or Composition

L

¢

o Vel Hierarchy

o Engoe Hierarchy use Wheeled as Companent
¢ Linear options to simplfy models
o |s thes dominant?

You can look at this in from the other properties perspective also you can take engine to be
your dominant property, because that is deciding laws and you know, what all you can do
electric fossil fuel manual, and then have all different vehicles and in each you can put the
wheels, number of wheels as a composition component and whatever its consequences are
wheels, number of wheels it has a lot of other consequences. So, you can do the inheritance

on the engine and use the winds as compensation.

So, these are the two ways you can look at decompose the multiple inheritance in terms of
composition, it is normally advised that do not try to use multiple inheritance that really
complicates matter in even in a simple situation like this, use only one dominant property for

simple inheritance and use others for your composition purposes.



(Refer Slide Time: 35:24)

Fa
v Module Summary
i

o Introduced the Semantics of Multiple Inhentance in C4+—

o Discussed the Diamond Problem and solution approaches

o llustrated the design choxe between inhertance and comgostion

So, we have talked about multiple inheritance and the diamond problem and the solution
approaches that are all different semantics, and particularly the design choice between
inheritance and composition. Thank you very much for your attention, and we will meet in

the next week.



