Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 30
Polymorphism: Part 5: Staff Salary Processing using C++
(Refer Slide Time: 00:35)

Fal
; + Module Recap
i

o Practiced exercse with bindiag — various moed cases

o Stanted designing for a staff salary problem and worked out C saluticns

o
v Module Objectives
==

o Understand design with class hierarchy

o Understand the process of design rehoement to get to a good solution fram a starting B

one

Welcome to programming in Modern C++. We are in week 6, and we are now going to
discuss Module 30. In the last module we started designing for a staff salary problem, and
worked out a C solution. We would like to continue on that design to refine it with repeated
set of observations of what is working well in the design, and what is not to get to a good

solution from a starting one in C that we have already made.

So, it is more a design journey, you are not going to learn anything new for the language, but
you are going to learn very, very useful thing in terms of how to do the design, how to refine
and what are the pros and cons of doing designs in a different, various different ways. So, I
suggest that you go through this module repeatedly to understand the basic design principles

in C++. This is the module outline available on your left always.

(Refer Slide Time: 01:55)

« Staff Salary Processing: C Solution

Staff Salary Processing: C Solution

o An organization needs to develop 2 salary processing application for its staff

o At present it has an engineenng divison only where Engineers and Managers work
Every Engneer reports to some Manager. Every Manager can also work like an Engine

o The logic for processing salary for Engineers and Managers are different as they have
different salary heads

o In future. it may add Directors to the team, Then every Manager will repert to some
Director. Every Director could also work like a Manager

o The Jogic for processing salary for Directors will also be distinct

o Further, in future it may open other divisions, like Sales division, and expand the
workforce

» Make a suitable extensible design

)
bugrrvenny o Vommes Yot P e Muh

C Solution: Engineer + Manager + Director: RECAP (Module 26

o How to represent Engmneers, Managess, and Directors?
Collection of structs

o How to mitialize objects? «|
o Initialzation functions

o How 1o have a collection of mixed cbjects?
o Array of union

o How to model vanations in salary processing algonthms?
o struct-specific functions

o How to invoke the correct algoethm for a correct employee type?

o Function switch
& Function pointers

0 Sclution existy!
O Code is well stryctured = has potieess
¢ Disadvantages

0 Employee data has scope for better erganization
> No escapsulation for data

Deplication of fields across types of empicyses - possible to mix op types for them (sy, car
and string)

Employes objects are created and initalized dynamically through Tait. .. finction How %o
mlesse the memory?

0 Types of chjects are managed weplicitly
» Diffcult to extesd the desgn - additk

— Add new type code to som EType

Add 2 sew pointer field in struct Staff for the new type

— Add » sew case [1f-elae or case) based on the new type

type needs to

Emer prone ~ developer has %o decide to call the right processing function for every type
(ProcessSelaryMenager for ¥gr etc)
0 Usable 10 use Function Pointers a5 sach processieg fanction takes 3 parameter of different type - no
commeon sgrature for disgatch

¢ Recommendation
0 Usa classes for eacapsulation on 3 derarchy a
Pagpeesing = Vodos Pt Prios D T

So, before | start on this let us just quickly recap on the C Solution. Here is a recap of the
problem, the organization needs to process salary, it has engineering division with engineers
and managers. They have different logic for their salary processing, in future directors may
be added. The director’s salary processing would also be different from all these, and further

in future there may be new divisions and we need an extensible design.

So, based on this, we started by asking different questions of how to model the object, how to
initialize, how to make collection of staff, what, how to represent the processing functions,
how to invoke them and so on the common questions. And based on the answers, we made a

design in C, and here is a summary of the advantages and disadvantages of the design.

Obviously, the main disadvantages are as we have noted, one is in terms of the objected
design, there is no encapsulation duplication of fields and so on, and second is primarily in
terms of management of different types of objects, which are different, but related in a strong
way, an Engineer, Manager, Director all are related in a strong way. So, we needed to do an
explicit management through an E_Type tag, and that makes the addition of new type of staff

difficult that makes it error prone.

There is a function switch and all of that difficulties. We are not being able to use function
pointers because of non-uniformity of processing function signature and so on. So, based on
all this, the basic recommendation that we got ourselves is, we will use classes for
encapsulation on a hierarchy. So, we are now going to get into that part of the design C++

Solutions based on the earlier advantages and disadvantages.

(Refer Slide Time: 04:09)

Foll = :
Lﬁi{ Staff Salary Processing: C++ Solution

Staff Salary Processing: C++ Solution

olution: Non-Polymorphic Hierarchy: Engineer + Manage

Manager ' Engineer

o How to represent Engineers and Managers?

¢ Non-Polymorphic class hierarchy

o How 1o mitialize objects?
s Constructor | Destructor
o How 1o have a collection of mixed cbjects?
o array of base class pointers
o How to model variations in salary processing alganthms?

Member functions

o How to mvoke the correct algonthm for a correct employee type?
e
o Function switch
Function pointers ;‘

ey 2 Ve e My G e

Floclede <
Sinclade <3
tsiag rasespase sid

wm BT { B, A | /

Laser |
protes

pald
EBxgineer{coest stringt ssse
E.IYPS GarTypal

roid ProceseSfiarys) | cost
}
!

2atrean>

v

ETYPE ¢ = Er) | anne (mame), typele) [|
v

<C zame, <¢ "1 Process Salary for Englaeer* << wmadl; |

ymorphic Hierarchy: Engineer

talsg rasessaze atd,

we E.T | B, % }/

class Englaer |

t :4 :‘{n_. E,T‘F{v;-..
N N’

clasy Manage:
Exgiomar

pslie

Sarager (cs

void Prae

Fal i 4
iﬁi‘ C++ Solution: Non-Polymorphic Hierarchy: Engineer + Manage|©
’

Flosled 28t
Siacled trivg>
Gsiag rasespase otd

wa BT { B, Mg} / "
class Exglaser | ‘

e~ Ir aase (mame), type.le) | |

= EIVPE GatType(Tetar
v 4 *1 Process Salary for Englaeer* « wmdl; |

closs Yamager : pAlic Englaeer | ‘

Yasager (copat stringt sase, ETYPE o = ¥gr Exgirmnrizase, o) { }
' void ProcessSalary(] | cout <C pame_ ¢ *: Process Salasy for Meoager® <« wdl; |
—

So, we asked the same set of questions the answers of course, are different. Now, we formally
have represented the ISA relationship, every manager is an engineer we know. So, what we
decide is to use non-polymorphic class hierarchy. There is a simplest form of inheritance

hierarchy that you can have. Initialization, release, constructor, destructor obvious choice.

Now, we have an array of base class pointers, we do not need the union anymore, because
there is a specialization. So, | can have a base class pointer of Engineer type which can
represent either an engineer or a manager. Naturally salary processing moves to member
function, but dispatch in terms of which processing function to call will still come remain
under function switch. So, this is our design refinement criteria. So, based on this let us write

the code.

Easy? We have the staff type here like the enum. We have now made the struct Engineer as a
class. So, what we are able to do is, we will, we are putting the string name as well as the
struct type, 1 am sorry employee type as fields in this protected data. Then we have the
constructor, we have a method to get the employee type, because we will need to make

decisions based on that, and then we have a ProcessSalary.

The same thing we do for managers, which is a specialization from engineer, so these data
fields are not data members are no more required to be specified in the Manager they are
inherited. So, refactoring of data is automatically happening through the inheritance. We have
the Manager constructor, the processing salary, because that will be different, this is
overridden in the Manager class and getting E_TYPE tie function I do not need to override
because it is going to be the same for the Engineer as well as the Manager. So, certainly you

can see that the design is getting simpler cleaner.

(Refer Slide Time: 06:52)

lymorphic Hierarchy

Exgiveer ol J, e3("Thashina*);
Sasager ul{"Famala*) "R,

Bapivear vosatf(] o | bel [T e20] bed, 8ad }] 4——
B)+ (Y

oc [lat 1= 0; 2 ¢ o

e

/ staectiEngtaeere); *+4] |

ngineer + Manag

apt

or

r@:‘. C++ Solution: Non-Polymorphic Hierarchy
o E

alan 12 (% o= Ngr
| Dtazager *)statt (1)) -SProcessSalary!)|
tlee oot favalid Stadf Type* ¢ mail

Solution: Non-Polymorphic Hierarchy

+ Manager

o

Exgis

fer

.rﬁ‘. C++ Solution: Non-Polymorphic Hierarchy
§22{ Engineer + Manager

izt satnl) |
Bagioeer oll"Rokit®), «2("Favita®), o3(*Ehashin®);

Sazager al{"Famala'), =2("Rajid*);
Brginear wpsatf(] « | bel, dui, B2, ked, M3 |

1 %0 1< siamtisnalt) / staend{Engtaeers); +1l
TIPE ¢ = mtate[L]->GenTypel)

.3

.’é’. C-++ Solution: Non-Polymorphic Hierarchy
P2 Engn

eer + Manager

imt saisl) |
Exgioeer oll"Rokit®), «d("Favita®), «3("Ehashin®);
Saneger al{"Famala®), =2("Rajis*);
Erginear vpsatf(] » | bol, dad, B2, ked, M3 ||

;1 ¢ siaesiptalt) / staestiEngtaeers); 1] |
TE ¢ = mateL]->5etTypel))
Er

DMaxaper sistadt (3] b oProcesssalary!)|
tlre st << *lanalid Stalf Type* ¢ aail

With that, let us write the main function. These are the managers and engineers that | create.
Finally, 1 need an aggregate the staff aggregate where we put the pointers of all these objects.
It is an aggregate of engineers *, engineer pointer because that is a base class. So, for say
&ml or &m2, m1l, m2 are manager object, so, here this will work to the upcast along that
hierarchy.

So, with this array, we will be able to maintain all my processing all my, all the staff here.
This is a for loop, instead of hardcoding we are using the size of this array to find out how
many to be processed. Then what, how do | process? | have to know, which type of employee

exist at a certain point in your staff[i], ith employ. So, on this pointer we do GetType.

Now GetType is there is only one function which is implemented at the root, so, it will get

Employee type. In t like before I check if it is an engineer. If it is an engineer, we invoke

ProcessSalary, simple. The Engineer class has a ProcessSalary, so | invoke that function. If

not, then we check if it is a manager.

Now, if it is a manager, then what do | need to do? I need to invoke the ProcessSalary for the
manager class. But this pointer is of Engineer type. So, | need to change this pointer to
Manager type. What am | doing? Can you identify what am | doing? | have a generalized
class pointer Engineer and | am making that into Manager pointers, so | am actually doing a
C style casting, which is a downcast, but it must be okay there because that is how | have set

this tag.

So, if this tag is manager and if | cast it to Manager* it should be fine. So now, this pointer
after casting, this pointer, the pointer after casting is a Manager type pointer. So, if I invoke,
it will invoke the processing, ProcessSalary of the Manager class. So, it would be fine,
otherwise, | do invalid. So, | made a substantial change and you can see, there are a lot of

things that have got simplified, that have got structured organized, but still there are a lot to

go.

(Refer Slide Time: 10:26)

.ré‘. C++ Solution: Non-Polymorphic Hierarchy
P22y Engin

eer + Manager + Director

Directer pee Dy MONIQET e ENGinREF

o How to represent Engineers, Managers, and Directors? "\

o Non-Pelymorphic class hierarchy \
o How to mitialize objects?
o Constructor | Destructor
o How to have a collection of mixed cbjects?
o array of base class pointers
 How to model variaticns in salary processing algorithms?
o Member functions
o How to myoke the correct algonithm for a correct employee type? |
o Function switch
o Function pointers

. 3

ution: Non-Polymorphic Hierarchy

ager + Dire

class Englaser | o
protectad:
string aase_; ETVFE tppe

Exginear(coest stringk aase, ETYPE ¢ » Er) 1 name (zame), type_ie) (]
pe() { retere tpe; |
¥oid PracessSalaryl) | ¢c pame_ €< *: Frecees Salary for Englaser® <« el)

}
class Fanager : putlic Englaser
Eagineer ereporte, [10]

i

risaae, o) {}
Salary for Maoager® <C madl

Mapager(copat stringk am
Larg{) | co

ETTPE ¢ = Nyr)
toame «°

void Pro

tlass Mirectar
fazager reporis

plse

t stringt sa
1) [cout <Cpame 4 *

) | Mazager(ssam, Oir) |)
comn Sal

olution: Non-Polymorphic Hierarchy

Manager + Director

B&

Piaciste <isetrwsr
Slncisde Carricg>

talng saseppace nd
e £ TE { By

Fhu Englaser |
protectad:
string aase | ETVFE tppe,

Exginear(coest stringk aase, ETYFE @ » Er) 1 aame (mame), type_ie! ()
E_TYPE SetType() { retare type.; |
void PracessSalaryl) [comt ¢ pame << %@ Pr

cees Salacy for Englsesr® <« smadl;)
}
class Manager : public Englaser |

Exgineer ereports, [10]

i

neur(naae, o) {}
Salary for Manager® << madl; |

Rapager(const strivgk ame, ETVFE o = Nyr)
vold ProcessSalars(] | cout <¢ name <« *

|
tlass Directsr 1 patlic Masager |
Sarager sreporis (10

t stringt saze) | Mazager(ssae

laryl) | cout <¢ pame ¢ *

Fioziate <

e Gty
waisg At 4
wa £71 { Er,

class Erglaner |

class Manager
Exgiomer *srwports,

Bagioear(aase, o {)
y for Mamager® < adl)

rﬁj‘. C++ Solution: Non-Polymorphic Hierarchy
L‘i Engineer + Manager + Director

int saani
Egiveer o2 ["Radie®), o("Havita®), «3("Thasbing");
Sazager 23 ("Namala®), =3("hajin")
Pirsctar "R jasa’);
Exginesr optaftll » | 8ol dni, 020, 0o, B3, M4 |

fer (At = 0Q) 5 ¢

J— 2t =
Direstec ¢latal? (1) }->Frocessialary
Gl << “Tomalid Sraff Types il

Now, before discussing that, let us try to add the Director type here. So, if we add the
Director type, really none of these questions will have a different answer. So, we will just

have to go and do it in the code. So, let us do it.

| need to add the tag type, nothing changes in the Engineer and the Manager, but | just
specialize from the Manager to create a Director have its constructor, have its ProcessSalary
implement. So, the addition has still needs care, but that has become substantially less now.

Let us look at the situation in the main function.

In the main function, we still collect all these employees in an array of pointers, do
everything else in the same way, and we have a type switch, now I have to add this part, if t is
Director then now, the cast will be again another downcast. | am doing one risky thing after
the other. | have to cast it to Director* because now | have a director and invoke the
ProcessSalary for a Director object, different from the Engineering and Manager, but it is not

yet totally clean, but certainly it is cleaner than what we had earlier.

(Refer Slide Time: 12:20)

o Data s encapsulated
o Hierarchy factors common data members

o Constructor | Destructor to manage lifetime

uct-specific functions made member function (overridden)

o 8ir

¢ E.Type subsumed in class = no need for union
3 —_—
o Code reuse evidenced

o Disadvantages

o Types of objects are managed explicitly by E.Type
Difficult to extend the design — addition of 3 new type needs to
Add new type code to enuz E Type
~ Application code need to have a new case (1f-else) based on the naw type
Error prone because the application programmer has 1o cast to right type to call
ProcessSalary
* Recommendation
.....,:.,%e“g polymerphic hierarchy with dynamic dispatch (e H

+ Solution: Non-Polymorphic Hierarchy

Advantages and Disadvantages

o Data & encapsulated
o Hierarchy factors common data members

o Constructor | Destructor to manage lifetime

o struct-specific functions made member function (overridden)
¢ E.Type subsumed in class = no need for union

¢ Code reuse evidenced

o Disadvantages

o Types of objects are managed explicitly by £ Type

Difficult to extend the design=sddition of a mew type needs to

Add new type code t @
~ Application code need 1 1w G (1f-else) b

st to right type to call

4 on the new type
Error prone because the application program
ProcessSalary

+ Recommendation
A_wj_‘U'g“g polymarphic hierarchy with dynaqln_c“qgls;pt_cn W ﬂ

So, let us take a stock. What all advantages that we got by doing this change? First is data is
encapsulated. That is a first object-oriented principle is satisfied, data is encapsulated.
Hierarchy has factored the common data members like the Employee type and the name of
the employee and so on. On whatever common data members are there between the
employees like their employee code, address, date of birth, date of joining, all of that will be

there will similarly get factored into the base class.

Constructor destructors to manage lifetime which is a clean solution in C++ we know. struct
type this struct-specific member functions that we had they have been struct-specific
functions that we have they have been made into member functions. So, what is the big
advantage in that? The big advantage in that is earlier all these functions were having

different names SalaryProcessingEngineer, SalaryProcessingManager,

SalaryProcessingDirector.

Now all of them are salary processing. Depending on which class they belong to as a
member, they have different implementation they are overridden. So, now we have engineer::
salary processing, ProcessSalary, Manager::ProcessSalary, Director::ProcessSalary and so on
that becomes a lot more nice and uniform in terms of the design through this overriding

mechanism.

| do not need the union anymore because what | am replacing the union with one is, E_TYPE
is subsumed in the class, it is a part of the class itself, so it is inside. So, the class itself
remembers. And what am | substituting union for? | am substituting union by upcast. | have
an array of pointers where the upcast combines everything in terms of base pointer, base class
pointer, but it still can dig into that object and get the E_TYPE to decide which type of object
itis.

So, the code reuse, the amount of code reuse has substantially increased, it is directly
evidenced. But it still continues with the disadvantage the type of the object is still explicitly
managed by E_TYPE. | am putting an E_TYPE when | had to add the Director, | had to add a
new type to the enum, | had to add a specific case, | had to do a case-specific downcast, very
risky, if I make any mistake that is the application programmer has cast to right type of call

right type to call the process salary.

So, all risky things, lot of risky things are still remaining. So, what is the recommendation we
gained? We have gotten this advantages by the mere use of C++ classes, and by the use of
hierarchy, but we have so far kept that hierarchy non-polymorphic. So, let us make it a
polymorphic hierarchy with dynamic dispatch, and see what advantages we gain over the
design that we have done so, far.

(Refer Slide Time: 16:09)

ution: Polymorphic Hie

Engineer + Manage

—in

o How 1o repeesent Engmeers, Managers, and Directors?

o Polymorphic class hieraechy /

o Constructor [Destructor /
o How 1o have a collection of mued/cbft\“.s’
o array of base class pointers

o How to initialize objects?

o How to model .‘Jnancns//saiary processing algonthms?
o Member functions

o How to muoke the correct algonthm for a correct emplayee type?

o Vietual Functions o
Yicur T unciions

C++ Solution: Polymorphic Hierarchy

er + Director

g
BS

Engineer + Ma

Niac Lantrwar
Slacisde Gyrrisg
talag saseppace oid;

T stringt sase) © suse_(mee) () 7
ProcecsSalary() [cous << pame << Precess Salary far Exglaser® < gadl;

class Mumager
Exgineer *regd

1

asager (coest stricgt same) | Sagineer(zaze] () /
veid ProcessSalary() | cout ¢C pame << *: Process in;u‘.'ér RMoager® <« wadl; |

sstat stringk saze) | Mazager(sase) || / 7
sdalaryl) | cout <C pame <¢ %0 Process Salary for Directar® <« mdl; }

n: Polymorphic Hier

r + Manager + Director

st saisl) |

Eagioeer o1"R

o 030 Mavita®), o3("Shashiy®);
A Fajis”

pi, 2, bed, M, o4) G-
of (Englanezs) | »o1] &

%ﬂ_ C++ Solution: Polymorphic Hierarchy
L‘_{ Engineer + Manager + Director

So, what we have in terms of the hierarchies are same, the change is in the first answer to the
first question, how to represent these objects we say that polymorphic class hierarchy. Rest of
this is same, array of base class pointer is same, member function is same. As | do
polymorphic class hierarchy naturally my dispatch mechanism or the way to call object-
specific processing function now do not need a function switch, it can use function pointers in

the form of virtual functions.

So, these are the two main differences after the analysis of disadvantages that we have seen
and we are going to try this in the next iteration of the design, next refinement of the design.
So, now, this entire E_TYPE staff is gone, we have the hierarchy, Manager is an Engineer,
Director is a Manager, every constructors, processing functions everything. The
polymorphism comes through making the process salary virtual in the base class root class
engineer. So, as such the class part of the design is more or less similar except for the

E_TYPE is erased and this is ProcessSalary function member function is virtualized.

Let us look at the main goal. I still need the collection to be built, of course, the for loop this
does not change, but look at this. What has happened to that type switch if t is equal to Er do
this, if t is equal to Mgr do this, if t is equal to Dir do this, you have 20 types long chain or
switch all that is replaced by only one call. How? Because, now we have a polymorphic
hierarchy where ProcessSalary is a virtual function in the base class Engineer of which the

pointer type | have got.

So, this pointer has the current staff i pointer has a static type which is Engineer, but its
dynamic type will keep on changing at it traverses. For the first object it is Engineer, so it will

invoke the ProcessSalary for Engineer, for the second object it is Manager, so it will invoke

the ProcessSalary for Manager, third, again Manager fourth, again Engineer, fifth Engineer,
sixth is Director. So, it will invoke ProcessSalary for the Director. So, you can see how
drastically things have got simplified, compacted and the kind of there is a step jump in terms

of the quality of design that we have got with this refinement.

(Refer Slide Time: 19:45)

+ Solution: Polymorphic Hierarchy

Data i fully encapsulated
o Polymorphic Hierarchy removes the neegd for explicit £ Type
o Application coge 1s independent of types in the system (virtual functions manag
types through polymoephic dispatch)
¢ High Code reuse - cmmp'e
¢ Disadvantages
¢ Difficult to add an employes type that is not a part of this heerarchy (for example,
employees of Sales Division

* Recommendation
o Use an abstract base dass fo emaloyees

Pl i+ Solution Polymorphic Hierarchy

‘_i Advantages and Disadvantages

o Data i fully encapsulated

o Polymarphic Hierarchy remaoves the need for explicit £.Type e

o Application code is independent of types in the system (virtual functions managd
types through polymoephic dispatch)

¢ High Code reuse - code & short and simple

¢ Disadvantages

¢ Difficult to add an employes type that is not a part of this heerarchy (for examgle,

employees of Sales Dvision

* Recommendation

o Use an abstract base dass for employees

We have to assess ourselves for further refinement, naturally in terms of advantages. What
gets added at two things one is a couple of things. One is polymorphic hierarchy, which is
removed the explicit use of E_TYPE, application code for independent type are not needed

virtual function takes care of it, substantial code reuse and code shortening.

Does it solve all the problems? Unfortunately, no. You will still have to remember that as

soon as a, you want to add a new hierarchy, new Employee type that is not a part of this

hierarchy, you will have to do a lot of things. So, what is that we are missing out? If you look
into the entire hierarchy, the entire hierarchy is of concrete classes, which says that
everything that we have is what exists but, that does not keep a scope for the future where we
open the gates for whatever can come in future for that we need an abstraction. And for that,
we need an abstract base class kind of an employee at the root, so that we can anytime go and
add classes wherever we need them to be added. Let me explain this a little bit more with the

diagram.

(Refer Slide Time: 21:36)

.

eer + Manager + Director + Others

'l%?' C-+ Solution: Polymorphic Hierarchy (Flexible)
‘_i Engin

o How to represent Engineess, Managers, Directors, etc.?

o Polymarphic class hierarchy with an Abstract Base Employee f
. HMW -
o Constructor / Destructor
o How 1o have a collection of mixed chjects?
o array of base class pointers
¢ How to model variations in salary processing algorithms?
¢ Member functions
o How to mvoke the correct algorthm for 3 correct employee type?
Virtual Functions (Pure in Emplovee}

» 0
Vugroveney o Moo Suta Vrpem L we

olution: Polymorphic Hierarchy (Flexible)
Others

Director

Slaciade Grrirg
alng saserpece nd
class Esplayes |
e tritg sae |

al veid ProcessSalary() = ¢ ‘_.—
virmal “Eaxplopest) |)
}
class Exgiaser: putlic Esplopes | poblic
Exgiveer(coest striogh saae] [zame. » came; |
void PracessSalaryl) [cout << pame_ €< *: Procees Salary for Englaser® <« smadl;)
}
class Yasager : public Englaser | Engloeer sreparts [10}; peblic
farager(tenst stringt asse) ! Bxgivesr(sase) ||
veid PracessSalaryl) { cout ¢¢ pame_ << *; Pracess Salary far Mamager® << sadl; |
l femt
clase Durectar @ pukiic Mesager | Mapager ereparte, (10); public
Pirectar{ccost stringt amae) | Mazager(zase! (|
voad PracessBalary() [cowt < name, €< %0 Procesa Salary for [rectsr® < wmdl;)

aive o pulic Bplapes | peblic
velcaast stringt oame) | sase_ = zame|)
Salaryl) { cout <C pame, €¢ *: Process Salary for Sales Dxscutive < madl; }

+ Solution: Polymorphic Hierarchy (Flexible)

eer + Manager + Director + Others

al veld ProcessSalary() = ¢
virtmal “Eapl g1 .

class Englaser: puslic Esployws | pohlic
Bagineer(copst striogh suae] | mame. = pame; |
vid PracessSalaryl) [coat << pame_ << *: Precees Salary for Englsesr® <« wadl;)

1ic Englaser | Engioeer sreparts [10] peblic
tricgt asae) | Bxgiveer(sase ||
cout ¢¢ pame, << *; Pracess Salary far Msmager* < sadl; |

patisc Mssager | Manager sreporte, {10); pablic
ire tat striogd auae) ; Mazager(zase) ()
ssalaryl] { cows <¢ name, €< *: Procesa Salary for Directsr® « wmdl;)

class Saleslzecutive ™ puitlic Bplopes | peblic
Salealxecst (1] oaae) | sase_ = zase|)

CC pame, €C *: Process Salary far Sales Dxecutise® < mdl; }

+ Solution: Polymorphic Hierarchy (Flexible)

iﬁ‘ Engineer + Manager + Director + Others

imt saisl) |

Bagivear ol ["Rokit*), 2 J3(*Frashiva
Saneger al 'nu;n", 2("Raj1e’);
" SalesErec 0("Hari"), sQ("Risken*

drectar & F.uvu.a / /
L, oyes estaffl) 0/ L2, b2, 2, D, B, B

: e]7
0; & ¢ sizes (x.' ! stzect{Exgluyees); ++1l | |

| S §

x'\.‘!i Wrocessdalaryl)|
| Ra—
| Process Salat Eagis
- e Sa fary
. " .

So, earlier we had only this part. Now, we add an abstract base class and SalesExecutive
which you want to add is naturally not on the engineering cadar, so, it goes in a different way.
So, what changes to our answer is polymorphic class hierarchy with an abstract base class
Employee which was not there. The moment you have abstract base class or the moment you
have a class, which can be extended in any way at the root you do not know how to process
the salary of that employee because it is just a concept, it is not a physical employee, it is a

concept.

So, which means that your processing function will need to become purely virtual at the
employee. Everything else remains the same, we are just opening up the polymorphic

hierarchy for easy extension and additions in future.

So, we have this base class created, employee. We continue to refactor, we know, whatever
the employee is, the employee is going to have name, address, date of birth, date of joining
and all that we can put all of that refracted into the base class. This is the key point that we
provide the ProcessSalary here as a pure virtual function. Because we do not know what is
the logic of processing the salary of this employee who by himself is an abstract concept
herself is an abstract concept. Keeping to our learning from the last module, we make the
destructor of this employee class virtual so that we do not have any slicing. So, this is your

base class design.

Then the rest of it is extremely modular in the way it goes along the along the hierarchy that
you have. So, Engineer is an Employee, Manager is an Engineer, Director is a Manager,
SalesExecutive is an Employee, and you have constructor, you have ProcessSalary

overridden in every case to be able to process these different cases.

The processing code it has, it now has seamlessly been able to add a SalesExecutive and note,
very importantly, this code does not need to change, no change in that code. Your hierarchy
has extended and you are making this call from the abstract base class pointer Employee
which will get dispatched to either an Engineer or a Manager or a SalesExecutive or a

Director, as the case would be, and you do not need any changes there, beautiful, is it not.

(Refer Slide Time: 25:19)

rﬁs‘_ C++ Solution: Polymorphic Hierarchy (Flexible)

Advantages and Disadvantages

o Data i fully encapsulated -

o Flexible Polymarphic Hierarchy makes addition of any class passible on the hierarcHi®

o Application code is independent of types in the system (irtual functions manag{i®
types through polymeephic dispatch)

> Maximum Code reuse - code is short and simple

o Disadvantages
¢ Sull needs to maintain employes objects in code and add them to the staff aeray
this is error prone
* Recommendation

o Use vector as a collection and insert staff as created

.’ﬁ:‘. C++ Solution: Polymorphic Hierarchy (Flexible)
L4 Engineer + Manager + Director + Others

izt malsl) | ‘

Exgioeer oll"Rokit"), «2(“"Favita®), o3(“Edashine®);

Sazeger ali"famala®), ml("Raj1y” j —~

ElesSxecutive ai("Hari®), o3("Risken*

Jirectar 1"?.\(;11_1_‘_‘—_ -
+ ~ l -
E:;-.-:',-ﬂ eptaff) = | tel, i, 2, b2, bni, ko), 04, B2 "‘J |

for (13t 1 » 0; & ¢ gizesl{szatt) / sizect{Exgluyees)] 1
sratt i) rocasadalary!)|

Assessment, again, there is always scope for refinement possibly. So, what we see is
advantages remain the same, we have added flexibility by adding this abstract base class. We
have almost a maximum code reuse, no code is being duplicated, replicated anywhere, but we
still have a disadvantage. The disadvantage is, we still need to maintain the aggregate of the
employees through an array. If I can just go back to that previous, yes, this is what | mean. |

have to maintain this array.

So, if there is an object instance, Employee instance created, which is not added to this array
will have problem. If an instance is added twice you can understand what will happen, two
salaries will be, salaries will be paid to the same employee. So, this remains a pretty
vulnerable part of the design. And when you have thousands of employees would you think
of doing this hard coding in your code. Every time an employee joins he will go and change

the code, and add that, not possible. So, this needs to be cleaned up, that is basic.

(Refer Slide Time: 26:51)

o Data i fully encapsulated

o Flexible Polymorphic Hierarchy makes addition of amy class passible on the hierarch

o Application code is independent of types in the system (virtual functions mansg s
types through polymoephic dispatch)

¢ Maximum Coce reuse - code is short and simple

o Disadvantages

¢ Sull needs to maintain employes objects in code and add them to the staff aeray -
this is errar prone

* Recommendation

o Use vector as a collection and insert staff as created

Fugoveney @ Moven Suwta Vo " 4

ution: Polymorphic Hierarchy (Flexible)

Director + Othe

| atafla puak back(e); };

class Ergly Exployes | publis
Exginear(coeat stricgk sase] (nase » zame
Masrareitkis); |
¢ pame_ << *: Process Salazy fer Englaser® << eadl;)

redd PracessBalery() |

class Yezager ; public Engtaser | peblic: Macager{ccast stringk zasel | Exgiosar{mase) {)
138 PrecessBalary(] | cout ¢¢ pamm €< *! Precess Salary for Menager® <¢ eadl; |

}

class D ar ; puslic Mamager | publis: Darectaricoast gl tame) © Yacagertrame) { |
woid ProcessSalary(] | cous << pame_ << ": Process Sal "« udl;)

!

cl SalesEzecutive | puslic Esplopee | public

lesfrecstive(conet otricgh name) | xane, * 2a0e
ProceceSalaryl] [cout <C mame, €< *; Pricess

[TS -

olution: Polymorphic Hierarchy (Flexib
Director + Othe

acind: sirisg name,

Sxployess> wtaitfs
(Expicyers o) | stadfs pesk backie); };

I | came, = pame

Seszateittial;)

wid ProcessSalary{) | cows <¢ zame, €< *i Precees Salary for Engluesr” « edl;)

class Mamager
wis Pras

¢ Engtaeer | public: Pecager{ccost stringh sasel | Exgineer(sase }

} | cout << pame, ¢ ¢ scass Salary far Menager* < eadl; }

|
witer| comnt Yarager (zape;
Process S * o endl;)
|
closs Salesbaecutive © public Bsplayes | peblic

velcenet stricgh oaxe) | waxe, = same| fflthigl!)

vi) | cout <¢ pama, €< *; Procees Saisry lor Sales Exscutive® < madl;) a
CLE

Hopronng = totee P Pt Do

+ Solution: Polymorphic Hierarchy (Flexible)

eer + Manager + Director + Others

talag samespace ad

class Explopes | procecied: sirisg same. -
() .
~

' /
e J ¥ r,“L@M)
class Erglasar ! puslic Esployes (publis /—
Exginear(coeat stringk 20060 nass « pame
vedd ProcessBalery() [cout ¢« same_ << *: Process Salasy fer Englasar® o eadl;)
}
claas Masager 1 public Engtaser { peblic: Masager{ccast stringk zasel | Exgiossr{sass)
vo3d PrecessBalaryi] | cout << pamm << Process Salary for Menager® << sadl; |

}

clase Directar : puslic Mamager | public: Darectaricoost stringl came Yapagerirame) | |
wid Proces ¢ pame_ €< "1 Process Salary for Direstar” << wadl; |

!

class SalesEzecutive | public Esplopes | public
Salesice conet otricgh mame) | maxe, = zage| MddStatf(thial;)

sois ProcessSalaryt) | cout <C pame, €< *; Process Salazy for Sales Executine® «C on

e Oy

r%‘. C++ Solution: Polymorphic Hierarchy (Flexible)
L‘i Engineer + Manager + Director + Others

vectacdaplagese> Bxpicyes: cetalls

| T

int saisl)
Bginear ol ["Rabit®), o3("Navita®), o3("Shaabie®);
Bazager 21 ("Kamale’], s3("Ratin);
Salesfeacetive o3("Hard*), a2("Risken*
Bicwetar 4{"Rua jasa’

vector aployens) cconat_itarstar i)

fer (it » Esplayes::staffs begtal)|
it < Exployes: stadfs eadl);

[*it)->Processialary ()

So, what he says let us do this. The in it, let us look at it in a little different way. We are
saying that these are the objects created and then the application is adding them. Why? When
the object is getting created, it could add itself to the collection. It could add itself to the
collection. If I need to do that, | need an active collection. I need just not an array, but a data
structure where | can just invoke a method and get myself added collected.

So, my recommendation our recommendation is we will use vector as a collection and insert
staff as they are created to get rid of this disadvantage, refine design. So, vector included,
now in the abstract base class we introduce a collection, we make collection we move that

from the application code to the class hierarchy code and make vector of Employee pointers a
member in the Employee class.

Obviously, this collection will be unique one, therefore, this is static. This is next, | need a
way to add this. So, we provide a method AddStaff, which takes this vector and pushes the
current employee pointer that will add the staff to the collection. So now what changes is
when | am doing class Engineer, which is an Employee, | need to AddStaff. And this because

in the constructor it is now constructed, so | add myself to this staff collection.

Similarly, | do that for class executive AddStaff. Remember this is where, remember the
structure, this is your employee, this is your Engineer, this is your SalesExecutive, this is
your Manager, this is your Director. So, this AddStaff is needed in these classes, which are
after the abstract base class, which are the root of the concrete classes. Naturally you do not
need it here.

Because to construct a Manager you will obviously construct an Engineer, and object as a
base and AddStaff will happen. So, with this, | have the advantage that I will not need to
manage the collection anymore. All that will happen automatically as an when objects are
created, they will get added to this collection. So, all that | need to do is go over this

collection.

There is a small nuance which I would like to mention here. For example, here in creating the
name | have done it in the body not in the initialize list. Normally we have said that always
do it in the initializer list like this. Please note, that that is not going to work in this case. The

reason is simple, is name is inherited from the employee class, which is abstract base class.

So, Engineer does not have directly a name field, it will come from that abstract base class,
but being an abstract base class it will never get constructed. Being an abstract base class it
will never get constructed, so Engineer cannot, engineer, constructor cannot refer to that. So,
we have to go through an empty initializer here get the default object constructed and then
actually set this name field. So, this is a small understanding in terms of the object layout that

you need to keep.

So, having done this, now we have this global vector. So, which is Employee::staffs so | need
to define that in the global space | do that because it is a static. And | am just now | am just
creating the objects, | am no more having to add them, they are getting automatically added.
Then finally, | have to go over this vector so what | do is the standard vector mechanism |
will construct a constant iterator. Why constant, because | do not expect to change any
employee object just process that, so and do a start to go up to begin to plus plus and on every

item I will come ProcessSalary.

Absolutely compacted. Now it does not depend this part of the main application function
does not depend on the classes, instances or anything, they are just generic, and | can freely

keep on adding classes as | want and | have everything that I actually looking for.

(Refer Slide Time: 32:43)

rﬁj‘. C++ Solution: Polymorphic Hierarchy (Flexible)
L_‘ Adv

antages and Disadvantages

o Data i fully encapsulated -

types through polymoephic dispatch)
Maximum Code reuse - code is short and simple ‘
o Collection of staff encapsulated with creation
o vector and iterator mcreases eflicency and efficacy
o Disadvantages ‘
o None in particular \
* Recommendation

o Enjoy the sclution

%" Module S
- + Module Summary
=

o Completed design for a staff salary problem wsing hierarchy and worked out extensible
C44 solution

o Learnt about iterative refmement of solutions in the process

Data is fully encapsulated flexible polymorphic hierarchy where free addition of any class is
possible the any stage of the hierarchy, application code is independent of types in the
system, virtual functions, managing all polymorphic dispatch, maximum code reuse short
simple, collection of staff encapsulated, flexible polymorphic hierarchy where free addition

of any class is possible the any stage of the hierarchy.

Application code is independent of types in the system, virtual functions, managing all

polymorphic dispatch, maximum code reuse, short simple, collection of staff encapsulated for

creation, vector and iteration increases the efficiency and efficacy of the solution, no

particular disadvantage as such so we can enjoy the solution.

So, this was to summarize. This is an exercise, | mean, | did not want to just ask the problem
and give you the solution. But we made this work through, to make you realize that you
cannot, given a problem you cannot jump to the best solution in one stage, it is never

possible. You will have to go through stages of refinement.

Now, some of you maybe, grasping it well so that you start with the non-polymorphic
hierarchy as a first design, skipping the C part structure-based design, some of you maybe,

even more mature to start with the polymorphic hierarchy, it depends.

There could be other ways of doing that, but what we will have to remember is you always
need to start at an initial solution and ask design questions repeatedly to see how it can be

improved, keep on doing this till you meet all your design objectives.

Thank you, very much. With this I conclude this module. Thank you for your attention, and
we also conclude the discussions for this week which was being primarily your exposure to
polymorphism both in terms of the language features as well as the design practices which
will be the core of take back from the objected-oriented side of design in C++. Thank you

very much, see you again, in the next module.

