Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 31
Virtual Function Table

(Refer Slide Time: 0:34)

L RN S R

%
{ﬁ Weekly Recap

o Understood type casting = mmplicit as well as explicit = for built-in types unrelated

types, and classes an a heerarchy

o Understood the notions of upcast and downcast

o Understood Static and Dynamic Binding for Polymanphic type

o Understood virtual destnctors, Pure Virtual Functions, and Abstract Base Class

o Desigred the solutice for a staff salary processing problem using iteratwe refinement -
starting with a simple C solution and repeatedly refining finally to an easy, efficent, and
extersible C++4 solution based on fleable polymarphic hieraechy

Welcome to Programming in Modern C++. We are in Week 7 and we are going to discuss
module 31. In the last week, we started with understanding the typecasting - implicit as well
as explicit casting - for built-in types, unrelated types, and we primarily discussed it in the

context of C casting style.

And in the process, we understood the basic notion of upcast and downcast in a C++
hierarchy. And then we moved on to discuss about different kinds of binding, static or
compiled time and dynamic and runtime binding for polymorphic type. Introduced virtual

destructors, talked about pure virtual function, abstract base classes.

And in the last 2 modules of last week, we have done an extensive treatment of a salary
processing problem to show how starting from a very simple problem statement and a flat C
solution, how we can iteratively refine to get to a very good, flexible polymorphic
hierarchical solution. So, it was all primarily about polymorphism.

(Refer Slide Time: 1:52)

L B S R A

[ﬁ:} Module Objectives

o Introduce a new C solutaon with function painters

o Understand Viewal Function Table for dynamec binding {polymorpine dispatch)

So, moving on, we will hover around that itself but go into more specificities in this week.
Talking first, in this module about a new C solution. You will be a little surprised that again,
having done all sorts of C++ solution, | am coming back to introducing another C solution.
But this C solution will be unique in the fact that it will use function pointers. All previous,
the previous C solution had used function switch basically. And then we will understand the
virtual function table for dynamic binding which is the backbone of polymorphic dispatch,

the backbone of polymorphism in a C++ polymorphic hierarchy.

(Refer Slide Time: 2:38)

rPRs st L0

{:ﬂ;} Module Qutline

9
)
0
)
0
Q

This is the outline which will be there with you all the time on the left panel.

(Refer Slide Time: 02:48)

pPRsangs ey

Kt s
L@~ Staff Salary Processing: New C Solution

L

Staff Salary Processing: New C Solution

"" A A ERER AL EEE E)
{;@: Staff Salary Processing: Problem Statement: RECAP

L

1

o An arganization needs 1o develop a salary processing applcation for its staff

o At present it has an engineering divison anly wherz Engineers and Managers work
Every Engmeer reports 10 some Manager Every Manager can also work like an Engineer

o The logic for processing salary for Engineers and Managers are different as they have
different salary haade

o In future. it may add Directors to the team. Then every Manager will repeet to some
Director. Every Director could also work like a Manager

o The logic for processing salary for Directors will also be digtingt

o Further, in future it may open other divisions, like Sales division, and expand the
workforce

¢ Make a suitable extensible design

So, let me just start with as | said, the staff salary processing. Just a quick recap and
introduction to a new solution. So, we have talked about an organization which needs salary
processing. There are engineers, managers in the engineering division. Then we have added
directors to that. We want to keep provision for adding new divisions in future and so on. The
salary processing logic for each type of employee is different. So, we want to model that,
model these employees and the salary processing. And to make sure that when given an
aggregate of employees, we are able to process their salaries through a suitable and extensible

design.

(Refer Slide Time: 3:33)

LA I AN A B U

rﬁ‘. C Solution FUHCIiur.u I Uthiiers
L__i Engineer + Manager + Director: RECAP (Module 29

o How 10 represent Engneers, Managers, and Directors?
o Collection of structsy
o How to mitialize chjects?
Initialzation functions
o How 10 have a collection of mixed cbjects?
o Array of union \/
o How to mode! vanatioes in salary processing algonthms?
o struct-specific functions

o How 10 invake the correcs algonthm for 2 correct emplowee type?

CATUNCTON SWILC
o Function pointers

Now, these are the basic questions that we started asking with and nothing much changes
here. The modelling still continues to be in C it is with structures. Initialization function,
array of union, structures specific functions. But what we are going to see differently here is

instead of using functions which we will now see that use of function pointers.

(Refer Slide Time: 4:07)

L RN A S

C Solution: Function Pointers: Engineer + Manager +

o In Modide 29, we have developed a flat C Saluticn using

o In Module 30, we refmed the C Sclution to develop two types of 4+ Solution using
Non-pohmarphic hizrsrchy - emploving ¢ /
o Polymorphic hierarchy - somploying \/
o In Module 29, we had menticnzd that in the flar C Sciution it 5 not asy to use function

peinters as the processing functions vold PrecessSalaxyEnpineer (Engineer o) wolid

ProcessSalaryMasager (Masager #), ang void ProcessSalarylirsctor{Dirsctar +) al

Tt types of arguments and therefore 2 common function ponter type cannot be

have

defined
o We can work seaund this by

Passing the szaff object as void «, instead of Exgizesr » Manager ¢ oe Director »
\Ff‘ il 1o respactive object type Y the respective Tunction. That is, cast to Englaeer « in

rovessSalaryEnginesr (Engineer +) and 50 on .
> w—
> Wa can then use 3 functice peinter type void (¢) {voad 4

o Wa illustrate in the Sclution

So, let us understand what we have done so far. If you refer to Module 29, then we developed
a C solution using functions switch, separate set of structured types and functions switch.
Then we had a number of C++ solutions. But primarily of two categories, one that was on the
non-polymorphic hierarchy which gave the advantages of encapsulation and inheritance to

refactor the common data members and so on. But still that dispatch was in terms of a

functions switch pretty much like C.

So, we moved on to a polymorphic hierarchy and we employed virtual functions. Then we
did further refinements on that: used vectors and all that. That is not very relevant. Now, if
you think back in terms of module 29, the C solution then what we made is since we need a
different kind of processing, we assume that for every type of employee, there is a separate
processing function which has a lot of similarity. In that it takes a pointer to the employee
type record as an attribute, as an argument. Processes the salary, does you know whatever

database updates, prints and so on and returns nothing.

Now, we had observed and you will recall that in that discussion that it is we had been
mentioning that it is not easy to do a function pointer-based solution in C particularly because
all these functions have different types of parameters. One is engineer star, one is manager

star, one is director star. So, how do you combine them into one function point at time?

So, right now we will show that this can be worked around by doing some little trick that we
can assume that this processing function actually takes a void*. This is where you see the use
of void* particularly in C in terms of combining effects of multiple types instead of the
specific Employee type pointers. And then, if we take it as a void*, then say | am in
processing salary for Engineer, then | have got a void* pointed but | know that I am
processing salary for Engineer. So, | can take this void* and explicitly cast that pointer to an

Engineer* pointer.

Because | am assuming that processing function Engineer will never be called with the
pointer to any other staff type. Like it will never be called with a pointer to a Manager
structure passed as a void*. That trust is what | will have to assume. And given that | can
assume that the processing function simply takes a void* and returns nothing. So, the
processing function can generically have an interface which is void* means the function
pointer. And void* takes a void* parameter. So, if we assume that, then let we can easily put

together the solution here.

(Refer Slide Time: 7:19)

L B RN A S G

P . |
@ C Solution: Function Pointers: Engineer + Manager +

So, here is the tag type which we had earlier. This is where | am defining the function pointer
for the processing type, psFuncPtr pointer pointed to this function pointer which is processing
functions which takes void*. And the objects are passed by void*. Then we have specific
types for Engineer, for Manager and for Director. The only point to note is when | come to
processing for Engineer, now my parameter type is not Engineer*, it is void* because | want
to unify all of them in this function pointer type. So, what | get as v is a void, is a pointer to a

I do not know which type.

But I know if this function has been called, I trust that it must be for an engineer record. So, |
cast it to Engineer*. And from that point onward, rest of the logic will follow as before.
Similarly, I do it for manager. | do it for director. So, this is the only trick | do to unify all of

this processing function in terms of a single function pointer type.

(Refer Slide Time: 8:41)

L B N Al S U

L + C Solution: Function Pointers: Engineer + Manag

L

ProzessSalarfarager, Proce

O
Er, TaltEcglaser{*Realz") |
Ngr, TaitEaginear(*Fa)l

pitEainear (Fasala’) |
Leeer| 2"]y

Vogromey w Sdves Fati

L B BN A i O

foll . :
iﬁi C Solution: Function Pointers: Engineer + Manager

syEsginear, ProzessSalarpSasager, P Ritecrar |;

inear ("Fasalat) |
tees| I
giemar (“Easjen®) |),

Vogrommy w Shdvre Pt Py Co)

pols eyt LUR

s C Solution: Function Pointers: Engineer + Manager +

1ot mainf) | : 0‘/ &.\V

pefuncPtr peArrapl) = (ProcemsSelarpizginesr, ProcessSalarpfanager, Frocessfel

s S o 4 /

Statt staftl] = { | Er, IsitExgioeer! 11*) |, { Mg, InitEagioser(*fasals®) |
Mgr, InttEagiosari*hajid*) |, { €r, InisEagizeer(*Carita”
{“Shash Inttfagpiceer(*fanjam*) | i

fhashina*) |, |

|
{

s \

¢ Raaager

T Nasage

Fvarrmmy = W ave Parte Pradm O [

..':lvl“.l‘l-'. °

« C Solution: Function Pointers: Engineer + Manager

Now, once | have got that, then I can write my rewrite my unifying structure. What did we
have earlier? Earlier we had union of different pointer types and we had the tag type to
identify which pointer we are using instead. Now, | just use the void* pointer. Because once |
know this type, | do not need to really know the type of the pointer to the particular Engineer
or Manager or Director because the E_TYPE will tell me everything. So, | just take it a

void*.

| create an array of function pointers. These are the array of processing functions. And here is
an underlying trick which is what or | should say protocol that has to be maintained. If you
remember enum. This enum was done as Er, Mgr, Dr, director like that. So, this basically in
the internal representation, this is 0, 1, 2. So, | placed the corresponding processing functions

at the corresponding index locations of the array. This is very, very important.

If I mess this up, things will not work. Because given any, say given a staff type Mgr, | would
consider Mgr | would know Mgr is value 1. So, | would consider that whatever function point
exists in this ps array is the function to process this particular M staff record. Then | have the

staff array which is pretty much like before.

Only thing | have used a compact initialization notation to initialize it with pairs of values.
One is the E_TYPE, other is a pointer to the Engineer, Manager or Director. But actually,
since the type is void*, it will implicitly get cast to void star and will all be populated in the
array of staff.

Now, this for loop does not change. So, what do | have to do? I have to go over this. Let me

clear this out. So, | have to go over this array, pick up each and every staff, check what is the

type and call the corresponding processing function. So, | go over this, that is my i. | pick up
staff[i].type, staff[i].type which means for that particular ith staff what is the Employee type.
So, I will get Er or Mgr or Dr given that. So, | get 0, 1 or 2. So, what I do is | am indexing the
array with that tag type.

So, suppose the first one is Er. So, what | will get here for Rohit is a 0. So, | am indexing ps
array with 0. So, | get this processing function which is a right processing function for the
engineer. Now, what | will have to pass it? | will have to pass a pointer to the particular staff

record that is appointed to this engineer Rohit which is this void* pointer, p.

So, | do staff[i].p. So, at that function pointer, | pass that staff[i] or staff[0].p which is
Rohit’s, pointed to Rohit’s record which internally gets cast to the engineer because | have
this engineer tag and the engineer processing function has been invoked and the processing is
done. When | go to the next one, that for Kamala, my type is Mgr. So, my type value here is 1
which means that | will pick up this function which resides at 1. So, the manager’s function

will be called with pointed to Kamala’s record and so on.

So, you can see that the biggest advantage here additionally we have got is not only we have
unified this getting rid of the union. We have a nice array of function pointers. And this has
become a single line code instead of all that switch | was having. So, this such an elegant
solution is also possible in C and this is kind of the best solution you can have in C involving

multiple types in this way.

(Refer Slide Time: 13:18)

LR AR A R |

rﬁ“ C Solution Ad\'am;a:';anu Ui)duvdllLdSC).a {ECAP (MOdUkZ 26)

i

_i' Annotated for Function Pointers

scapsulation for data

Duplication of fields acroes types of employees = passible to mix up types for them (say, char o

fanctiom. How to

all tiy'nght processing function for every type
\Professale tc 1
0 Usoble to us= Fu rs 35 each processing function takes 3 parameter of different type - no
omimnon dprature for disgatch

® Recommendation

Usa classes for encapsulation o 3 Sisrarchy

So, if you just look back in the original advantage-disadvantages, every disadvantage of the
solution remains like not having encapsulation and so on. But two major disadvantages have
been removed. One is the switch is gone. | do not need the switch anymore. That is
happening automatically through the function pointer array. Right? So, this if-else, this

switch is gone which is a great relief.

Second is there is no chance of calling a wrong function now. Because we have now the
function pointer strongly bound to the type for which it has been created. So, these two
disadvantages disappeared which is a big gain. But certainly, I still need to add a type. I still
need to have, still do not have encapsulation. I still have repetition of field values and so on
for which the C++ solution would be the ideal as we have seen.

(Refer Slide Time: 14:25)

st s e te

Pt ‘ 4
ﬁ- Staff Salary Processing: C++ Solution

12X

Staff Salary Processing: C++ Solution

Plequgre . TR

@ C++ Solution: PCII';uuu'.me fictdiuy neenP
PN

ngineer + Manager + Director: (Module 30)

Dietor f— o~ Menager b— n Engiteer

o How 10 represent Engmeers, Managers. 2nd Dirnctors?
Polymarphic class hierarchy
o How 10 mitialize ohjects?
o Constructor | Destructor
o How 1o have a collection of mixed chjects?
o array of base class pointers
o How to model vanations in salary processing algonthms?
Member functions

o How to mwoke the correct algoathm for 2 correct employee type?

Vietual Functions
e et

Friseusfe iU
+ Solution POlynlu'puu. flEtdiuy. L

Lﬁ.\l Engmne‘ Manager + Director: (Module 30)

LA AR A
+ Solution: POI{IIIU!VWIL | HeLdiuny I\LL."\P

ineer + Manager + Director: (Module 30)

Now, if we look at the C++ solution that we did in relation to this, these are the basic points
we had discussed in Module 30. And we said that for dispatch we will use virtual function.
So, if we now look at the C++ solution, this is what we had. We had the Engineer class, the
Manager class, the Director class coming is as a hierarchy and that is polymorphic. All of
these processing functions are called ProcessSalary. So, which is the very simple way of

depicting it.

And again, we have the array of employees. | am not considering the vector solution. And |
have a single line called to this ProcessSalary function which by polymorphic dispatch will
get me to the correct function of for the Engineers, for Rohit. For again Engineer for Kavita.
No sorry, this m1 is Kamala. So, it will get to by Managers processing function for Kamala

and so on. So, this is the C++ solution we saw.

(Refer Slide Time: 15:43)

sPRs Al te

Pl - ,
iﬁi C and C+4 Solutions: A Compansqn

C and C++ Solutions: A Comparison

sl e

C and C++ Solutions: A Comparison

C Salution C44 Soksticn
® How to represent Engineers, Managers, 3ad @ How to represert Engneers, Managers, and
Directoes? Divectors?
0 SIHUCTS Palymarprac disrarchy
p—— e —————
® How to intialice obpcts? ® How 10 mbalze cbjects?
o Initalzation functions o Ctoe [Dior
————— s
¢ How to have a coliection of mixed chjects! ¢ Hom %0 have 2 collection of mised abjects?
array of mion wrappers ‘ G array of base class pointers
et —
¢ How to model vwiatens in salary processing @ How to moded variations o salary processing
dgorthms? algonthms!
fusctions for structs o class member functions
A
® How to imvoke the comect algorithm foracer- @ How to iswcke the coerect algonthm for 3 cor
rect emploves type? rect employes typel
0 _i;n_'r_:_mmrs o Virhal Functions

T

So, now, if we put them side by side to see, you know, how really they compare, how really
they look like. This is in terms of their proposition. Struct versus polymorphic hierarchy.
Initialization released functions versus constructor/destructor. Array of union wrappers versus
base class pointers. We have partly been able to get rid of this. Functions for structure
replaced by class member functions. And we have function pointers in parallel to virtual
functions. Very similar in functionality. So, that is what is the focal point that we are, | am

trying to get you to.

(Refer Slide Time: 16:22)

spolsangd e

C and C++ Solutions: A Comparison

So, let us look at the solutions in parallel. Right? You have the Employee type. You have the
function pointer type declaration. You have the Staff type which is a wrapper of the
Employee type and the pointer to the particular staff. And you have Engineer, Managers
structure records. Here you just have the classes. The class hierarchy which is polymorphic.

Same processing function for all. We do not need the tag because every class is a different

type.

In terms of the C solution using function pointers, we have this function pointer array. Here
we do not have anything corresponding to that. And that is what is the key point that we will
we are going to discuss here is, “How does that happen in C++?”. So, the function pointer
array that we explicitly have to manage in C gets subsumed as a function pointer table which
is also an array corresponding to the classes. That is the key point that | want to drive in. Rest

of the solutions look the same except for the syntax and all that.

And the calls also look very similar. But C++ has the advantage that | am not having to
maintain the explicit type. So, all that I need to do is basically, this is my object and on which
| call the ProcessSalary function which automatically gets dispatched. So, having seen this
parallel, now you will get to have an idea of how really C++ does this polymorphic dispatch

or how really does it implement virtual functions.

(Refer Slide Time: 18:15)

LA I B R A

Fel z
@‘- Virtual Function Pointer Table

Virtual Function Pointer Table

s and te

i |
r@: How do virtual functions work?
Lt

o The C Solution weth function pointers gives us the lead ther-'mm virtsa! functions. Here

0 We have used an array of function pointers (psPusc®lr padrraz(]) to keep the

1 sSalaryEngineer (Engingar #), void
i'l.uei‘iiil.ﬂﬂ'.:.".dg%!f”Q,‘J_L‘S,A‘. and void ProceseNt taryDirector(Director ¢}
wdexed by the type tag (onus ETYPE { Er, Mgr, Dir }) S
In €. every class is 3 SEaTTT T8~ 50 Tho tag can be remoned if we bind ths table
(Virtual Function Table o VET | with the cliss

Every class can have a VFT with s appopriate processing function pointsr put thers

processing functions (Toia

> By override, all these functions can have the same sgaatire JToTeT

can be called through ths same expression |(Engineer «)->Prec

o We now llusirate Vietual Fenction Table through simple examples to show how does it work
for inherted, overndden and averloadsd member functions

So, virtual functions are implemented in terms of virtual function pointer table. This is to note
that if you observe the C solution very carefully, the function pointer-based solution, you get
a complete insight into how to implement the virtual functions. What we have used here?
First thing we have used is a array of function pointers which had in this case, this is the array
which had 3 different function pointers.

We had simplified them by making these parameters void*. And they were indexed by an
enum type. This was the backbone of the C solution with function pointers. In C++, every
class is a separate type. So, | do not need that E_TYPE knowing the class itself because | am

constructed the object. When the class itself is tells me what is the type of that object.

Now, somewhere | need this table. So, what where does this table go? The class can have a
virtual function table which in which its appropriate processing function is put. So, it is not a
common table where you are indexing and finding out which one | want. Rather we say that
for every class, we have a different table. And every table keeps the processing function for
that class. And those tables are called virtual function tables. Now, let us look at in the actual

C++ context.

(Refer Slide Time: 20:04)

sl and e

i |
{@ Virtual Function Pointer Table

2 Bawe Clam Derived Clony
' J/ x|
s B
) S i
et L): 30 Hi |
id {10} B:itibe m ! {
vir waid g 1/ pile W [
| P A
E od
[ke s
b Object Layont 4 Object Layout
—— i
|0 13 | = | 0::glbocoast, 1ot} |
] - ' 5 S —
~ ! -, o
- L3
Sowen Expression Corrpried Ecpression Soerce Expression Compied Exprossion

So, | have a base class with a member i. | have its constructor. | have a non-virtual function f
and a virtual function g. | instantiate that and have a pointer to the base class which is
initialized with the address. So, how will that object layout, the object layout b look like?

Earlier we would have known that it will only have the data member 100.

But now, what it will have? It will have one more field which is a pointer to a; earlier it was
having only the value 100. Now, it will have a additional field which is a pointer to a table.
What does that table keep? The table keeps a function pointer which is basically a kind of an

address.

So, it is a linear table, 1-dimensional. Since | have only one virtual function, there is only one
entry at index 0. What is that function? That function is the only virtual function that | have
defined here which is g. So, what is, what will be the signature for this function? As you
know that every member function has an implicit this pointer. So, which is a pointer to the
class. So, it will have B* const because this pointer is a constant pointer. And it takes a

parameter int. So, it's second parameter is int.

(Refer Slide Time: 21:50)

pols et LU

Fa v
Lﬁ-“ Virtual Function Pointer Table

B Class Dermved Clesa

ans k| tlass 3 pblic § |
0 at)

Sosrce Expression Compied Expression

So, here I have in the virtual function table, | have this entry. And the point to note that this
particular virtual function table entry does not vary with the instances of objects. Every
instance of the object will have the same virtual function. Because there is nothing specific to
the object that is here. It is all specific to the class and virtual function signature, name and

signature that we have specified. So, this is the basic structure.

So, what happens if I look at different invocations? What if | do b.f()? It will always invoke
the function in that class. So, b.f(), this is a non-virtual function anyway, will call B::f passing
the address of B and then the parameter 15. What is p pointer f? f is non-virtual. So, it is

static time binding. So, it uses the value of the pointer in the place of the this pointer.

(Refer Slide Time: 22:55)

LB I B A

Pl d
Lﬁ-‘ Virtual Function Pointer Table

b Object Lagant \.I 4 Object Layout
L

yar VVET Mt

=V - glBecanst, ',\' = D4 t, iml |

e = . "b‘- B[RO A
Seweze Egression Comvpiled Expression Sosrce Expression Comped Expression

_: x e
£ (|
v "\,—-) ——

Now, what happens for g which is a virtual function? If | do b->g, | know it is a static type
invocation, is a static binding. So, it will still invoke g with the address of b. Right? No
difference. Up to this point there is no difference. But what happens if | do p->g? Then it will
try to do a runtime binding, dynamic binding. How will it do? What it will do, it does not
know what is object inside. So, what it does? It instead of doing like here, like here passing

that is doing B::g passing p and so on. Instead of doing this, it actually does this.

It says it is pointing to this object. It goes to the virtual function pointer table. It goes to that
pointer which is pointed VFT. It is this table. It knows this is the first or the Oth virtual
function in the class. So, it picks up the index 0, index 0. So, what it gets? It gets a function.
Now, it gets a function. And what does it pass to the function? The pointer. The pointer p.
But what function it gets might change. In this case it will not because there is only one, one

class. So, let us let us look at it on the right side where | have a derived class.

(Refer Slide Time: 24:34)

RPtsanste

Fal .
ﬁ' Virtual Function Pointer Table

L

6

®

b Obgect Lagont
Utyar v n './'rl
it [= | 0 [T glfeceat, 1at) | ot [[27 ¢ [0 glamat, im) |
|t] ! —_—
[(— B] pr———
= .’_1 0 ; 'g
Seurcs Egreiain Corepibd Ecpreviion ;m- » Exprossion Compled Exprossipn
: b hom /
) T v

Now, D is derived from B. It has another data member j. | have instantiated d. Naturally d is
constructed in the proper way. What D does? It over, it is overriding the function f, the non-
virtual function in D. That is fine. It also overrides the virtual function g from B. So, it has

these two functions now. | make a B pointer taking the address of the d object.

Now, the pointer static time is B, dynamic type is D. So, what will 1 have? | will have in this
object i and j. So, for i, B:i, I have 200. I have 500. And this function pointer, virtual
function pointer table, this pointer points to the VFT of Class D. This is of Class D. This was
of class B. Why? Because class D may have overridden the virtual function that it inherited
which actually it has done. So, it has overridden g. And therefore, | have D colon. Here | had

B colon. So, it is a different function here.

Now, what happens? If | invoke the static function, 1 am sorry, if | invoked the non-virtual
function with d, it will call the function for D. If I invoke it with p since it is non-virtual and
type of p is of B, the base type it will invoke the function for B. If | invoked the virtual
function g with the object d dot, it will again do compile time. So, it knows it is D. So, it is D

colon g. All these are absolutely fine.

(Refer Slide Time: 26:54)

Pty anm

i |
rﬁ: Virtual Function Pointer Table
22

b Object Layont 4 Object Layout
Oty ¥ e il
W [= 0 K T | Wt | f la,] a |
Bt | 1 By | 2
’ pi: 0
Sowte Exqgression Corrpiled Ecpression Soerce Exprevsion Compied Exprossion
TRy

PPl eanm

|
rﬁ: Virtual Function Pointer Table
P

w-s
—— M
b Object Layout ’\ .‘glgn Layout
Oty wr 4 Odjert VFT
W f - 10| 3gpiliecaut, tat) | L [T iglivecast, 3017 |
e, ol B AL TR 8
gi:s [0 = ST N i) —
(1)
Suwee Eqression Compiled Ecpression Saercr Expression Compied Exprossion
e
’ /
v ¥ i \/
e — e L, Dl e

But when it does b-> g, it again has a virtual function g to deal with. So, what it will do? It
will not put directly the member function. Because it does not know which one. What it does?
It goes to p, picks up the virtual function table pointer, goes to index O because this still
happens to be the Oth or the first virtual function and then takes this function passes the p and

45, the parameters to it.

So, you can see that the difference is if you look at p->g here in the context of p being &b
and p->g 45 here in the context of this, at the compile time, at the compile the call looks the
same. In terms of the translated compiled expression, they are same. Because certainly the

compiler does not know whether this has happened or whether this has happened.

But at the runtime, in the runtime if this is there, then the VFT that exists is this which calls
the B::g, this function. Whereas, if at the runtime p is pointing to a D object, your VFT is this
one which has D::g, it calls the function of the D class. So, that is how polymorphic dispatch
based on the runtime type, based on the runtime object you are actually pointing to happens.

This is a very simple scheme but very effective one.

(Refer Slide Time: 28:47)

s angd e

i |
{-@ Virtual Function Pointer Table

o Whenever a class defines a virtual function a hidden member vanable is added to the

class which points to an array of pointers to (virtual} functions called the Virtual
Function Table (VFT)

o VFT pointers are used at run-time to invoke the approgriate function implementations,
because at compile time it may not yet be known if the base function 15 to be called or
3 derived one implementad by a dass that inhents from the base class

o VFT s cliss-spacific - all instances of the class has the same VFT
o

o VFT camies the Run-Time Type Information [RTTI) of objects

So, whenever a class defines a virtual function, a hidden member variable is added to the
class which points to the array of functions which is the virtual function pointer table. VFT
pointers are used at the runtime to invoke the appropriate function implementation. This point
is most critical to remember that it is class specific and all instances of the class has the same

VFT because it depends on the structure that exist.

And therefore, VFT carries, so this even though in C you never know when writing down
what is the type of the object. But this pointer type, this pointed to the virtual function table
will be different for every class but same for all instances of the same class. So, that at the

runtime will always indirectly tell you which type you are dealing with.

(Refer Slide Time: 29:44)

Virtual Funct

2 Oiject Layon

et VT
- 10 [b T coost, it | Diefired
| |_#r:giieccest, sschle [ﬁn‘»:

b Objeet Layont

class O patiic B [pealy
teid gldsable] | v VES
st hiae) |) B (ecorat, et Chaarddan

Trheried
Orcaded |

¢ Object Layost
Mg
PAAE Myect VET
AA(th ft [1 0 [E TEeccet Trherited
L]¢C Uwerrdden
2 Thomr O3

L

8! i i
: s Virtual Function Pointer
2|

tlaae) |) l a Obiject Loyount
i\ r
s b o) |) VFT v 1
} ‘I sflhecooet, %) |TE‘{}.A |
clasr B 5 e A [plic :gtheconst, dochlel | TWeed [
raad f(aat) |) /J
virsual 1t KB o) |)] |
——— et
| b Object Layont
! peblic
| VET
'nl' Bi:fOecoeat, 3081 u/-nniu\d/
| Tecerat, deile] | el A7
[i e Tirceciov]
A i3
Sewece Epeoiont Cormpied Exprimian
ph=143
pAgin?
) pAAE Dylect 5
Aok w70 Trhented V]
1 Dwerrddm
2 Oerdden |/
it
Prrasonming i e Peds Pt B [

L

R
: s Virtual Function Pointer Table
el

4 Objoct Layount

VET
7 0 [T eceest, see]
L [[higlieccest,

{ pblic

Deaendden

Trhented
Ohvecaded

Compled Exprosshan
¢ Object Lyyout
Olyect (Uzs

A-3hik h + | 0 | Biit(3eccost, zt) Trherited
focblel | Owerridden
N D] Uaerrdden

aiAk

Vogrommey » Vedvre Farti Vo B i

TEmdaE=mn. ",

So, before I close here is a little bit longer example. This we had seen before. C isa B. B is an
A. And we have two virtual functions here. One non-virtual. Here f has been overridden. g is
simply inherited. And h has been overloaded, overridden plus overloaded because the
parameter type has changed. Similarly coming to C, f is simply inherited. g is overridden. h is

overridden as well.

So, in this context, if you look at the virtual function table, A will have 2 virtual functions, at
0 and at 1. It happens in the order in which you define them. The function f and function g.
They are just defined. When you come to B, you are; note in A h does not make to the virtual
function table because it is not virtual. But in B | have made it virtual. So, in B this comes in
the location 2 where | have this h function which takes a B* as an argument. So, what | have
got? | have inherited f and overridden. So, | have a new B::f, overridden. | have g simply

inherited and | have h overloaded.

Similarly, 1 go to the next one. | have f, B::f simply inherited because | have not included it
here. But C has overridden both g as well as h. So, here C of g and h coming together. In the
in the left you can you how the calls will look like with the different virtual functions as well
as with the non-virtual functions. I will leave that as your practice to check out. If you have
any doubts, please get back to us. So, this again in one slide tell you almost everything about

you need to know in terms of the virtual function pointer table.

(Refer Slide Time: 32:02)

L S RN SR
@ Module Summary

L

. Lr',w.xgwg an mnovative solutxon to the Salary Processing Application m Cus ng
function pointers, we compare C and T4+ solutions to the pecblem
o The new C solution with function painters i used 1o explamn the mechanism for

dynamic binding (polymorphic dispatch) based on virtual function tables

So, to summarize, we have introduced an innovative solution to the salary processing
application and C again using function pointers. And we have done that to show the parallel

between the best possible C way of dealing with function pointers in flexible type design and

the hugely advantages polymorphic hierarchy-based design in C++ which uses virtual
functions. And from that we have introduced what are the different, what is the way virtual
function table is actually implemented. | hope you have enjoyed it. Thank you very much for

your attention. We will meet in the next module.

