
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 33

Type Casting & Cast Operators: Part 2

(Refer Slide Time: 0:36)

Welcome to Programming in Modern C++. We are in week 7 and we are going to discuss

module 33. From the last module, we have started discussing typecasting in C++. In module

26, we had discussed this for C. And what we are taking look at is, in C++ you have different

cast operators for specific semantics of casting that you need. And in this context, we have

seen one cast operator, const_cast with examples which can be used to remove const-ness,

volatility, cv-qualifiers, manipulate with the cv-qualifiers of different pointers, references and

so on.

(Refer Slide Time: 1:28)

In the present module, we will continue on this and we will take a look at two other operators

static_cast and reinterpret_cast. So, this is outline which will be on the left panel as usual.

(Refer Slide Time: 1:48)

So, before we get into the meat of discussion in this module, let us just quickly recap what we

have seen in the last module. That what are the types of casting that C cast provider us and

why do we need separate specific casting operators for C++ particularly to have fresh

inference of types without or with change of value.

I will remind you again that C++ is a strongly typed language. Therefore, it is always

necessary for the developer as well as the compiler to understand the type of every literal,

every variable, every expression and deal with their conversions casting with a lot of care. So,

we have seen the const_cast. Today we are going to discuss about static_cast and

reinterpret_cast with a specific context in which they are useful.

(Refer Slide Time: 3:01)

So, we start with the static_cast operator which is which in a way is a common kind of C

equivalent casting in C++. With this operator which can perform all conversions that are

allowed implicitly. So, if we if something is allowed implicitly, you can write specific

typecast operator in that place. We will see examples. It also allows us to do some of the you

know opposite things like by implicit conversion you can convert any pointer type to void*

but certainly you cannot convert void* to pointer type which you can do by static_cast in case

you need to really reassign type to a pointer.

You can convert integer, floating point values to enum types. You can convert one enum type

to another enum type and so on. You have to be very careful always. Because when you are

doing these things, you must know that what you really mean and what you are really doing.

static_cast can perform conversions of pointers, pointer types to related classes. Certainly, it

can do upcast because it is implicit. But it can also do downcast though that is not the proper

way to do downcast. We will see in the next module; we will discuss about the downcast

operator specifically.

But static_cast also allows you to force a downcast if you really need to do that. But the

caveat in that is when it does it downcast, it does not check at the runtime. Because

static_cast as a name suggests is at the compiled time, is static type. So, it does not check any

real existence of the downcast object at the runtime. And therefore, downcast perform using

static_cast could lead you to some problems. We will see those examples.

Additionally, static_cast can do perform conversion based on a single argument constructor

or a conversion operator. This will be these will be new concepts which are called user-

defined cast. It can convert to rvalue reference. It can convert enum to integer or floating

point. It can convert any type to void that is do the evaluation and just forget about, discard

the value. right? So, these are the different kinds of things that static_cast is capable of giving

us.

(Refer Slide Time: 5:57)

So, we will start with extending the example of built-in typecasting that we had seen in C.

This is, note i is an integer, j is a long, d is a double and I have pi and pd and pv as three

different pointer types. Now, if I cast a double to integer, implicitly it is allowed we have

seen but it gives a warning. But if I do that with static_cast, it will the compiler will be silent

because compiler knows what you are doing. So, you can again get reminded of the style of

doing this. Since we are converting, we need to know the expression and its type that is there

in the source. And we need to know the target type.

So, the type of source does not need to be specified because once you put the expression

within this parenthesis the parameter of the static_cast, you will automatically get to know

the type. Because it is strongly typed, so it has a type. So, that is a source type which is

double here. And this is the target type which is int. So, this style continues.

(Refer Slide Time: 7:22)

Now, this was from int to double. I am sorry. This was from double to int. The next is from

int to double which is implicit silent even for that because it is going to a bigger type. And

certainly you can do a static_cast for that. You can convert a pointer to a pointer to void

implicit. Obviously, you can do that by static_cast.

But you cannot do convert a pointer to void to a specifically type pointer like pointer to

integer here. But using static_cast, you can do that. Using static_cast you can do that and the

compiler will be silent. It is to do that. Which means that compiler understands that if you are

converting a pointer to void to say a pointer to integer, then you know exactly what you are

doing.

You can now finally let us look at the conversion between pointer and integral values. We

discussed this at length in Module 26. So, if you try to do an implicit cast from say a pointer

to double to long, it is an error. If you try to do it using static_cast, also you will get an error.

Because static cast is does not have a semantics to convert a pointer to a long. Converting

pointer to a long is just a bit level reinterpretation. It is not a type level conversion because

these two types are in no way related; no way they can be used. So, even with a static_cast,

this is not permitted.

(Refer Slide Time: 9:17)

Now, in parallel to this, I have also put the C style of casting in every place. In all of these

three if you look at the C style is possible but our recommendation is never use them because

they cannot be. They are not safe. They are not cannot be easily searched and so on. Now, in

case of pointer to integral type or vice versa, if you use a C style casting as you are doing

here, then this will be okay. But obviously, that does not mean that we are promoting C style

casting for this case. We will see there is a separate specific cast operator given known as

reinterpret_cast which will make it possible to do these things in a proper way.

(Refer Slide Time: 10:17)

While you do this conversion again be reminded, we discussed in Module 26 at length that if

you try to cast this in C style to long. It will be. But if you try to cast this in C style to int, you

will get an error. This is for a machine where the long and the pointer are of size 8 bytes. But

int is of size 4 bytes.

So, this is a necessity that when we convert pointer to integral type, the integral type must be

large enough to hold the pointer. So, that same error will continue. And just the take back

here is static_cast cannot be used for these conversions and we need a separate cast operator

for this. And never never use the C style casting.

(Refer Slide Time: 11:08)

Again, relook at the class hierarchy. A is a base class and B is a derived class here. I have a A

object and a B object. I have an A pointer p and I am setting the address of b which is a

derived class object. Which means that I am going from specialization to generalization and

that is implicitly. That is okay with the static_cast. Obviously, with the C style cast but we

would not recommend it.

If I try to do the reverse, if I try to do a downcast that is take a pointer to the specialized class,

derived class B and try to convert a A object, the generalized object to that. We have seen

several reasons as to why this is not advisable. This is not possible in general. So, implicit

cast has an error which is the perfect way to go.

But by static_cast, by doing a static_cast as in here, you can force this downcast. Again, this

is not recommended because really when you are forcing this down, you do not know

whether there is enough information available in this source object, source expression to

evaluate that specialized object, the target expression. For this we will discuss in the next

module another special cast operator called dynamic_cast. Obviously, C-style casting will

work but not recommended to be used. So, to conclude for related classes on the hierarchy,

static_cast should be used for doing upcast.

(Refer Slide Time: 13:08)

Now, here I will just point you to a little pitfall in terms of a very common mistake that many

of us do. Just think about there is a class Window which has a resizing method, onResize. If

you try to drag and resize the window, this function is called and the resizing drawings are

done. Now, from that we have specialized to a SpecialWindow which may have some

additional requirement when you resize it. So, when you resize what you would want? That

the basic functionality of the resize of the Window, the parent class should be first called. So,

that the basic resizing is done and then the extra work that you need for this SpecialWindow

is carried out.

Now, naturally for this you want to call this function. So, one common mistake we do is we

take the object which is the SpecialWindow object that is *this. SpecialWindow object and

static cast it to the Window object. So, we say, “Okay we will static_cast”. We are doing

upcast because we are going up. But if you do that recall that this will actually lead to slicing

because you are trying to copy a specialized object as a generalized object.

So, when you do that, you will have only the base part going. And how will the compiler

handle that? Because compiler cannot lose original object. So, compiler creates a temporary

and slices the base part of the SpecialWindow object as a temporary Window object and on

that it calls the method.

It does not call the method on the current object. It is calling it on a temporary which you

have created because of this static_casting and therefore you will see no effect. So, please

remember that whenever you work on a hierarchy and you have to call the function of the

base or base of base and or whatever, then you cannot you should never use the way to copy

the larger, the derived class object as the base class object by casting.

What you should do is very simple. Just directly call the base class function,

Window::OnResize. Just directly call it so that it is called on the current object. Effects also

happens on the current object and everything works fine. So, please be careful about this

pitfall. I have shown it in in one context of Windows programming but it is a very very

general issue to happen.

(Refer Slide Time: 16:03)

Now, I will introduce you to what you can define as your own casting operator. For example,

you have two unrelated classes, A and B. They are not related. They are not on the hierarchy.

So, as we have seen any kind of conversion from A to B is error whether you do it implicitly,

by C-style casting, by static_casting, it is an error. Similarly, if I try to convert say int to A,

all of these are error. It is as it should be because they are unrelated. There is no semantics on

that. So, what you can do is we can define the semantics for it. Because you know why is this

an error? Why converting B to A is an error?

Because I have an B object. I have a B object. And what do I need as a target output? I need

an A object. Now, A object has to be constructed. I cannot get any object just you know out

of nothing. So, in C++ as we have understood is I really need an instance of that A object to

be created from the B object only then the conversion has a meaning. Otherwise, what is the

result of it? In the built-in type, this is not an issue. Because built-in types do not have

constructors. They have built-in processes to create the data pattern from int to double or

from double to int and so on.

But no such thing exists for types that we have defined, the class A and class B. So, very

simply, what we need is if we need to convert a B type object to an A type, I need to provide

a constructor for that. That is the simplest way of doing it. Just provide a constructor which

takes a B object and gives you an A object.

As you provide that, all of these will become valid. Even the implicit cast will become valid

because it gets a implicit cast sees that there is a B object. It sees that it needs an A object.

And it finds that there is a constructor to allow you to do that. So, it will invoke that

constructor. Similarly, you can do that by static_cast which is what I will recommend. C-style

casting also allows it though we will not recommend that.

Using the same style, I can also do a conversion from int to A. Because again what it means?

If I am converting an integer to the A object, it means that given an integer, I want to

construct an A object which means a constructor of this form. An A object will be created by

this constructor. So, all of these again will be correct. Even the implicit. Obviously, the C

type and the static_cast which is what I will recommend. So, this is one way of so if you are

able to edit or able to you know put code in the target type. Here A is the target type. If you

are able to edit that, then the way to give a conversion from any source type is to provide a

constructor for it.

Obviously, these constructors have to be single parameter constructor because it is to be used

for the cast operator. If it has more than one parameter, then the cast operator will not be able

to do that, quite obviously, because the other parameters will not be known to the cast

operator. So, here you see a very nice thing that using the static_cast operator, you can

actually control the casting logic depending on how you define these constructors.

(Refer Slide Time: 20:18)

Let us look at this example in a different way. First part of this; again, A and B are the same

unrelated classes. i is from B to A which we have already I mean discussed it in a certain

way. In the second part, what we want to look at is A being converted to int. Now, when you

convert into A, you know how to do it. By providing a constructor which takes an integer

gives you an A. What you do if you have to convert from A to int? You cannot provide a

constructor in int type which takes A object and gives you an integer. You do not have that

option. It is a built-in type.

Similarly, if you have a situation that where you are not allowed to edit the target type. B to

A, how did we do? We just added a constructor in A which takes B object as a parameter

which means I need to edit the class A. Now, if I am not allowed to do that, how do I do it?

So, there are two situations. In one case it is not possible to edit the target class and in the

other case, we are assuming that we are not allowed to do that. So, it boils down to the same

thing that if you are not allowed to edit the target class, how do you do that? The way of the

path of doing constructors, putting constructors does not work.

(Refer Slide Time: 22:00)

This is where C++ has given another new, I mean another novel operator called the casting

operator wherein in class B we write operator A. The name of the operator is A itself. You

can see there is no return type. Why there is no return type? The operator A will operate on a

B object and will return you an A type object. That is the purpose.

So, you do not need to specify any return type because the return type has to be an A object.

So, this kind of user-defined cast operator written like operator, the keyword followed by the

target type, then you just have a parenthesis; no parameter. This is the fixed style will be used

by the static cast or for casting.

So, now given this if you do if you want to do this conversion, even the implicit conversion

would be allowed because it knows that you want to take a B object to an A object. So, what

are the choices? One choice is the class A has a constructor which takes B as a parameter. It

does not exist here. So, that part is ruled out. Second it checks does Class B, has Class B

provided A as a target type to be converted. The first one constructor path is based on the

source type. This is based on the target type.

So, given B, it has given an operator, user-defined operator for the target type A. So, the

types match and it will invoke that operated. Implicitly it will happen. By static_cast it will

happen. By C-style casting it will happen. We will again always recommend that you use the

static_cast on this.

(Refer Slide Time: 24:16)

Similarly, if we want to convert say A to int. Since you cannot do it based on the target type,

you have to do it based on the source type. So, on A you provide a casting operator, operator

int where the target type is int. So, he will, if you provide that, then this conversion will be

allowed in all of these cases. Again, you do not need to give a return type because it is known

that the return type has to be an integer.

So, you may know note that in both of these operator cases the return will always have to

return the object of the target type. So, here if you have to; now here I have just directly

shown that as if the this constructor is getting called. You can have a whole lot of logic to

construct that object but the end of it, it has to return an object of type A. Here it has to return

an integer because you are converting to int.

So, two pathways. Now, if both are available for a conversion between two classes, two

types, then obviously, the compiler will get confused and the compiler will not know which

one to use and you will have error. So, you have to choose which one you want to do and

write the expression in a different form.

(Refer Slide Time: 25:45)

Next, we look at the reinterpret_cast. We already mentioned that reinterpret_cast is a very

special type of cast operator which is given where static_cast cannot work. So,

reinterpret_cast basically works in two contexts. One is to convert one pointer type to another

where there is no relationship at all or between a pointer type and an integer type. So, these

are the two contexts in which reinterpret_cast will work. Unlike static_cast where you can see

that actually, computations are being done, functions are getting called, you can implement

logic internally, reinterpret_cast is not like that.

Reinterpret_cast simply takes the binary copy of the source value and thinks it is the target

value. It is just that. So, it just erases the source type, puts the target type right. So, all pointer

conversions are allowed in terms of reinterpret_cast. But it does not take cognizance of any of

the pointer content or any checking on the pointer type or anything of that.

Naturally, given this since it is at that low binary level, the format in which say integers will

represent a pointer particularly if you are doing between integer and pointer is platform-

specific. We have already seen examples in Module 26 that I could convert between a pointer

and long but could not convert between pointer and int.

But if I have a machine where the pointer and int have the same size, I will be able to do that.

And that is what is being emphasized by this point that there is a type defined in the library

called intptr_t which gives you the size of the integer that must be provided to fit the pointer

type. So, for our earlier case in Module 26, this size was 8 bytes. So, these conversions can be

performed only by the reinterpret_cast not by the static_cast at all.

(Refer Slide Time: 28:24)

Even as you can do them using C-style casting. But never never never do that because that is

going to be very very risky. And you because this is a C-style casting like this one taking a

pointer to an integer is a significant deviation in terms of the type system. And therefore, it is

very important that it stands out boldly in your code.

So, the way to do that will be to use reinterpret_cast. Naturally the implicit casting does not

work. Similarly, for two unrelated type pointers, the implicit cast does not work but

reinterpret_cast will work. So, these are the two contexts where you should use

reinterpret_cast.

And a word of caution. A lot of survey has been done on community code basis to check do

we really need reinterpret_cast? The answer is no. It is usually, this is the only case where if

you are doing that kind of programming of serialization-deserializing stuff like is the only

case where you might need reinterpret_cast.

So, maybe in a very, very huge program, there may be one instance of reinterpret_cast. But if

usually this will never be needed if you have done your design correctly. So, if you are

requiring reinterpret_cast often, then ask yourself there must be something wrong in the

design. It is not good to erase types and put a different type to fool the compiler because in

turn compiler is your greatest friend in programming. So, if you fool the compiler, you are

actually fooling yourself. So, avoid using reinterpret_cast as much as possible. And always

question if you are using it and make sure that you are design and the context are correct to

use that.

(Refer Slide Time: 30:34)

So, in this module, we have studied static_cast with all its different nuances. Particularly we

have taken a look at user-defined cast operators in terms of constructor, single parameter

constructor as well as user-defined cast operator-operator type. And we have seen how

reinterpret_cast can be used in specific contexts of type erasing and redefinition. Thank you

very much for your attention. We will meet in the next module.

