
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 35

Multiple Inheritance

(Refer Slide Time: 0:35)

Welcome to Programming in Modern C++ we can we are in week 7 and we are going to

discuss module 35. In the last module, we concluded the three-part discussion on typecasting

in C and C++. And in the last module, we particularly discuss this very important casting for

polymorphic type by dynamic cast, the typeid operator and the required runtime type

information system.

(Refer Slide Time: 1:03)

In the present module, we are going to discuss about multiple inheritance. We have

mentioned about it from time to time occasionally, but now that we are empowered with the

complete knowledge of polymorphism, particularly the runtime type detection, the dynamic

typing and so on, on a polymorphic class hierarchy, we are able to handle multiple

inheritance.

(Refer Slide Time: 1:38)

So, we will introduce the notion and see what are the consequences of that and how does C++

empower us to handle those, the outline is given here, which will be on the left all the time.

(Refer Slide Time: 1:48)

So, what is multiple inheritance? As the name suggests, multiple inheritance is occurring

when in a ISA hierarchy a class has more than one base classes, more than one classes that it

is specializing from. So, consider the case of students, faculty and the teaching assistant, TA

stands for teaching assistant, now, what is the role of a teaching assistant? Teaching assistant

necessarily is a student. So, that justifies this specialization, the teaching assistant has roll

number, has a year of enrollment, course of study and so on.

At the same time, the teaching assistant is evaluating the different assignments in the courses

they are taking part in the class tests, maybe setting some of the question papers for students

and so on. So, the teaching assistant is actually also playing certain roles that the faculty

would normally play. A teaching assistant occasionally may even deliver a few special

lectures.

So, when we have to model this, we have a base class Student, a base class Faculty and when

you show this inheritance, we will have to put both these base classes on the inheritance line.

So, public Student and public Faculty the derived class will inherit from both of them, that is

the basic idea of multiple inheritance.

(Refer Slide Time: 3:30)

We can see a refinement of this idea say in the scenario of employees and managers and

directors and managing directors. So, let us look at if we have employees who are managers

and who are directors, each one of them is an employee in some way, it is obligated to the

company get salary and so on so forth. Now, one or more specific persons could be managing

director. So, he or she is a manager at the same time is a director, manager in the role that he

or she disperse director in the way that sitting in the board of the company deciding on

strategic matters and so on, so forth.

(Refer Slide Time: 4:22)

So, here we see two different things coming out. One is at this point, we have multiple

inheritance. Now, when it inherits from two base classes Manager and Director, they in turn,

actually inherit from a common base class, that is the whole inheritance hierarchy has one

root only, which normally is what we have seen in the case of single multi-level inheritance.

But at this point, I have a multiple inheritance.

(Refer Slide Time: 4:54)

So, what I get is actually what is known as the diamond hierarchy. So, we get this kind of

diamonds structure. So, we said this is a diamond hierarchy where a multiple inheriting from

two or more base classes, which in turn has a common base class inheriting from.

(Refer Slide Time: 5:15)

So, naturally the one question that would come up strongly here is in the Managing Director,

what is the identity of the Employee? Is identity flowing through this path of inheritance? Or

is the identity flowing through this path of inheritance? We will see what are the

consequences of that, but this is just the basic definition of what is the diamond hierarchy or

often called the diamond problem also.

(Refer Slide Time: 5:41)

So, Manager inherits all properties of Employee, Director does so, Managing Director does

for both and Managing Director by transitivity get all the properties and operations of the

Employee right. Let us move on.

(Refer Slide Time: 5:59)

So, let me now with a abstract example, show you the basic rules of multiple inheritance,

what is the semantics? So, I have, we have two base classes base 1 and base 2 and the derived

class which is inheriting from both of them. Inheritance as we have observed is public and

that is what we will continue to use, but it is possible that one or more of these multiple

inheritances could be private as well, they may be mixed in in any way. But usually as the

inheritance always tell us that it is public inheritance.

(Refer Slide Time: 6:40)

So, the basic rules, naturally these rules are extensions and in some cases modifications of the

rules for single inheritance. So, what we have is naturally the derived class inherits all data

members. Now, of all base classes because there is more than one base class, and it can add

its own, that is that part remains the same quite obvious.

It inherits all member functions of all base classes, it can override a member function by

redefining it with the same signature, it can overload the member function of any base class

by redefining it with the same name, but different signature. So, all these were already there,

now, it can be done for all the base classes of a class, that it is multiple inheriting from.

Access specifications remain the same, that is you the derived class cannot access the

members of the base class which are private, but it can access the members of the base class

which are protected. For construction, the of the derived class it must first call all

constructors of all base classes. Earlier there was only one base class we can construct that,

now, it is quite obvious that there are multiple base classes.

So, all of those constructors of the base classes must be called and the base instances have to

be created within the object before the base derived class can be constructed. And these

constructors will be called in the order in which they are listed on the inheritance listing list

that we provide. The destructors as usual will be called all of them will have to be called for

the base as well and they will be called by the same rule that the destructor will be that

destructor will be called first whose constructor was called last. So, we will proceed in that

manner. These are the basic laying down rules.

(Refer Slide Time: 8:47)

Now, let us look each one of these categories of items one by one. So, you first focus on the

data members and the object layout, we have studied the object layout for inherited objects

for simple inheritance. So, it will inherit all data members of all base classes can add

members, we have talked off, the layout contents instances of each base class, there are

multiple base class earlier there was one, so, instance of that was there, now all of them we

will have to do there. and then it will also have the layout of its own class.

Now, C++ unfortunately does not guarantee the relative position of the base class instances

and the derived class member, it does not say that first base class instance, second base class

instance and so on then the derived class instance this will be followed, it may be that you

know derived class instance might come somewhere in between them it is you know

implementation dependent feature. So, always while I mean we should not normally need to

look at, look inside the layout, but when you think about it, we should not think about any

particular order in which they will happen, only thing is every instance of a base class will be

together.

(Refer Slide Time: 10:09)

So, here is an example, I have a base class Base1 which has two data members int data

members i_ and data_. Base2 has another base class which has two data members j_ and

data_ and Derived class derives from both of them and multiple inheritance and add its own

member. So, if I have a base class 1 instance, it will have clearly i and data, if I have base

class 2 instance it will have j and data and if we have derived class instance it will have a

base 1 instance, it will have a base 2 instance and it will have its own data members.

Now, this relative order is as I said is not known, in general is not specified in general, the

compiler will decide that. Now, the interesting factor to note here is there are two data

members coming from two base classes, both of whose name is data. So, as a derived class

object how do we refer to this data member. So, what the data member has to do? What the

derived class has to do? The directors object has to do, is to qualify that which data member it

is it wants to access.

So, it cannot just access it as data_ this one it will have to access as Base1::data_ and this as

Base2::data_ this is the added complication that comes up because you have multiple base

classes and obviously, they can have members which are common in the name but they are

actually instance wise they are distinct and both of them will exist in the derived class object.

(Refer Slide Time: 12:07)

Let us move on to the member functions. So, how does the override and overloads work?

Naturally all member functions of all base classes are inherited, they can be overwritten, they

can be overloaded by redefinition. Static member functions are not inherited as you know, so,

there is nothing special in terms of multiple inheritance here neither does for the friend

functions. So, we will not have any other special discussion about them, because as you know

that they have no role in the inheritance process because they are all statically bound.

(Refer Slide Time: 12:51)

Let us look at an example. We have Base1 we have Base2 and we have Derived class which

derives from these two base classes. Base 1 has two methods f and g and Base2 has one

method h. Now, let us look at in view of this, let us look at what the derived class is doing. It

has put an f which has the same signature as Base1::f, the end signature, so it is actually

inheriting and then overriding the function. It has not put any definition for signature for g.

So, it simply inherits Base1::g, it inherits h from Base2, but changes the signature to string.

So, it is overloading Base2::h and it has added a new member function. So, this is this

example looks very similar to the earlier one except in that all these member functions were

in the same base class now they are in two different base classes.

So, in view of this, if I look at a possible derived class object, c, I am not given the details of

you know, population of data members and you know, execution those are not really

important here. We are just looking at the function binding. So, c.f will be naturally Base1::f

because you are doing a static binding, c.g will be Base::Base1::g because you have just

inherited it. Here you have got it from derived. So, you have the overridden function which

you will be able to call, here it is the same.

If you call c.h with a string, you will get the derived class h function you have overloaded.

So, in that process you have also hidden the Base2::h int, we have seen and if we have to

make it expose it, we can use the using function we will soon using feature we can

immediately see, and actually the added member function can always be invoked. So, this is

the basic extension of the simple rules that we had earlier. And we can make use of them to

decide which function will be called on which different object.

(Refer Slide Time: 15:51)

Now, let me complicate this example. There is a mental line here, on the left, I show how the

base classes may have different members so that your whole resolution process may get

confused. What we did in the last example, though, we had two base classes, their member

functions were having independent names. But now, we assume that they have common

names. And if you look at f from Base1 and Base2, they have same signature. If you look at g

from Base1 and Base2, they have different signature.

Under this scenario. If I look at a derived class object, which has inherited from here, I am

not talking about any overloading overriding anything, just trying to look at the semantics of

what do you inherit. Now, if I do c.f, then the question is which function Base1 f or Base2 f,

which one am I talking of? We do not know, there are both functions have been inherited in

the derived, so the compiler is confused.

Similarly, if I do c.g as 5, then well, you would say that because it is 5, I am possibly using

this, but there is some confusion with g as well, because g is also inherited inside the derived.

So, in these two cases, will the compiler be able to resolve rightly just based on the fact that

the signatures are different? So, you have two g functions in derived which are not overloads

in derived, but they are kind of coming in the form of overload from the two bases.

Finally, if I have f c.f 3, we will again have that kind of confusion between Base1 and Base2.

These are not I mean kind of exhaustive list, but these are indicative, which show you what

are the possible confusions that can happen. So, on the right, I tried to disambiguate this, the I

do not change the classes, neither the inheritance, now multiple inheritance, but I specify,

since I have two f functions, I specify which f function I am going to use.

So, I say that I am going to use Base1::f, which will hide Base2::f, it will hide this one, it will

allow this one. Similarly, I would say that I am going to use the g function of Base2. So, I am

going to use this and therefore I will hide this one. So, now if I do c.f, then I will call Base1::f

because I am using that, if I do c.g, I will get Base2::g, because I am using that, the other two

functions are hidden, but mind you they can still be called by fully qualified with the name of

the base class that if I want to call the function f of Base2 I can still do that by qualifying that

function not as f but as Base2::f, same thing I can do for g.

You have seen this in terms of the general using the use of using feature here that is just

extended and it takes care of. So, in the design, you will have to take care of the fact that if

you are having two functions coming from the two base classes, which have the same name,

you have to make sure which is your default choice for the derived class as an inherited

function, and then you can override overload that as you want.

(Refer Slide Time: 20:25)

Now, in terms of access specification, it is simple that private members of base classes cannot

be accessed, protected members can be accessed by the derived class, there is nothing new. In

terms of construction, destruction, derived class will inherit all constructors, it should be able

to call on constructors, but it may be in a different semantics because it has to build that

object inside its own space. It cannot overload a constructor or override a destructor of any

base class, you already understand that.

In the process, the constructor of the derived class must first call all constructors of all base

classes to create the base class instances, and then the derived class instance will be created

they will be called in the listing order I mentioned. And the destructors will be called in the

reverse order of construction.

(Refer Slide Time: 21:26)

So, if we do that, then we have a Base1, the earlier example int i and data Base2 int j and data

here, and I have a multiple inheritance here, which adds another member. So, if I construct a

Base1 object, I will get something like this, I do a Base2 object, I will get something like this.

And if I do a Derived object, then I will get this Base1. Why I will get the Base1? Because

the x y have passed to Base1 that is explicitly constructed Base1.

Whereas if you look into this list, this is an important point needs to be looked at. If you look

into this point, the initializer list for the derived class, I have explicitly constructed Base1

have used the non-default constructor of Base1, whereas I have not mentioned anything for

Base2, it will also have to get constructed. So, if I do this, then it is mandatory that the base

class that I am not mentioning the constructor of the base class that I am not mentioning must

have a default constructor. Otherwise, naturally the compiler will give error.

For example, in this situation, in this case, you could not have written this, say you wanted to

write base, you wrote Base2 x y and then k underscore z, if you write this, the compiler will

give you an error because Base1 if you are skipping Base1, then Base1 needs a default

constructor which it does not. So, given that naturally, when I constructor for this, x y will be

used to construct Base1, the Base1 object, the Base2 will be constructed by default 0 0, so I

get the 0 0 and 2 will go to the added data member. So, it will be here. Again, remember that

this order an organization is not something that is standard specified. I have just taken one

scheme to do it in the order of the base classes, but some compiler might do it in a different

manner. You can check out for your compiler what it does.

(Refer Slide Time: 23:59)

Now, for the same example, let us look at what will be the object lifetime construction,

destruction. So, now along with the data members, we have also provided the constructor,

destructor has been provided with cout to actually tell us what is going on. So, when I

construct this derived class object naturally first, the Base1 object will have to be constructed.

So, you first that constructor gets called and you will get 5, 3 as set to the base 1 part of the

instance.

Then naturally based 2 gets called you get 0 0 which is a default constructor that gets set.

And finally, the derived class constructor is called which sets 2 into the whole into its own

data member, destruction happens in the reverse order as is expected. So, this you can see

that except for the order of the base classes the objector construction destruction the lifetime

happens exactly following the same rules as we had for the single inheritance.

(Refer Slide Time: 25:28)

So, that lays out lays down the basic properties of multiple inheritance. Now, we will go back

and look into the diamond problem. What is a diamond problem? Diamond problem is you

have a common base class of your base classes that you are deriving from. So, the question is

in the object of the class TA, which person will be taken? So, let us see what happens if you

just code this.

(Refer Slide Time: 26:00)

If we just do not think about anything just code this part. So, you have a Person which has a

parameterized constructor, you have derived Faculty and Student from that and you derive

TA from Faculty and Student and just put cout in the constructors, so that you know what is

getting constructed. Obviously, Faculty will have to get constructed first for the Faculty,

Person will have to get constructed.

So, Person gets constructed, Faculty gets constructed. Then the Student has to get

constructed, but the Student also has a base class Person. So, Person is again constructed,

Student is constructed, TA is constructed. So, you get into a difficult situation that the same

key object has two instances of the Person object, which certainly is not going to be

manageable. This is a semantic contradiction that the diamond problem throws up.

(Refer Slide Time: 26:57)

So, to avoid that, what we do is we introduce virtual base classes. What is a virtual base class,

a virtual base class is one which you want to use for multiple inheritance from, right, Faculty

is a virtual, I want Faculty to be a virtual base class because it needs to be used for derivation

multiplying. Now, when Faculty derives from its parent, when Faculty derives from its

parent, it uses this key word virtual. The sense of the virtual is absolutely different from the

sense of virtual functions, or runtime polymorphism.

What this means is when I and you do the same thing for Student as well, so these are the

virtual base classes, and you do the same thing. What I have done is I have added a default

constructor in person, which I will explain why I did. Now, if I do the construction Faculty

we need to construct Person. So, once Person is constructed, Faculty is constructed, then the

Student has to be constructed.

Now, what the Student sees is it is inheriting from Person, but it is virtually inheriting. So, in

the context of TA, the compiler will check if an instance of Person has already been created.

If it has already been created, it will not be created again, the same instance will be used,

unlike the previous case, where two separate instances were being used.

Here, the same instance will be used by both Faculty and Student which solves the basic

problem of multiple base classes, base class instances in the derived class object for a

diamond configuration. And rest of it is simple. Now, you will have only one instance of TA

in the …, only one instance of person in your TA object.

(Refer Slide Time: 29:04)

So, virtual base classes solve that. Naturally I did that through a parameterized, constructor, a

default constructor, you can use parameterized constructor also. But if you do that, then your

responsibility would be to call that constructor of the route, the Person, so what will that

mean that we will construct this by the parameterized constructor and then the Students then

the Faculty will be constructed and the Faculty will already find that a Person object exists. It

is virtually, it is a virtual base class specializing from Person.

So, once it finds a Person it will not create another Person so the same Person will be used

here. But this is the additional that you need to do if you use parameters in your base class

root class, then you'll have to explicitly call that and first create that object. So, that, that

instance so that that can be subsequently used by the base classes.

(Refer Slide Time: 30:11)

This is in terms of diamond, there could be other issues to deal with, for example, you have a

teach, which you override in Student and Faculty and in TA, fine, good enough it will work.

What if I do not provide this? So, the question that I leave with you is, which of the teach will

be used? Or how would you resolve that problem. So, it is not easy if you get into diamond, it

is not easy to always handle this.

(Refer Slide Time: 30:47)

Here, I leave you with an exercise. So, where a I have a multiple inheritance scenario, I am

sorry. I have a multiple inheritance scenario where you have a diamond and we have different

functions foo and foobar in the context of this classes. And you have to create objects A, B,

C, D and so on and create different types of pointers and try to access them to see what kind

of function binding you actually can get, I have not worked this out for you. We have done it

extensively for single inheritance, you should be able to extend that for multiple inheritance.

(Refer Slide Time: 31:46)

Now, having done this, the question is, does multiple inheritance really solve a huge lot of

problems? Here is a simple instance of …, well, with this diagram, we will possibly not

consider it simple but it is a simple real world. I am talking about vehicles and I am talking

about two dominant properties of vehicles. One certainly is of wheels, we have always talked

about 4-wheeler 3-wheeler 2-wheeler and based on that a lot of things differ, price, comfort,

licensing and so on so forth.

But what has become very dominant for last couple of decades is how it is fueled? What is

the engine type? Is it a petrol vehicle, fossil fuel vehicle? Is it manually driven vehicle like a

bicycle or is it an electric vehicle? So, if you try to given these two, now, naturally there are

several combinations of these properties that can happen.

For example, an electric car is a four wheeler which is electric, if Toto is a three wheeler

which is electric a and common auto rickshaw is petrol fueled and his three wheeler. So, you

have a mesh of multiple inheritance happening, which naturally make it kind of a mess of

understanding.

(Refer Slide Time: 33:19)

So, one way we can look at is this modeling is not very suitable to handle because for all of

these you have to do virtual base class this that. So, what we suggest is when you have this

scenario, choose one property which you consider the most dominant property and have a

single inheritance structure based on that, use the other property as a data member, that is as a

component. So, engine becomes a component if you create the hierarchy based on the wheels.

So, you have WheeledVehicles, FourWheeler, ThreeWheeler, TwoWheeler, and different

instances. And then each one of them has an engine property or composition. So, what I am

doing is instead of doing ISA for both, I am doing ISA for wheeled, and I am doing HAS A

for the engine component. So, this is a design style, which often is used instead of using the

complications of multiple inheritance.

(Refer Slide Time: 34:21)

You can look at this in from the other properties perspective also you can take engine to be

your dominant property, because that is deciding laws and you know, what all you can do

electric fossil fuel manual, and then have all different vehicles and in each you can put the

wheels, number of wheels as a composition component and whatever its consequences are

wheels, number of wheels it has a lot of other consequences. So, you can do the inheritance

on the engine and use the winds as compensation.

So, these are the two ways you can look at decompose the multiple inheritance in terms of

composition, it is normally advised that do not try to use multiple inheritance that really

complicates matter in even in a simple situation like this, use only one dominant property for

simple inheritance and use others for your composition purposes.

(Refer Slide Time: 35:24)

So, we have talked about multiple inheritance and the diamond problem and the solution

approaches that are all different semantics, and particularly the design choice between

inheritance and composition. Thank you very much for your attention, and we will meet in

the next week.

