Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 32
Type Casting & Cast Operators: Part 1

(Refer Slide Time: 0:34)

‘PP L AT[I 2O 5 EN

Module Recap

o Leveraging an innovative solution to the Salary Processing Application in C using

function pointers, we compare C and C++ solutions to the problem
Sheanh o The new C solution with function pointers is used to explain the mechanism for

dynamic binding (polymorphic dispatch) based on virtual function tables

Programming in Modern C++ Partha Pratim Das M322

Welcome to Programming in Modern C++. We are in Week 7. And | am going to discuss
Module 32. In the last module, we have talked about virtual functions and virtual function
table that is an implementation of virtual functions as table of function pointers and how does
it parallel with a nearest C application.

(Refer Slide Time: 0:52)

‘PP e APl LON BN

[@3 Module Objectives

o Understand casting in C and C++

Objectives &
Qutlines

Programming in Moder C++ Partha Pratim Das M323

Now, in this module we will go back to discussing the typecasting again. In fact, this will be
a 3-part discussion covering this module and next two modules. You recall that in the module
26, we talked about casting and particularly in the context of C. Now, we will try to look at
how does casting behave in C++? What is a very very significant difference between

typecasting in C and in C++ and how to do it rightly in C++?

(Refer Slide Time: 1:29)

‘PRt LIl e BN

E&} Module Qutline

Programming in Modern C:+-+ Partha Pratim Das Miz4

‘PR L QHL SO BD

Eﬁ} Type Casting

Type Casting

Programming in Modern C++ Partha Pratim Das M35

‘PP QHI LI TN

@ Type Casting

o Why type casting?
o Type casts are used to convert the type of an object, expression, function argument, or
return value to that of another type

o (Silent) Implicit conversions
o The standard C-++ conversions and user-defined conversions
Rl o Explicit conversions
o Often the type needed for an expression that cannot be obtained through an implicit
conversion. There may be more than one standard conversion that my create an ambiguous
situation or there may be disallowed convegipn. We need explicit conversion in such cases
o To perform a type cast, the compiler W
o Allocates temporary storage] dfw)u‘a'
o Initializes temporary with value being cast /&'

double f (int i,int j) { return (double) i / j; }

double f (int i, int j) { *

double temp_i = i; (double)

double temgj 0

returh temp_i / temp_j;

Programming in Modern C++ Partha Pratim Das M7

Okay, so this is the sample outline. So, | will start naturally with a quick recap of what we
have learned in the earlier modules about casting. So, the first thing we learned is why do we
have typecasting? Typecasting is used to convert the type of an object or expression or

function argument or return value to another type. And we have seen that we often need this.

We have also seen that compilers often do this silently either because of the way we have
written the code or because it needs to put things together which are not of the same type but
can be made to be of the same type. And if it does that silently, then it is called the implicit
conversion. So, that includes standard C++ conversions. Earlier we talked about C
conversion. So, now we are talking about C++. So, we will say C++ conversions. And what

will additionally coming which was not there is user-defined conversion.

So, we do not still know what user-defined conversions are. We will come to that. The other
that we have seen is explicit conversion where; why do we need explicit conversion? Because
often the type needed for an expression cannot be obtained from the given type through an
implicit conversion. Why can might that happen? That might happen due to multiple reasons.
One it might happen, because suppose, to do this conversion, | need more than one, a chain of

implicit conversion.

Now, or there may be two ways to do conversion. Now, if those kinds of things exist, then the
compiler feels that it is getting confused. Because suddenly the compiler does not want to
assume something which the programmer did not really mean. So, it is much better to refuse

to compile that than to compile something which has you know, unpredictable behaviour.

So, the compiler will refuse to do implicit conversion and you will need to explicitly say that
| want this conversion to be done. Only then the compiler will do that conversion. And that is
the basic notion of explicit conversion. In fact, explicit conversion maybe, maybe put in place
in cases where it is not only that standard conversion is not being not unique but it may also
happen that it does not exist. It is disallowed but you still want to do it. You will still want to
take a pointer and treat it as an integer or treat it as a long. So, that is the reason we need

explicit conversion there.

Now, the question is what actually happens in the conversion? Now, when you say
conversion, we have kind of a mental set that well, a conversion is like, |1 have an integer
value 2. | convert it to double. It becomes 2.0. | have an integer value 2.0. | am sorry double

value 2.0. | treat it as integer, it becomes 2.

It feels like that as if conversion is kind of rewriting. But often that may not be the case. That
may be either case. But often that may not be the case. The conversion or casting may
involve actually a lot of computation. It may involve compiler generating specific separate

code to do this conversion.

| illustrate here with a very simple example that | started the discussion with that is mixed
more division. So, here is a function f() which takes two integer variables i and j. What it
does? It casts i to double (into double). This is an explicit conversion. Does not do anything

with j. Now, how will the compiler deal with it?

So, the two things. One is there is an explicit cast. Now, obviously the variable i which is
storing the value of i is of type integer. It has certain size and certain format to store integer.
The value that results by converting it or casting it to double cannot be stored in that location.
It does not fit. Does not follow the format. Is not semantically consistent.

So, what the compiler has to do? Compiler has to define a new temporary variable. So, say |
mean this may not be the name that the compiler will use but it will use something
equivalent. It will as if create a temporary variable of type double which is say temp_i. And
take the value of i, rewrite it in the form of a double number, double literal. So, it will do an
explicit conversion based on this instruction of explicit double conversion. And temp_i now
becomes a double representation of the value carried by i. It may be exactly the same. It may
be a little bit different or it may be substantially different. who knows?

Second, what it does? Having seen that it is this part of the expression has a type double. This
part of the expression has a type int. In C terms it is mixed mode. In other words, it is being
asked to perform a double, a division using a double value and an int value which does not
exist. So, it decides to do a promotion. It decides to promote this on to double.

And this promotion is not mandated by an explicit casting to double. So, it has to perform an
implicit cast, implicit conversion. But the same game is again involved that it cannot keep
that converted value in j. So, it needs another temporary variable. It has another temporary
value where it converts and keep that value. Now, it has the original values explicitly
converted and implicitly converted, 2 to double temporary variables, temp_i and temp_j. So,
it will jolly well go ahead and do a division and return that result.

(Refer Slide Time: 8:25)

‘BPT L AEL O TN

E@ Type Casting

o Why type casting?
o Type casts are used to convert the type of an object, expression, function argument, or
return value to that of another type

o (Silent) Implicit conversions
o The standard C++ conversions and user-defined conversions
o Explicit conversions
o Often the type needed for an expression that cannot be obtained through an implicit
conversion. There may be more than one standard conversion that my create an ambiguous
situation or there may be disallowed conversion. We need explicit con\Trsion in such cases

Type Casting

o To perform a type cast, the compiler _ \
z

. J
o Allocates temporary storage ‘& k'/
o Initjalizes temporary with value being cast X‘ J(// &
d;fe £ (int i,int j) { return (double) i/ j; } . V'X ¢

dofble £ (int i, int j) {
}‘ double temp_i = i; (double)
double temp_j = j; t I t
return temp_i / temp_j;

Programming in Modern C++ Partha Pratim Das M7

The things would be even more complicated, interesting if instead of return type being double
if this were int. If this were int, then this will not work because this will give a double value.
So, what would you again have to do? Possibly t gets say double t gets temp_i divided by
temp_j. Then it has to do an int t_t which has to take the value of t, internally explicitly cast it
to an integer. But to you it will look like implicit because it has to convert; because it has to
give you back the int. Some more code will be there. So, my whole idea is to show you that
when | do this kind of conversion, actually there may be code that are generated. There may

be computations that are generated which are involved and we have to be careful about those.

(Refer Slide Time: 9:21)

S S B A A RS R

@} Casting: C-Style: RECAP (Module 26)

o Various type castings are possible between built-in types

int i =3;
double d = 2.5;

double result =d / i; - st to double and u

o Casting rules are defined between numerical types, between numercial types and pointers, and
between pointers to different numerical types and void

o Casting can be implicit or explicit
i i L

int i = 3;

double d = 2.5, *p = &d;

d=1i; mplicit: int to double

i=d; implicit fr double int ible 1 f
———— _—

d = (double)i; // explicit: int to double

i = (int)d; plicit: double to int

i=p; error: '=' : cannot convert from ’double *’ to ’int’

i = (int)p; xplicit: double * to int

Prograhming in Moder C++ Partha Pratim Das M7

So, these are the typical castings we have seen. We have seen that it could be implicit or

explicit. Just quickly recapitulating what happens in C which will also most often happen in

C++ with some deviations though. So, int can be implicitly cast to double without any

complaint. double can be cast to int with warning because there is possible loss of data. If you

do explicit everything will be silent. We have seen the comparisons. But with the pointer, the

implicit cast of a pointer to an integer will be refused. But explicit cast will be acceptable. We

saw nuances of that as well.

(Refer Slide Time: 10:16)

‘rPR e AELAO TN

[%} Casting: C-Style: RECAP (Module 26)

o (Implicit) Casting between unrelated classes is not permitted

class A { int i; };
class B { double d; };

Type Casting A a;
B b;

A %p = ka;
B ¥q = &b;

a=b; error: binary ’=’ : no operator which takes a right-hand operand of type 'B’
a = (A)b; error: ’type cast’ : cammot convert from ’B’ to ’A’

b=a; error: binary ’=’ : no operator which takes a right-hand operand of type ’A’
b= (B)a; error ’ : cannot convert from ’A’ to ’B’

P=q error ? : cannot convert from ’B ¥’ to ’A ¥’

q=7p; error: ’=’ : cannot convert from ’A ¥’ to 'B ¥’

p = (Ax)&b; licit inter: type cast

q = (Bx)&a; // explicit on pointer: type cast

u

Programming in Modern C++ Partha Pratim Das M28

That was about the built-in types. If we came to the unrelated types, so we saw several things
that cannot be done. You cannot convert an object implicitly or explicitly by casting from one
type to another. These are none of these are allowed. You cannot convert their pointers
implicitly but you can (using the C style) you can explicitly cast the pointer of one type to

another type even though they are unrelated. Very dangerous but you can still do it.

We will see refinements of this. The reason | am just brushing up your memory on this is that
in coming to C++, we will have finer rules for doing this and finer control of doing this. In C,
it was only implicit or you know, C style explicit. Here we will have semantic minute

differences coming in.

(Refer Slide Time: 11:14)

‘P L ATl O

@ Casting: C-Style: RECAP (Module 26)

o Forced Casting between unrelated classes is dangerous

class A { public: mc@ 4
class B { public: dcubl ¥

Type Casting Aa;
B b;

a.i=5;
b.d=7.2;

A #p = ba;
B *q = &b;

cout << p->i << endl; g
cout << g->d << endl; rints 7.2

%p = (A%)&b; I t Dangerous

q = (B¥)ka; r Dangerous

cout << p->i << endl; T -858993459 GARBAGE
cout << g->d << endl; ts -9.25596e+061: GARBAGE

Programming in Modern C++ Partha Pratim Das M329

We also saw that we can do forced casting between unrelated classes as we did here. Forced
casting of pointers between two unrelated classes and we saw that what kind of error it could
give rise to because one class has an integer and the other class has a double. So, when | cast
the pointer of the type of one class into the pointer of type of the other class, then I am
actually interpreting an int and trying to print data as a double or otherwise. So, | get all sorts

of garbage values. This kind of things will have to be avoided.

And in C++ we will try to you know anything that can that might lead to runtime error, we
will try to build mechanisms in casting so that it does not wait up to the runtime error. It can
give me the error earlier in compiled time. So, that | do not get surprised because this could

be this kind of, you know, erroneous value could be hidden in a lot of deep computation and

debugging that would be a practical nightmare. So, | want to avoid that. And that is the

reason we are reminding of the places where things can go wrong.

(Refer Slide Time: 12:26)

—_—

o Casting on a hierarchy is permitted in a limited sense 'ﬁ V=
)

class A { };
class B : public A { };
A *pa = 0;

Upcast & Dowecast B apb = 0;

void *pv = 0

pa = pb;
o
pb = pa; DOWNCAST: error: =’ : cannot convert from ’A *’ to ’B ¥’

PV = pa; t lose the type for A * void *
pv = pb; lose the type B * to void ¥

pa = pv; error: ’=’ : cannot convert from ’void *’ to ’A *’
pb = pv; error: ’=’ : cannot convert from ’void ¥’ to ’B *’

Programming in Modern C++ Partha Pratim Das M3210

The third type that we had seen are relating to hierarchies. That is when we have an
inheritance hierarchy, one class is derived from the other and we saw the pointers of this and
we saw upcast is safe. That is at any point of time, | can take a pointer to a more specialized
class and assign it to the pointer of a less specialized or more generalized class. That is

because specialization keeps on growing the object details or the concept details.

So, if | take if | really have one and treat it as more generalized, then | do not lose
information. But if I do the other way around which is downcast. That is trying to take an
object of class A and treat it as if as an object of class B, | will have severe consequences. We
have seen examples of that reproduced here. So, this is something which will not be

implicitly allowed.

With void*, you are saying that is a pointer to | do not know what. | can take any pointer and
put it to void* implicitly. I will lose the type information but there is nothing wrong that is
going on. But | obviously cannot do the reverse. | cannot take a void* pointer and say that it
is a pointer of type A or pointer of type B. Because | certainly I am trying to assume

something which the compiler has no way to verify.

(Refer Slide Time: 14:19)

‘e R e aHL OO TD

[ﬁ} Casting on a Hierarchy: C-Style: RECAP (Module 26)

o Up-Casting is

Aclass A { public: int datad_; };
class B : public A { public: in¥fdataB_) };
Aa;
%

B b;
a.datad_ = 2;
b.datad_ = 3;
b.dataB_ = 5;

A *pa = fa;
B #pb = &b;

[ouc << pa->datal_ << endl; prints 2 /
rints 3 6

cout << pb->datal_ << " " << pb->dataB_ << endl;

pa = &b;
-

cout << pa-pfatd_ << endl; prints 3
cout << pa->{ataB) << endl; error: 'dataB_’ : is not a member of 'A’
=

Programming in Modern C+-+ Partha Pratim Das M1

So, this is this is nothing. None of these are new. | am just you know reminding of what you
what we did. And we concluded that up-casting is safe. So, with the up-casting, what we have
is when we have done the up-casting then if we use the right pointers, we can print

everything.

If we are using the up-casting if we are trying to use like pa is pointer to class A, pointer of
type class A and holding your object of class B. So, using pa | will never be able to print this
data member. | get a compile time error which is fine. So, up-casting always is safe. Down-

casting will lead to problems.

(Refer Slide Time: 15:12)

‘PR L ALt

[ﬁ] Cast Operators

Cast Operators

Programming in Modern C++ Partha Pratim Das MR

‘PP LABL L

@ Casting in C and C++

o Casting in C
0 Implicit cast
0 Explicit C-Style cast
0 Loses type information in several contexts
0 Lacks clarity of semantics
o Casting in C++
Cast Operators 0 Performs fresh inference of types without change of valu
0 Performs fresh inference of types with change of value
> Using implicit computation
> Using explicit (user-defined) computation
N
0 Preserves type information in all comexts\/

0 Provides clear semantics through cast operators:
——— —

D const_cast
D static_cast
D reinterpret_cast
D dynamic_cast
0 Cast operators can be grep-ed (searched by cast operator name) in source
0 C-Style cast must be avoided in C++

Programming in Modern C++ Partha Pratim Das M3213

So, that was about again the quick recap of what we have in terms of casting in C++ as
inherited from C. Now, C++ deals with casting differently from C. So, in summary, in C we
have implicit cast. We have explicit C style casting. We might lose type information in
several context and there is complete lack of clarity in terms of the semantics. What do we
mean? Everything is, take type one, make it type two is all that we can say. But under what
context? Under what context is this treatment of one type as another is valid? C does not

allow you to say that.

Now, in C++, firstly what we will have to understand is there is casting which does fresh
inference about that object without actually changing anywhere. It is not changing anywhere.
But it is just making new inferences about the properties of that object. There are castings of
that type.

And of course, there are castings of the original form that we were saying where they actually
make fresh inferences with changing the value. So, if you change int to double or double to
int, you are making fresh inferences about the type but with change of value. But C++ also

allows you to do similar things without changing the value. We will see the example.

Now, this can be done second can be done using implicit conversion or explicit user-defined
conversion which we will have to learn. What is user-defined conversion? Does not exist in
C, so you do not know. The target is to preserve type information in all contexts. Do not lose
the type information. C++ is strongly typed. You cannot lose the type information. So, that is

the basic objective.

So, with that, C++ provide clear semantics through 4 different cast operators, const_cast,
static_cast, reinterpret_cast and dynamic_cast. Now, other than anything else, the big
advantage of (you know) using C++ style cast is, they can be searched by the name of the
operator. Let me, let me tell you what | what they mean.

Suppose | say | said d. This example we have been using, double d; int i. This is valid in C,
implicit. In C++, writing it in the C++ way, | might write this as static_cast. A little bit of
writing | agree. But what does it say? It says that take this value i. i is defined as int so you
know at this point that it is of type int and cast it to a double value which is possible here

because you know that the value of the type of d is double.

Now, what is the difference between these two? In terms of actual computation, there will be
no difference. But the core difference is the fact that when you do this, you can search for
static_cast<double> in the code. You cannot search for this. There is no textual, you know
kind of fingerprint to say that this is where the conversion has happened. It is all implicit. It is

all inside. But using this you can get that.

Even it is, it is better than simply writing double because this can happen in multiple different
contexts. You do not know in what semantic context you are changing something into double.
But here the name of the cast operator will tell you that. Those are the nuances that make the
C++ cast operators really great to work with and that is what we are going to learn. Having
learned that C++ type, C style; C style of casting must be avoided in C++ altogether. You do
not need them.

(Refer Slide Time: 20:09)

‘ePL L AL L

Cast Operators

o A cast operator takes an expression of source type (/mplicit from the expression) and
converts it to an expression of target type (explicit in the operator) following the
semantics of the operator

o Use of cast operators increases robustness by generating errors in static or dynamic time

Cast Operators

Programming in Modern C++ Partha Pratim Das M3214

Now, how does the cast operator look? You have already seen that. It has a name and is an
expression which is the source type. The type of the source expression is not specified
because you already know it implicitly and the specification of the target type to which it is
going. So, three things as we have seen here, static_cast, this is the name. This is the target
type, double and this is the expression i. It could have been an expression i +j * 3. If i, j are
integer. 1 know i + j times 3 is of type int. So, the source type is int. The target type is double
and the semantics of the cast is static_cast. This is a basic form of the expression of every

cast operator in C++.

(Refer Slide Time: 21:22)

‘PP AHILO TN

E:g] Cast Operators

-

e const_cast operator: const_cast<type>(expr)
o Explicitly overrides const anc olatile in a cast
o Usually does not perform computation or change value
e static_cast operator: static_cast<type>(expr)
o Performs a non-polymorphic cast
o Usually performs computation to change value - implicit or user-defined

Cast Operators

e reinterpret_cast operator: reinterpret_cast<type>(expr)
o Casts between unrelated pointer types or pointer and intege
o Does not perform computation yet reint e

e dynamic_cast operator: dynamic_cast<type> (expr)
o Performs a run-time cast that verifies lidity of the cast

o Performs pre-defined computation, sets nulljor throws exception
\ ——————

Programming in Modern C++ Partha Pratim Das M32.15

So, we have 4 of them. The const_cast operator; and all 4 of them have the same structure.
The name within corner brackets, the target type; within parenthesis, the source expression.
The const_cast as the name suggests is to deal with the const-ness or volatility. It kind of
overrides the const-ness of the expression that was already there. Like it changes a const

expression to a non-const expression and so on.

Static_cast which is the which is a non-polymorphic cast which converts the expression of
one type to another type. And there are certain context in which this conversion is allowed. If
you try to static_cast in any other context, you get a compilation error which is great. And
this static cast could happen implicitly or it can be defined by the user, reinterpret_cast is
very interesting. If you cannot cast something, if you cannot cast something by the normal
rules rather you should not be doing that cast, then you can still do that cast in many cases

using the reinterpret_cast.

For example, you can cast unrelated pointer types. Most importantly you can cast pointer and
integer by using reinterpret_cast. As the name suggests, reinterpret. It does not know how to
think of as an integer as a pointer? A pointer is an address or a pointer as an integer, the other
way. So, you have as if you take the bit pattern and give a new interpretation,

reinterpret_cast.

And unlike static_cast it does not perform any computation. So, you can see | said that it
could just, casting could just give a different meaning, different inference but not change the
value. const_cast does not change value. reinterpret_cast does not change value but gives it a

different meaning. Whereas static_cast may actually change value.

The last but the most interesting is a dynamic_cast. All these are compiled time. Whereas,
this one is runtime. That is, it performs a runtime casting that verifies whether a casting is
valid or not. At runtime you cannot do that because you do not know the actual object. But at

the runtime you can do that.

So, dynamic_casting takes an object at the runtime and casts it to some other type, if that
casting is valid. And for that, it may do some, it may perform some predefined computation.
dynamic_cast is allowed only on pointers and references. So, if you feel the validity of a
dynamic_cast, then what the dynamic_cast operator do is, it gives you a null pointer and you

know that you have failed.

If you have invoked a dynamic_cast on a reference, then it throws an exception because there
is no null reference. These are the ways at the runtime to tell you that something wrong has
happened. Whereas, for these, if you have unacceptable things going on, conversions going
on, then the compiler will give you error. That is the basic summary story of cast operators in

C++.

(Refer Slide Time: 25:29)

‘rPR P QHI PO
L]

E%] const_cast Operator

e const_cast converts between types with different cv-qualification
o Only const_cast may be used to cast away (remove) const-ness or volatility

o Usually does not perform computation or change value

const.cast

Partha Pratim Das M3216

So, having said that, let us talk specifically about const_cast which converts types of different
cv-qualification, constvolatile-qualification. And const_cast is the only way to move, | mean
remove the const-ness or volatility of certain object. But it usually does not perform any

computation or change the value.

(Refer Slide Time: 25:54)

""7"4"1/4“"".(\‘

[%] const_cast Operator

#include <iostream>
using namespace std;

class A { int i_; v /
public: A(int i) : i_(i) { }
int get() const { return i_; } \/
void set(int) {i_=j;: } Vv
b

void print(char * str) { cout << str; }‘/

cas int majn() {
char ¥ ¢ = "sample text"; v
t // error: ’void print(char ¥)’: cannot convert argument 1 from ’const char *’ to ’char #’

print(const_cast<char *>(c));

const A a(1);
a.get();

5); // error: ’void A::set(int)’: cannot convert ’this’ pointer from ’const A’ to ’A &’
const_cast<Ak>(a).set(5);

// error: 'const_cast’: camnot convert from ’const A’ to ’A’

Programming in Modern C++ Partha Pratim Das MR

Let us look at an example. So, just here is a class which has a data member i, the constructor.
There is a const member function get(), const member function get(). There is a member
function set(). So, all that what can you infer from here? You can infer that this const member
function can be invoked only on const object whereas the non-const member function can be

invoked on const as well as non-const objects. We have seen this. Then | have a global print

function. So, here is a pointer to a constant string. This side is constant. So, the pointer to a

constant string, so | cannot change the string.

(Refer Slide Time: 26:50)

R S R R S R R V]

Eéé} const_cast Operator

#include <iostream>
using namespace std;

class A { int i_;

public: Afint i) : i (1) {}
int get() const { returni_; }
void set(int j) { i_ = j; }

void print(chgr * str) { cout << str; }
o~
censtcast int main() { ‘{/
const chaf * ¢ = "sample text";

; / error: ’void print(char *)’: cannot convert argument 1 from ’const char *’ to ’char #’

e, -
—_——

e e
print(const_cast<char #>(c));

const A a(l);
a.getl);

5); // error: 'void A::set(int)’: cannot convert 'this’ poimter from ’const A’ to ’A &’
const_cast<Ak>(a) .set (5);

i // exror: ’const_cast’: cammot convert from ’const A’ to 'A’

Programming in Modern C++ Partha Pratim Das ma17

Now, if | try to pass this as print as a parameter to print, | will get an error. Why should I get
an error? Because | am passing a pointer to a constant object, constant string to a pointer
value where it is a non-constant object. So, what will happen? It is a call by value. So, if |
allow this, then this address will be copied here in terms of str. And by changing str, | am not
changing it here in this particular case. But the compilers interpretation is by changing str, |
can actually change the original string. So, it will not allow me. It will say that the conversion

from const char* to char* is not allowed.

(Refer Slide Time: 27:45)

‘P AHIAO TN

E%] const_cast Operator

#include <iostream>
using namespace std;

class A { int i_;
public: A(int i) : i_(i) { }
int get() const { returni_; }
void set(int j) { i_ =j; }
i

void print(char * str) { cout << str; }”

const.cast int aajn
const char # c\= "sample text";

i /A egror: ’yoid print(char *)’: cannot convert argument 1 from ’const char *’ to ’char #’

Y

print (const_cast<char #>(¢));

const A a(1);
a.get();

5); // error: ’void A::set(int)’: camnnot convert ’this’ pointer from ’const A’ to ’A &’
const_cast<A&>(a).set(5);

// error: 'const_cast’: canmot convert from ’const A’ to ’A’

Programming in Modern C++ Partha Pratim Das MR

So, the question is, if | have that, how do I call that function? Now, I know from the manual
of this library, from the documentation of this library that, this print function does not do any
harm to the string which is passed. So, it is okay to pass a constant string. So, what | do |
stripped the const-ness. What was the type? It was const char*. So, the source type of C is
const char*. What is the target type? | have given char*. So, the const is gone. So, the
resultant expression is only char* which matches the formal parameter type of print and

everything is okay. That is the basic purpose.

(Refer Slide Time: 28:38)

‘PR L AHLI L O TN

{@E const_cast Operator

#include <iostream>
using namespace std;

class A { int i_;

public: A(int i) : i_(i) { }

int get() const { returni_; }
void set(int j) { i_ = j; }

b —_

void print(char * str) { cout <« str; }
const.cast int main() {

const char # ¢ = "sample text";
// error: ’void print(char *)’: cannot convert argument 1 from ’const char *’ to ’char #

print(const_cast<char #>(c)); *@(
(:const@a\(/ﬂ; ‘/ ify
// error: ’void A::set(int)’: camnot convert ’this’ pointer from ’const A’ to ’A &’

ccnst_cast‘ (a).set(5);

}

Programming in Modern C+-+ Partha Pratim Das M2.17

// error: ’'const_cast’: cannot convert from ’const A’ to ’A’

Suppose | have defined a constant object a. | do a.get. That will work because it is a const
member function. If I do a.set, it will give me an error. It is supposed to because set is a non-
constant member function. It can change my object. So, validly I will get an error. But if |
want to force that well, it may be the case but | want this non-const member function to be
called. What | need to do? | need to take away the const-ness. So, what | do? | this object is

const A. So, its type is const A&.

So, what | do is? | take away that const and | just give a target type which is A& which
makes it a non-constant object. That is - it takes away the const, the fact that this pointer was
pointing to a constant A object. It can now point to a non-constant A object and therefore

calling a set is perfectly.

(Refer Slide Time: 29:58)

‘FPT L QHI SO

E@] const_cast Operator

#include <iostream>
using namespace std;

class A { int i_;
public: A(int i) : i_(1) { }
int get() const { return i_; }
void set(int j) { i_ = j; }
void print(char * str) { cout < str; }
const.cast int main() {
const char * ¢ = "sample text";
// error: ’void print(char *)’: cannot convert argument 1 from ’const char ¥’ to ’char #’

print(const_cast<char #>(c));

const A a(1);
a.get();

5); // error: ’void A::set(int)’: cannot convert ’this’ pointer from ’const A’ to ’A &’

const_cast<Ak>(a).set(5);
=

7N
// error: ’'const_cast’: cammot convert from ’const A’ to ’A’
Programming in Modern C++ Partha Pratim Das M7

Mind you cannot do this. You cannot do this. You cannot convert const A to A. That is not
allowed because that will mean changing the object. When you are doing A&, all that you are
doing you are actually temporally creating another reference which is a non-constant
reference which is allowing you to go through the call. But you cannot inherently change the
object. So, it is not necessarily that the cast operators will also always succeed. This is a
compilation error.

(Refer Slide Time: 30:36)

‘PP e QHLAO TN

[@] const_cast Operator vis-a-vis C-Style Cast

#include <iostream>
using namespace std;

class A { int i_;

public: A(int i) : i (i) { }
int get() comst { returni_; }
void set(int j) { i_ = j; }

void print(char * str) { cout < str; ﬂ

int main() {
const char # ¢ = "sample text";
print{const_cast<char *>
print((char *)(c)); tyl \/7‘
_ .

const A a(1) ;1

const_cast<Ag>(a).set
(()a) .set (5); tyle Cast o
Al

const_cast<A> // error: ’const_cast’: cannot convert from ’const A’ to ’A’
e
(M) sexTT -Style Cast
b — 3

}

Programming in Modern C++ Partha Pratim Das M3218

Now, look carefully. We want to; the same example. Here nothing changed. Nothing

changed. Nothing changed. Nothing changed. Now, all that we are showing is what happens

with the C-style cast. If I do this instead, | can do this. This will work. C-style casting. Just

force it without saying what you are doing.

So, you are missing out on two things. So, you are missing out on two things. One is, as | said
it is not easy to find out where the casting has happened. Your char* could be everywhere.
Second, even if you find out you do not know what you are casting away. Are you converting
¢ which was an object type into char* or something else. This clearly tells you that you are
ripping off the const-ness of the pointer. Nothing else. So, makes good sense but C-style cast

will force this.

You could do this as you saw. You can C-style, you can do this. Again, the same complain
that finding out A& and knowing that there is a casting is difficult. And second, you do not
know the meaning for which it is done. The third dangerous part is, this is semantically not
allowed. But if you do it in C, it will allow you. C-style will allow it. So, you can see that
there is not only type conversion but there is a semantic difference between C looks at it and

C++ looks at it. C++ is lot more strict.

Say if an object is constant, it is constant. You can not make it non-constant. You can have a
different reference to it which treat it as a non-constant. Invoking function. You could have a
pointer that treats it that way. But the object by itself does not become non-constant which C,
using C-style will violate. That is so it is a disaster. Basic recommendation: do not use any

one of these.

(Refer Slide Time: 32:47)

‘PP L AHI 2O U

const_cast Operator

#include <iostream>

struct type { type(): i(3) { }
voi int v) comst {
Ais // error C3490: ’i’ camnnot be modified -- accessed through a const object
const_cast<type*>(this)->i = v; t : C
e
int i;
int main() { igt i=3; i is not ared const
const intk cref_i = i; const_cast<int&>(cref_i) = 4; fies i

const.cast std:icout XK "1 = " K TK '\n’;

pe t;‘/ t @ type t t.m1(4)
\/Z.zl(ll);\/ ‘

std::cout << "type::i = " << t.i <« ’\n’;

const int j = 3;] const
int* pj = const_cast<int*>(&j); *pj = 4; undefined behavior! £y #pj ma
std:icout << j << " " << #pj << std::endl;

void (type::smfp)(int) const = &type::ml; . ember functi
const_cast<void(type::#)(int)> // error C2440: ’const_cast’: cannot convert from
’void (__thiscall type::*)(int) const’ to
’void (__thiscall type::*)(int)’ const_cast does not work
} on function pointers

Programming in Modern C++ Partha Pratim Das MR219

Finally, here there are some more example for you to understand. Here is a struct type, a
constant member function. If you have a constant member function, naturally do can not do
it, do this in it because using this pointer you cannot change i. So, you cannot do that. But
you can strip off the const-ness of the this pointer and do this. So, you can force that by

stripping off the const-ness here.

Here is an integer variable and a constant reference to that. You cannot certainly assign
anything to this cref i but you can strip off the const-ness of the reference and make an
assignment to it. If you will print, you will get the value 4. You have a type t object. You can
invoke t.m1. m1 is the const member function. So, non-const object can always call const

member function. If you do that, it will get changed to 4 and 4 will be printed.

Mind you. If you have type t as const, then also you will be able to invoke this. t is const. On
a const object you can always do non-const, you can always invoke const member function.
But if you invoke that, then the results will be unpredictable. Because you have a constant
object by definition and you are forcibly changed something inside. Do not do that. Use the

path of mutable and all those.

(Refer Slide Time: 34:41)

‘PR e QHI PO TN

const_cast Operator

#include <iostream>
struct type { type(): i(3) { }
void m1(int v) const {
this /] error C3490: ’i’ cannot be modified -- accessed through a const object
const_cast<type*>(this)->i = v; t t t t
}
int i;
int main() { int i = 3; i t const
const intk cref i = i; const_cast<int&>(cref_i) = 4; fies i
ast std:zcout << "i = " << i« ’\n’;
utpu
type t; t const type t t.n1(4)
t.m1(4);
std::cout << "type::i =" <« t.i <« *\n’;
onst int j = 3; \/] const
JZnt* pj = const_cast<int*>{&j); *pj = 4; undefined behavior! f j and *pj ma
std:icout << j << " ' << #pj << std:iemdl; T —————
void (type::#+mfp)(int) const = &type::ml; r r f
const_cast<void(type::#) (int)> // error C2440: ’const_cast’: cannot convert from
’void (__thiscall type::*)(int) const’ to
’void (__thiscall type::#*)(int)’ const_cast does not work
} on function pointers
Programming in Moder C++ Partha Pratim Das M3219

‘PP LAHL L TN

[@E const_cast Operator

#include <iostream>
struct type { type(): i(3) { }
void m1(int v) const {
this->i = /I error C3490: ’i’ camnot be modified -- accessed through a const object
const_cast<type#>(this)->i = v; t t t
}

int i;

int main() { int i = 3; i is not ared const
const intk cref_i = i; const_cast<int&>(cref_i) = 4; fies i
const.cast std::cout << "i =" << i <« ’\n’;

type t; te t const type t en t.mi(4)
t.m1(4);
std::cout << "type::i = " <« t.i <« ’\n’;

const int j = 3;] lared const
int* pj = const_cast<int*>(&j); *pj = 4; undefined behavior! Val fj #pj
std::cout << j << " " << #pj << std::endl;

void (type::#mfp)(int) &type::mi; t fur
const_cast<void(tjpe: :¥1(int)> // error C2440: ’const_cast’: cannot convert from
—_— 5

d (__thiscall type::*)(int) const’ to

iscall type::#*)(int)’ const_cast does mot work
f pointers

Programming in Moder C++ Partha Pratim Das M32.19

Similarly, we have here. These are just different examples of const-ness. Here is a const
variable j and | have created a pointer stripping off the const-ness. So, looking from this
pointer it is; so | can now change this. Now, the interesting thing is, pj points to j but j and pj
and not the same values. Print j and pj. This j remains to be 3; pj is 4. So, that is what | was
meaning. You cannot change the const-ness of the object. You can have a non-const view of

the object created by putting this separate reference or pointer.

And this can be risky. This is an undefined behaviour. Your basic assumption that the pointer
and the object it points to are same is destroyed. Why does that happen? Because to be able to
do this, compiler creates a temporary to put the value of i and let pj point to it. And it is
making changes to that temporary, not to your j. Very risky. Here is one more example with
function pointer. You can see that even with casting, const_cast, you cannot change the
constant member function to a non-constant member function. Simply because const_cast is

not allowed to work on the function pointers.

(Refer Slide Time: 36:15)

‘PP APl PO BN

[@} Module Summary

o Understood casting in C and C++
o Explained cast operators in C++ and discussed the evils of C-style casting

o Studied const_cast with examples

ming in Modern C++ Partha Pratim Das M3220

So, these were the basic high points about the const_cast. To summarise, we have understood
casting in C and C++. | am trying to bring out the different nuances and differences. And
having seen the summary of different C++ operators, we have just studied const_cast with
examples. And thank you very much for your attention. In the next module we will talk about

the other cast operators.

