
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 29

Polymorphism: Part 4: Staff Salary Processing using C

(Refer Slide Time: 00:35)

Welcome to Programming in Modern C++, we are going to discuss Module 29 now. In the

earlier three modules, we have been developing different concepts of polymorphism, and the

kinds of specific support that C++ provides over an inheritance hierarchy. We have seen

different types of casting, static and dynamic binding, virtual functions. We have looked at

why destructors must be virtual on a hierarchy. Why we need pure virtual function. What is

abstract base class and so, on. So, in terms of dealing with a certain level of polymorphism,

which typically what we are dealing with is the runtime polymorphism right now along with

some of the overloading which we have already learned, we have covered all these.

Now, we are equipped we are as an engineer, we are equipped with our tools. So, it is time

for us to try out our tools on doing an actual design and implementation. So, the main

objective of this module would be to understand design, where there is a prevalence of ISA-

related concepts that is generalization specialization. And we will start with the C design and

identify why C is not an appropriate platform for dealing with such design requirements. But

before we will start doing this, we will first take a quick look at some exercise for practice.

(Refer Slide Time: 02:08)

So, this is your outline here will be available on the left. So, I have put two exercises actually

one exercise on binding having two different instance requirements. So, there is a class A

which is specialized in B which is further specialized in C and there are virtual functions

here. There is a non-virtual function, some virtual functions like g() is inherited but not

overridden. Some are inherited and overridden, some are inherited and made virtual hiding

the function of the base class. Then again you have some which is overridden into class C

others just iterated.

So, if you have this kind of a class hierarchy and if you construct objects of three classes A, B

and C and you have two pointers, one is of type A and another is of type B then you should

be able to work this out. There are four, there are three functions f(), g(), and h() of that you

can see that f() does not have any overload, g() also does not have any overload, but if you

look at h() you find that there is a overload. So, there are four different function signatures to

deal with.

So, I would need you to fill up this matrix that which function will be called with pA->f(a) if

pA is initialized with the address of the a object. So, similarly do that for each four. Again, a

different instance is if you initialize if you assign pA with the address of the b object, which

functions will be called and so on. So, please work this out and do not look at the answer it is

on the next slide for your verification, but first work this out and then check that you have

done it correctly.

This is I am putting this so that it is very, very important that you understand the static and

dynamic binding of function calls in a very solid way that is overriding, overloading

polymorphic virtual functions must all be very clear to you. So please work this out. This is

the first part of the exercise. I will skip the solution slide which is after this.

The second part of the exercise has exactly the same problem, exactly the same instance

except that now we are using pB earlier we are using pA now we are using pB which is

pointed to the B class and all the three cases in all the three cases pB is assigned the address

of a object address of b object and address of c object, you have to comment, you have to

write what will happen in all these different 12 cases.

Mind you, out of the two kinds of instances of this exercise that I have just discussed, it is

possible that some of the function calls or some of the instantiation may not actually compile.

So, it may give a compile time error, it may give runtime error, you have to consider all of

that. And if you think that certain cases have this error you write down that error itself.

Again, like the first part, the solution is given in the next slide, which you referred to only

after you have solved this, so I will skip the solution.

(Refer Slide Time: 06:31)

Now, let me come to the meet of the discussion in this module. What I will do from here till

the end of this week, that is covering the next module also, we will try to solve a simple yet

quite illustrative problem, which will show us how really the inheritance and polymorphic

strengths must be used. And we will do this through a process of iterative refinement, I would

say, that is we will start with a very initial first cut solution, which easily come to our mind

and we will try to implement that. Identify the problems they are in and try to rectify that

using the proper modeling and again look at what are the gaps that still remain and keep on

doing this till we come to a solution which is acceptable and which is nice.

So, let me state the problem for once. The organization, there is a staff salary processing

requirement, this is an organization which has different staff, and it needs to process the

salary of the staff. So, let us assume that initially there is only an engineering division where

engineers and managers work and every engineer reports to a manager, every manager can

also work like an engineer, but primarily the manager's task is to take reporting from the

engineer.

Now, naturally the logic of processing salary for an engineer and the manager would be

different. Because managers would have different kinds of salary structure and so, not only

they will have different salary, but they will have different kinds of salary structure. And

maybe they have bonuses, maybe they have stock options and different heads and so on.

So, different functions are required for processing the salary of the engineer and processing

the salary of the manager. This is at the present. Now, in future it may add the organization

may add directors to the team, so that directors will be responsible for broader business goals

and every manager will report to some directors, and a director could also work like a

manager if needed. Naturally, the logic of processing salary for the directors will also be

distinct from the managers as well as the engineers.

Even further down in future, what happens is the company, the organization may decide to

open other divisions like sales division, like HR division and so on and expand the

workforce. And again, there will be such generalization, specialization relationships and

different processing requirements. So, the what we need to do is given this simple problem

we need to make a suitable design, which can be properly extended as needed over a period

of time.

(Refer Slide Time: 09:56)

So, we start by asking ourselves a couple of questions, which we will keep on asking

repeatedly, because if we want to do the design then first you need to set certain parameters

for the design, and some questions very commonly naturally will come, which we need to

address. For example, the first thing obviously is how to represent engineers and managers.

Obvious, we are in the domain of C, so, they will have certain attributes, so we will put them

into structure, so we will have a collection of structures, one for the engineer, one for the

manager and so on. How do we initialize these objects, engineer or manager objects, we need

to write initialization function. We have seen that before in terms of stack example and so on.

Now, how do we have the total aggregation collection of staffs? There would be engineer

objects, engineer’s structures, there will be manager objects, managers structures, different

types, so how do we put that together. We have learned in C, the best way to do that is to put

them as a union, so that it could be either a manager or an engineer but not both.

And then I need a collection for that so I have an array of union. I am just trying to ask the

natural questions that will happen and try to identify what is the language feature what is a

design feature that we will use to get to that solution. Now, the next question is how do we

model various salary processing algorithms there will be different so, we need different

functions for every structure type.

So, we need different salary pricing for engineer, different salary pricing for manager, we

have to implement separate functions. Now, the final question is having done all this how do

I uniformly treat the entire collection of staffs and process their salary in their respective

way? So, how to invoke the correct algorithm? Like herein I have the collection of all the

employees, all the staffs, but for each I have different processing algorithm.

So, to for processing the salary of all employees I have to pick up every employee from this

array, check what is the type is that employee an engineer or is that employ a manager, and

accordingly call the respective processing function. This kind of a requirement where we

make decisions based on the type of an object is known as a type switch. So, we can

implement that using a function switch or we can implement that using function pointers. So,

this is a basic level of analysis that goes into solving this problem.

(Refer Slide Time: 13:23)

Now, let us get down to some code. Say, the first thing I need to know is I need to know

whether some employees are manager or an engineer. So, how do I keep that I create an

enum E_TYPE with two tags, so that if some employees are engineer will say, Er, tag it as Er

other will tag it as Mgr. Now, we need to have the structure. So, I define struct engineer for

simplicity I have just kept the name, other fields could be there and typedef that as Engineer

so that I do not have to write too much.

As already identified, I need an initialization function. So, that initialization function must

take the name and return me an Engineer pointer. In C++, it would be the constructor, but

here we do not have that. So, we dynamically allocate the memory, copy the name and return

that pointer. Very simple thing to do.

Now, having done this, the next is the same. The next obviously is I need a processing

function. So, I say processSalaryEngineer() which takes an engineer pointer and does the

processing just as a placeholder, I am doing a printf. Similar design I do for the Manager.

And then, so I have tags ready, I have objects and their processing ready, their initialization

ready. Now, I have to put the collection of the staffs.

So, I need to, a staff can be an engineer or a staff can be a manager. So, I need to unify these

two types, so I create a union, union of Engineer pointer and Manager pointer. But then that

classical question as to how do I know which type of pointer it is. So, I have a tag which will

say which type of pointer it is. Whether it is an Engineer pointer or a Manager pointer, and

then I aggregate these into a structure. So, this becomes my Staff entity. This is my Engineer

entity, this is my Manager entity, this is a wrapper, this structure with the E_TYPE tag

becomes my Employee entity.

(Refer Slide Time: 16:22)

Let us move on. So, once we have that, then my actual staff would be just an array. So, I put

an array keeping a maximum number of staff to create every engineer. Suppose Rohit is an

engineer, so what do I have to do, I have to do at create the Rohit object. So do InitEngineer

for Rohit, because he is an engineer put it to pE part of the union and tag it as Er.

Kamala is a manager, so I initialize that, put the tag as manager. I do that for all the

employees, so my collection is ready then finally, to process the salary. To process the salary

what do I have to do? I have to do it for all the staff. I have just hard coded it here to keep

things simple. Then, as I go along this array of staff, I pick up the first element and check

what is the type. So, I take that in E_TYPE. What are the possibilities? It could be an Er or it

could be Mgr.

So, I check with whatever I have got, I check with Er, if it is true I call the, I know that this is

an engineer record, so I call the processSalaryEngineer() with the respective Engineer

pointer. If it is not, I check whether it is a manager. If it is, then I do processSalaryManager

with the Manager pointer. Otherwise, for some reason it should not happen.

But otherwise, if there is there is some other tag that has come then I say it is invalid, so that

is an exception. Do that, try to run this. This is given below is output that you will get to see

the salary has been processed. So, we have a first cut design for the problem.

(Refer Slide Time: 18:30)

Now, let us extend it a little bit. Let us also introduce directors and see what we have all we

have to do. We have solved this for engineer and manager now, and we are told that soon

directors are going to come. So, as we introduce directors there is no, none of these questions

will have a different answer. So, we have the same answers, same design perspectives, all

that we need to do is to actually go ahead and implement.

So, what do I need to do, now directors are there, so I need a third type of employee so I

introduce Dir here. My Engineer does not change, my Manager does not change, but I will

have the Director created in the same way defined in the same way with the structure with the

manager reporting with the director initialization and the processSalaryDirector() a new

function.

What do I need to do for the staff’s collection? I earlier had engineer and manager now have

to introduce this. So, this is what I need to introduce. This is what I need to introduce, this is

what I need to introduce. These are the changes from my earlier design that I am having to

do, distributed at different places.

Having done that, let us see. Now there is no specific change in terms of this array in the

similar way, I create different stuff instances. But coming back here I need to add another if

condition this is my type switch or by function switch. Because now I have a new type of

object, the director object, requiring a new type of processing function. So, if else, if else, if

else like this, it will, so, the total changes a changes that we had to do earlier and in the earlier

slide at this one, and then this design now works for Engineer, Manager and Director.

This is just to show you a different implementation of the main function. Instead of the if else

change, you can also use a switch, which at least looks cleaner. If you do if else and every

value of this tag is a constant, so that is an ideal case for writing a switch, so this at least will

look same if there are a number of 10, 20 different types of employees otherwise, if else

chain will become very, very long code, but that is just a you know, kind of management,

code management issue.

(Refer Slide Time: 21:28)

Now, let us evaluate what have we got. So, let us look at the advantages and disadvantages.

The first advantage is that the solution exists, that is the first thing. If you are working, the

first thing you need to do is to make sure that it can be solved. Then comes good solution,

extendable solution, robust solution, testable solution, verifiable solution all of that will come

later. So, the first thing we have got the solution exist.

The second we observe is, the way we have been analyzing very clearly, and writing the code

step by step based on our analysis, it has a well structured pattern. You have a tag, you have a

structure, initializer, a processing function, you have a wrapper for the union of different

types then an array for this and finally a type switch.

So, there is a certain nice pattern in this. But it has a lot of disadvantages. For example, the

employee data has a lot of scope for better organization, the first thing missing is there is no

encapsulation, C has no encapsulation. So, structure is all everything is public. Then, we are

having to duplicate fields across types of employees. For example, every employee has a

name, so every structure must have a field called name.

We may mix up in the name of that field. I mean, I may call something as name, someone

later on may want to call it a e-name, someone may call it as name_ so there is confusion.

Some might want to say that this is a char *, some might want to say that this is and this is a

const char * and so on so forth. So, this kind of duplication of fields same fields, which mean

the same thing across different types are really difficult in the object model.

Objects are created and initialized dynamically through Init functions. So, what we have

missed out is how to clean them up. So, I just wanted to keep the idea simple, but you see the

as you need the Init you will also need to provide a way to clean up the memory. You need a

releasing function, and that releasing function like the processing function will again have to

be called based on the specific type. You will come across another type switch there to

release because all structures will not have the same set of fields and therefore, they cannot

be released by the same code, lot of issues.

So, this is about the overall data modeling. Then the more severe problems are objects are

managed, types of objects are managed explicitly by E_Type. We are putting a tag. So, what

did we have to do to extend the design, to add a new type like Director we did, I needed to

add a separate code E_Type. Add a new pointer filled in the struct Staff in the beginning so

that I can point to that and add a new case in the if else or the case switch.

So, if all of these and if we have the releasing function will have yet another switch to deal

with. If all of these are not correctly done in every case of addition of a type we are going to

get into severe problem. So, this makes the developer has to decide to call the right

processing function for every type. All of these will have a need a lot of development care.

So, that is going to be a serious drawback for this design.

Finally, here, we have seen earlier that function pointers because we have different types of

functions for processing. So, instead of function switch could we not have used function

pointers. We would have liked to, but the difficulty here is that the employee processing, the

engineer processing function takes and attribute, takes a parameter which is Engineer*. The

manager processing function takes an attribute takes an argument which is Manager*,

Director*, so on. So, all of their arguments are different. So, I cannot have a common

signature through which function pointers can be directly dispatched.

So, function pointer-based approach on this design the way we have done the design will also

not work. So, we are losing out on that ability. Now, after the analysis, what comes is the

recommendation. So, the recommendation is to use classes for encapsulation on a hierarchy

and that is the refinement we will start working on.

(Refer Slide Time: 27:08)

So, to summarize, in this module, we have provided some practice exercise, but most

importantly, we have started designing a staff salary problem. We have worked out a C

solution and we have shown what are the various shortcomings of that design, starting from

modeling of the object, as well as processing through types switch, as well as being unable to

use function pointers and so on, which in the next module will keep on refining with C++,

and go to a better design. Thank you very much for your attention. See you in the next

module.

