
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 32

Type Casting & Cast Operators: Part 1

(Refer Slide Time: 0:34)

Welcome to Programming in Modern C++. We are in Week 7. And I am going to discuss

Module 32. In the last module, we have talked about virtual functions and virtual function

table that is an implementation of virtual functions as table of function pointers and how does

it parallel with a nearest C application.

(Refer Slide Time: 0:52)

Now, in this module we will go back to discussing the typecasting again. In fact, this will be

a 3-part discussion covering this module and next two modules. You recall that in the module

26, we talked about casting and particularly in the context of C. Now, we will try to look at

how does casting behave in C++? What is a very very significant difference between

typecasting in C and in C++ and how to do it rightly in C++?

(Refer Slide Time: 1:29)

Okay, so this is the sample outline. So, I will start naturally with a quick recap of what we

have learned in the earlier modules about casting. So, the first thing we learned is why do we

have typecasting? Typecasting is used to convert the type of an object or expression or

function argument or return value to another type. And we have seen that we often need this.

We have also seen that compilers often do this silently either because of the way we have

written the code or because it needs to put things together which are not of the same type but

can be made to be of the same type. And if it does that silently, then it is called the implicit

conversion. So, that includes standard C++ conversions. Earlier we talked about C

conversion. So, now we are talking about C++. So, we will say C++ conversions. And what

will additionally coming which was not there is user-defined conversion.

So, we do not still know what user-defined conversions are. We will come to that. The other

that we have seen is explicit conversion where; why do we need explicit conversion? Because

often the type needed for an expression cannot be obtained from the given type through an

implicit conversion. Why can might that happen? That might happen due to multiple reasons.

One it might happen, because suppose, to do this conversion, I need more than one, a chain of

implicit conversion.

Now, or there may be two ways to do conversion. Now, if those kinds of things exist, then the

compiler feels that it is getting confused. Because suddenly the compiler does not want to

assume something which the programmer did not really mean. So, it is much better to refuse

to compile that than to compile something which has you know, unpredictable behaviour.

So, the compiler will refuse to do implicit conversion and you will need to explicitly say that

I want this conversion to be done. Only then the compiler will do that conversion. And that is

the basic notion of explicit conversion. In fact, explicit conversion maybe, maybe put in place

in cases where it is not only that standard conversion is not being not unique but it may also

happen that it does not exist. It is disallowed but you still want to do it. You will still want to

take a pointer and treat it as an integer or treat it as a long. So, that is the reason we need

explicit conversion there.

Now, the question is what actually happens in the conversion? Now, when you say

conversion, we have kind of a mental set that well, a conversion is like, I have an integer

value 2. I convert it to double. It becomes 2.0. I have an integer value 2.0. I am sorry double

value 2.0. I treat it as integer, it becomes 2.

It feels like that as if conversion is kind of rewriting. But often that may not be the case. That

may be either case. But often that may not be the case. The conversion or casting may

involve actually a lot of computation. It may involve compiler generating specific separate

code to do this conversion.

I illustrate here with a very simple example that I started the discussion with that is mixed

more division. So, here is a function f() which takes two integer variables i and j. What it

does? It casts i to double (into double). This is an explicit conversion. Does not do anything

with j. Now, how will the compiler deal with it?

So, the two things. One is there is an explicit cast. Now, obviously the variable i which is

storing the value of i is of type integer. It has certain size and certain format to store integer.

The value that results by converting it or casting it to double cannot be stored in that location.

It does not fit. Does not follow the format. Is not semantically consistent.

So, what the compiler has to do? Compiler has to define a new temporary variable. So, say I

mean this may not be the name that the compiler will use but it will use something

equivalent. It will as if create a temporary variable of type double which is say temp_i. And

take the value of i, rewrite it in the form of a double number, double literal. So, it will do an

explicit conversion based on this instruction of explicit double conversion. And temp_i now

becomes a double representation of the value carried by i. It may be exactly the same. It may

be a little bit different or it may be substantially different. who knows?

Second, what it does? Having seen that it is this part of the expression has a type double. This

part of the expression has a type int. In C terms it is mixed mode. In other words, it is being

asked to perform a double, a division using a double value and an int value which does not

exist. So, it decides to do a promotion. It decides to promote this on to double.

And this promotion is not mandated by an explicit casting to double. So, it has to perform an

implicit cast, implicit conversion. But the same game is again involved that it cannot keep

that converted value in j. So, it needs another temporary variable. It has another temporary

value where it converts and keep that value. Now, it has the original values explicitly

converted and implicitly converted, 2 to double temporary variables, temp_i and temp_j. So,

it will jolly well go ahead and do a division and return that result.

(Refer Slide Time: 8:25)

The things would be even more complicated, interesting if instead of return type being double

if this were int. If this were int, then this will not work because this will give a double value.

So, what would you again have to do? Possibly t gets say double t gets temp_i divided by

temp_j. Then it has to do an int t_t which has to take the value of t, internally explicitly cast it

to an integer. But to you it will look like implicit because it has to convert; because it has to

give you back the int. Some more code will be there. So, my whole idea is to show you that

when I do this kind of conversion, actually there may be code that are generated. There may

be computations that are generated which are involved and we have to be careful about those.

(Refer Slide Time: 9:21)

So, these are the typical castings we have seen. We have seen that it could be implicit or

explicit. Just quickly recapitulating what happens in C which will also most often happen in

C++ with some deviations though. So, int can be implicitly cast to double without any

complaint. double can be cast to int with warning because there is possible loss of data. If you

do explicit everything will be silent. We have seen the comparisons. But with the pointer, the

implicit cast of a pointer to an integer will be refused. But explicit cast will be acceptable. We

saw nuances of that as well.

(Refer Slide Time: 10:16)

That was about the built-in types. If we came to the unrelated types, so we saw several things

that cannot be done. You cannot convert an object implicitly or explicitly by casting from one

type to another. These are none of these are allowed. You cannot convert their pointers

implicitly but you can (using the C style) you can explicitly cast the pointer of one type to

another type even though they are unrelated. Very dangerous but you can still do it.

We will see refinements of this. The reason I am just brushing up your memory on this is that

in coming to C++, we will have finer rules for doing this and finer control of doing this. In C,

it was only implicit or you know, C style explicit. Here we will have semantic minute

differences coming in.

(Refer Slide Time: 11:14)

We also saw that we can do forced casting between unrelated classes as we did here. Forced

casting of pointers between two unrelated classes and we saw that what kind of error it could

give rise to because one class has an integer and the other class has a double. So, when I cast

the pointer of the type of one class into the pointer of type of the other class, then I am

actually interpreting an int and trying to print data as a double or otherwise. So, I get all sorts

of garbage values. This kind of things will have to be avoided.

And in C++ we will try to you know anything that can that might lead to runtime error, we

will try to build mechanisms in casting so that it does not wait up to the runtime error. It can

give me the error earlier in compiled time. So, that I do not get surprised because this could

be this kind of, you know, erroneous value could be hidden in a lot of deep computation and

debugging that would be a practical nightmare. So, I want to avoid that. And that is the

reason we are reminding of the places where things can go wrong.

(Refer Slide Time: 12:26)

The third type that we had seen are relating to hierarchies. That is when we have an

inheritance hierarchy, one class is derived from the other and we saw the pointers of this and

we saw upcast is safe. That is at any point of time, I can take a pointer to a more specialized

class and assign it to the pointer of a less specialized or more generalized class. That is

because specialization keeps on growing the object details or the concept details.

So, if I take if I really have one and treat it as more generalized, then I do not lose

information. But if I do the other way around which is downcast. That is trying to take an

object of class A and treat it as if as an object of class B, I will have severe consequences. We

have seen examples of that reproduced here. So, this is something which will not be

implicitly allowed.

With void*, you are saying that is a pointer to I do not know what. I can take any pointer and

put it to void* implicitly. I will lose the type information but there is nothing wrong that is

going on. But I obviously cannot do the reverse. I cannot take a void* pointer and say that it

is a pointer of type A or pointer of type B. Because I certainly I am trying to assume

something which the compiler has no way to verify.

(Refer Slide Time: 14:19)

So, this is this is nothing. None of these are new. I am just you know reminding of what you

what we did. And we concluded that up-casting is safe. So, with the up-casting, what we have

is when we have done the up-casting then if we use the right pointers, we can print

everything.

If we are using the up-casting if we are trying to use like pa is pointer to class A, pointer of

type class A and holding your object of class B. So, using pa I will never be able to print this

data member. I get a compile time error which is fine. So, up-casting always is safe. Down-

casting will lead to problems.

(Refer Slide Time: 15:12)

So, that was about again the quick recap of what we have in terms of casting in C++ as

inherited from C. Now, C++ deals with casting differently from C. So, in summary, in C we

have implicit cast. We have explicit C style casting. We might lose type information in

several context and there is complete lack of clarity in terms of the semantics. What do we

mean? Everything is, take type one, make it type two is all that we can say. But under what

context? Under what context is this treatment of one type as another is valid? C does not

allow you to say that.

Now, in C++, firstly what we will have to understand is there is casting which does fresh

inference about that object without actually changing anywhere. It is not changing anywhere.

But it is just making new inferences about the properties of that object. There are castings of

that type.

And of course, there are castings of the original form that we were saying where they actually

make fresh inferences with changing the value. So, if you change int to double or double to

int, you are making fresh inferences about the type but with change of value. But C++ also

allows you to do similar things without changing the value. We will see the example.

Now, this can be done second can be done using implicit conversion or explicit user-defined

conversion which we will have to learn. What is user-defined conversion? Does not exist in

C, so you do not know. The target is to preserve type information in all contexts. Do not lose

the type information. C++ is strongly typed. You cannot lose the type information. So, that is

the basic objective.

So, with that, C++ provide clear semantics through 4 different cast operators, const_cast,

static_cast, reinterpret_cast and dynamic_cast. Now, other than anything else, the big

advantage of (you know) using C++ style cast is, they can be searched by the name of the

operator. Let me, let me tell you what I what they mean.

Suppose I say I said d. This example we have been using, double d; int i. This is valid in C,

implicit. In C++, writing it in the C++ way, I might write this as static_cast. A little bit of

writing I agree. But what does it say? It says that take this value i. i is defined as int so you

know at this point that it is of type int and cast it to a double value which is possible here

because you know that the value of the type of d is double.

Now, what is the difference between these two? In terms of actual computation, there will be

no difference. But the core difference is the fact that when you do this, you can search for

static_cast<double> in the code. You cannot search for this. There is no textual, you know

kind of fingerprint to say that this is where the conversion has happened. It is all implicit. It is

all inside. But using this you can get that.

Even it is, it is better than simply writing double because this can happen in multiple different

contexts. You do not know in what semantic context you are changing something into double.

But here the name of the cast operator will tell you that. Those are the nuances that make the

C++ cast operators really great to work with and that is what we are going to learn. Having

learned that C++ type, C style; C style of casting must be avoided in C++ altogether. You do

not need them.

(Refer Slide Time: 20:09)

Now, how does the cast operator look? You have already seen that. It has a name and is an

expression which is the source type. The type of the source expression is not specified

because you already know it implicitly and the specification of the target type to which it is

going. So, three things as we have seen here, static_cast, this is the name. This is the target

type, double and this is the expression i. It could have been an expression i + j * 3. If i, j are

integer. I know i + j times 3 is of type int. So, the source type is int. The target type is double

and the semantics of the cast is static_cast. This is a basic form of the expression of every

cast operator in C++.

(Refer Slide Time: 21:22)

So, we have 4 of them. The const_cast operator; and all 4 of them have the same structure.

The name within corner brackets, the target type; within parenthesis, the source expression.

The const_cast as the name suggests is to deal with the const-ness or volatility. It kind of

overrides the const-ness of the expression that was already there. Like it changes a const

expression to a non-const expression and so on.

Static_cast which is the which is a non-polymorphic cast which converts the expression of

one type to another type. And there are certain context in which this conversion is allowed. If

you try to static_cast in any other context, you get a compilation error which is great. And

this static cast could happen implicitly or it can be defined by the user, reinterpret_cast is

very interesting. If you cannot cast something, if you cannot cast something by the normal

rules rather you should not be doing that cast, then you can still do that cast in many cases

using the reinterpret_cast.

For example, you can cast unrelated pointer types. Most importantly you can cast pointer and

integer by using reinterpret_cast. As the name suggests, reinterpret. It does not know how to

think of as an integer as a pointer? A pointer is an address or a pointer as an integer, the other

way. So, you have as if you take the bit pattern and give a new interpretation,

reinterpret_cast.

And unlike static_cast it does not perform any computation. So, you can see I said that it

could just, casting could just give a different meaning, different inference but not change the

value. const_cast does not change value. reinterpret_cast does not change value but gives it a

different meaning. Whereas static_cast may actually change value.

The last but the most interesting is a dynamic_cast. All these are compiled time. Whereas,

this one is runtime. That is, it performs a runtime casting that verifies whether a casting is

valid or not. At runtime you cannot do that because you do not know the actual object. But at

the runtime you can do that.

So, dynamic_casting takes an object at the runtime and casts it to some other type, if that

casting is valid. And for that, it may do some, it may perform some predefined computation.

dynamic_cast is allowed only on pointers and references. So, if you feel the validity of a

dynamic_cast, then what the dynamic_cast operator do is, it gives you a null pointer and you

know that you have failed.

If you have invoked a dynamic_cast on a reference, then it throws an exception because there

is no null reference. These are the ways at the runtime to tell you that something wrong has

happened. Whereas, for these, if you have unacceptable things going on, conversions going

on, then the compiler will give you error. That is the basic summary story of cast operators in

C++.

(Refer Slide Time: 25:29)

So, having said that, let us talk specifically about const_cast which converts types of different

cv-qualification, constvolatile-qualification. And const_cast is the only way to move, I mean

remove the const-ness or volatility of certain object. But it usually does not perform any

computation or change the value.

(Refer Slide Time: 25:54)

Let us look at an example. So, just here is a class which has a data member i, the constructor.

There is a const member function get(), const member function get(). There is a member

function set(). So, all that what can you infer from here? You can infer that this const member

function can be invoked only on const object whereas the non-const member function can be

invoked on const as well as non-const objects. We have seen this. Then I have a global print

function. So, here is a pointer to a constant string. This side is constant. So, the pointer to a

constant string, so I cannot change the string.

(Refer Slide Time: 26:50)

Now, if I try to pass this as print as a parameter to print, I will get an error. Why should I get

an error? Because I am passing a pointer to a constant object, constant string to a pointer

value where it is a non-constant object. So, what will happen? It is a call by value. So, if I

allow this, then this address will be copied here in terms of str. And by changing str, I am not

changing it here in this particular case. But the compilers interpretation is by changing str, I

can actually change the original string. So, it will not allow me. It will say that the conversion

from const char* to char* is not allowed.

(Refer Slide Time: 27:45)

So, the question is, if I have that, how do I call that function? Now, I know from the manual

of this library, from the documentation of this library that, this print function does not do any

harm to the string which is passed. So, it is okay to pass a constant string. So, what I do I

stripped the const-ness. What was the type? It was const char*. So, the source type of C is

const char*. What is the target type? I have given char*. So, the const is gone. So, the

resultant expression is only char* which matches the formal parameter type of print and

everything is okay. That is the basic purpose.

(Refer Slide Time: 28:38)

Suppose I have defined a constant object a. I do a.get. That will work because it is a const

member function. If I do a.set, it will give me an error. It is supposed to because set is a non-

constant member function. It can change my object. So, validly I will get an error. But if I

want to force that well, it may be the case but I want this non-const member function to be

called. What I need to do? I need to take away the const-ness. So, what I do? I this object is

const A. So, its type is const A&.

So, what I do is? I take away that const and I just give a target type which is A& which

makes it a non-constant object. That is - it takes away the const, the fact that this pointer was

pointing to a constant A object. It can now point to a non-constant A object and therefore

calling a set is perfectly.

(Refer Slide Time: 29:58)

Mind you cannot do this. You cannot do this. You cannot convert const A to A. That is not

allowed because that will mean changing the object. When you are doing A&, all that you are

doing you are actually temporally creating another reference which is a non-constant

reference which is allowing you to go through the call. But you cannot inherently change the

object. So, it is not necessarily that the cast operators will also always succeed. This is a

compilation error.

(Refer Slide Time: 30:36)

Now, look carefully. We want to; the same example. Here nothing changed. Nothing

changed. Nothing changed. Nothing changed. Now, all that we are showing is what happens

with the C-style cast. If I do this instead, I can do this. This will work. C-style casting. Just

force it without saying what you are doing.

So, you are missing out on two things. So, you are missing out on two things. One is, as I said

it is not easy to find out where the casting has happened. Your char* could be everywhere.

Second, even if you find out you do not know what you are casting away. Are you converting

c which was an object type into char* or something else. This clearly tells you that you are

ripping off the const-ness of the pointer. Nothing else. So, makes good sense but C-style cast

will force this.

You could do this as you saw. You can C-style, you can do this. Again, the same complain

that finding out A& and knowing that there is a casting is difficult. And second, you do not

know the meaning for which it is done. The third dangerous part is, this is semantically not

allowed. But if you do it in C, it will allow you. C-style will allow it. So, you can see that

there is not only type conversion but there is a semantic difference between C looks at it and

C++ looks at it. C++ is lot more strict.

Say if an object is constant, it is constant. You can not make it non-constant. You can have a

different reference to it which treat it as a non-constant. Invoking function. You could have a

pointer that treats it that way. But the object by itself does not become non-constant which C,

using C-style will violate. That is so it is a disaster. Basic recommendation: do not use any

one of these.

(Refer Slide Time: 32:47)

Finally, here there are some more example for you to understand. Here is a struct type, a

constant member function. If you have a constant member function, naturally do can not do

it, do this in it because using this pointer you cannot change i. So, you cannot do that. But

you can strip off the const-ness of the this pointer and do this. So, you can force that by

stripping off the const-ness here.

Here is an integer variable and a constant reference to that. You cannot certainly assign

anything to this cref_i but you can strip off the const-ness of the reference and make an

assignment to it. If you will print, you will get the value 4. You have a type t object. You can

invoke t.m1. m1 is the const member function. So, non-const object can always call const

member function. If you do that, it will get changed to 4 and 4 will be printed.

Mind you. If you have type t as const, then also you will be able to invoke this. t is const. On

a const object you can always do non-const, you can always invoke const member function.

But if you invoke that, then the results will be unpredictable. Because you have a constant

object by definition and you are forcibly changed something inside. Do not do that. Use the

path of mutable and all those.

(Refer Slide Time: 34:41)

Similarly, we have here. These are just different examples of const-ness. Here is a const

variable j and I have created a pointer stripping off the const-ness. So, looking from this

pointer it is; so I can now change this. Now, the interesting thing is, pj points to j but j and pj

and not the same values. Print j and pj. This j remains to be 3; pj is 4. So, that is what I was

meaning. You cannot change the const-ness of the object. You can have a non-const view of

the object created by putting this separate reference or pointer.

And this can be risky. This is an undefined behaviour. Your basic assumption that the pointer

and the object it points to are same is destroyed. Why does that happen? Because to be able to

do this, compiler creates a temporary to put the value of i and let pj point to it. And it is

making changes to that temporary, not to your j. Very risky. Here is one more example with

function pointer. You can see that even with casting, const_cast, you cannot change the

constant member function to a non-constant member function. Simply because const_cast is

not allowed to work on the function pointers.

(Refer Slide Time: 36:15)

So, these were the basic high points about the const_cast. To summarise, we have understood

casting in C and C++. I am trying to bring out the different nuances and differences. And

having seen the summary of different C++ operators, we have just studied const_cast with

examples. And thank you very much for your attention. In the next module we will talk about

the other cast operators.

