
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture - 27

Polymorphism: Part 2: Static and Dynamic Binding

(Refer Slide Time: 00:35)

Welcome to Programming in Modern C++. We are in week six and we are going to discuss

module 27. In the last module, we have introduced the notion of type casting, implicit and

explicit typecasting, basic rules for casting for the built in types, numerical as well as pointer

and the rules for casting between non-related types and classes on a hierarchy particularly up

cast and downcast.

(Refer Slide Time: 1:03)

In the module today, we will discuss about static and dynamic binding and what is

polymorphic type, it follows from the casting rules but we will have to learn about few basic

notions first. This is the outline as will be available on the left. So, first we talk about type

binding and this will be a little bit of new stuff for you all because in C, when we talk of we

talk of primarily of static type that is, we say int x and you will know that what is the type of

x, that is integer.

So, the compiler knows that accordingly compiler allocates memory, accordingly compiler

allows operations, the casting and so on so forth. So, everything is primarily around this. This

type that you have is known as the static type. The type that you have declared an object with

and compiler sees this type.

In contrast, we also have a dynamic type which is not, may not be what you have declared it,

declare that object for but it is the type of the object that actually exist or refers to at the run

time. So, since it is at the run time the compiler does not see the dynamic type. So, here I

have a very small example to illustrate this. There are two classes A, and B is derived from

A, a specialization of that. I have A type pointer and I am doing new B, that is constructing

an object of the B class type.

So, if I think of the type of p, it is declared as A*. So, the static type of p is A*, that is it is

compiler knows that p will point to A type object but on the hierarchy, I have allowed an up-

cast and actually what it points to is a B type object. So, the dynamic type of p is B*, run time

type is B*, so this is the basic difference.

That if the compiler knew that the static type which is pointing to an A type object whereas in

the allocation at the runtime or through assignments and so on, the type of the object that it is

actually pointing to is a B type object. So, the runtime type and the compile time type differ.

The dynamic type and the static type differ and that is where a big story of polymorphism in

C++ starts.

(Refer Slide Time: 4:27)

So, this type assignment to a variable is known as binding. So, static I mean, what I meant is

deciding that what is the type of an object that process is called binding, your binding as if

you have an object you have multiple types you bind it the object to one specific type. So, a

static binding is when it binds based on the static type of the objects. So, this is all compile

time.

So, your normal function calls overloaded functions, overloaded operations are different

examples of static binding because the whole thing is based on the static type of the

parameters and different objects involved and the compiler knows all of them and

accordingly the compiler binds. In contrast we have a dynamic binding in C++, when a

function invocation binds to the function definition based on the dynamic type of the object.

You have seen that the dynamic type of the object could be different and so this is done at run

time.

Function pointers, we have seen is an example of dynamic type which can be kind of

simulated in C but more explicit in C++. Virtual functions are really the dynamic binding

mechanism in C++. Since static binding is done in the compiler it is called early binding,

since dynamic binding happens at the runtime it is called late binding. So, this is the basic

binding notions.

(Refer Slide Time: 6:19)

So, if I quickly compare then between static and dynamic binding then naturally the events

for static binding happen at compile time and those for dynamic binding happens at runtime.

All information for a call is known at compile time for static binding but all information is

not known for dynamic binding, they are known only at the runtime as we will see the static

binding is efficient for any function call dynamic binding is flexible but not as efficient.

Naturally leading from that is static binding has faster execution compared to the dynamic

binding. In the static binding the actual object is not used for binding, only its type is used

whereas in dynamic binding the actual object is used because the type of that object at the

runtime is what is deciding the binding. The examples include method overloading, normal

function call, overloaded functions, overloaded operators these are all statically bound

whereas method overriding and virtual functions may be that will be dynamically bound. So,

these are the basic differences.

(Refer Slide Time: 7:41)

So, let us quickly look at we have seen this kind of similar slides before. So let us quickly

take a look of a hierarchy, B is a base class, D is the derived class, B defines a function f(), D

defines another function g(). So, if I now have two objects b and d then naturally b.f() will

call the function in the class B, d.f() will call the function in the class B again because it has

inherited it and naturally d.g() will call the function that you have added.

If I use overriding, I have a function f() in B and in the derived class I have overridden the

function f(). So, if I do, b.f(), it will be this will call the B class function, if I do d.f(), then this

will call the D class function because I have overridden it.

So, when I override, then I have actually lost the original function that I had in the base class,

that has got must. There is no way to call that function anymore, unless I explicitly put the

scope and write that. So, if I just, if I want to inherit a function from my base class and just

overload it, I will not be able to do that because the moment I overload that will hide the

previous function.

(Refer Slide Time: 9:27)

Let us see an example, we will come to that example. Now this is from module 22. Just I am

asking you to go and revisit that, f() and g() are in base class. They are inherited in the

derived class and naturally everything that you call from b or d is in the base class function.

Here you have b and f() and g() in the base class, you have overridden f() here, same

signature you have overloaded f() here, you have inherited g() just like that, did not do

anything with it and introduced a new function.

So, when you call from b it is all B class objects, when you call from f() from d you get the

overloaded f(), overridden f(3), I am sorry overridden f(3) which is the D class function and

g() of course is just inherited, so you will get to see the g() of the B class. And if you call the

overloaded f(), then naturally you will get the f() in the D class and so on. So, you have

already seen that, this is just a you know recapitulation reminder.

(Refer Slide Time: 10:45)

Now we were talking about what happens if I inherit a function from the base class and then

override it or want to overload it. Say for example, I have a class A with a function f() and B

is inherited from that. Now if I just do f(int), it will overload the function f() in B. But you

cannot see, is what you cannot see here is there is a function f() available here which comes

from the scope of B. So, when you put a different signature for f(), you are actually

overloading that function.

As you do that you will not be able to call the original function you will with b and object b

you will not be able to call b.f() because it does not exist, you have already hidden it, masked

it. So, to avoid this problem, what is introduced is a new use of the using keyword. You

already have seen that in terms of name space is a different context where we are doing using.

So, it says using a::f(). What does it mean? It means that do preserve the function f() from the

base class and treat this as a overload. So, when you want to do that, then you do this using

keyword and give the fully specialized, fully qualified name of the function that you want to

use from your parent context.

So, with that you will now be able to call your overloaded function and as you do b.f() you

actually call the function from the base class A. So, this is how you can make the overridden

functions or overloaded functions from the base class, also available to your class if you

need. So, this was about static binding.

(Refer Slide Time: 13:08)

Now let us talk about dynamic binding which is, so this is B is a D which overrides the

function, I am sorry D is a B that is D is a derived class, B is the base class and I am

overriding the function f(). I have overwritten it here and when I make the call, naturally just

look at what I am doing. There are two b, two objects b and d and a B type pointer which is a

base type pointer. Now, if I assign the address of the base class object and invoke, it will

invoke b::f().

No issues, if I assign the derived class address of the derived class object to the base class

pointer and then try to call f(), it will still call the base class function because this is done by

the compiler at the static time, at the compile time. So, the compiler knows in p here, in

resolving p here compiler knows that it is of B type. So, it binds with this function, it does not

bind with this function and but probably d being an object of the class D, you probably would

have wanted to use the other function in the class D.

It is of course your choice, when this happens this is called static binding. Now, how can we

change this scenario. There is a very simple way to change this, all that you need to do is to

put a keyword virtual before the function signature, everything else is same. Instances, this up

to this point there is no difference but if you do this, p pointer, p you have set to the address

of a D object and you do p-> f(), it does not call B::f(). Instead it calls D::f(). That is the

compiler does not resolve that since p is a class B, base class type pointer.

So, if that is trying to do will have to come from the base class, compiler does not resolve

that. Complier does some mechanism which we will subsequently talk of, which allows that

at the runtime when the pointer actually is pointing to an object which is a derived class

object. Since, it is pointing to a derived class object, it will call the function, overridden

function in the derived class not of the base class and this is what is dynamic binding. So,

such functions that you write is known as virtual function and that is the backbone of

dynamic binding polymorphism in C++.

(Refer Slide Time: 16:30)

So, just to compare how do they look like in terms of static and dynamic binding, I have a

function f() here, which is overridden in the derived class, which is non virtual and I have a

g() which is virtual. So, you can do this, you can have a pointer pb which holds the base class

object pointer pd, which holds the derived class object but pd is of type base class. So, there

is an up cast involved here.

Similarly, just to illustrate the same mechanism can be done for reference. I have also created

two references, one is a reference to the object b and the other is a reference to object d but

the reference is of type B, base class type, again an up cast. Now if I call the functions with

the object directly, then they get called according to that type. So, calls from b goes to B class

function calls from d go to D class function there is no surprise of that.

Now suppose, I call these functions using pointer, pb->f(). Now what is f()? f() is a non-

virtual function. So, it is statically bound. So, which function it will call is decided by the

type of pb which is the base class. So, it calls B::f, we have a static binding. But what

happens if I call pb->g().

Now, g() is a virtual function. So, it will be dynamically bound, so it depends on what pb is

pointing to. What pb is pointing to? pb is pointing to a B class object. So, since pb is pointing

to a B class object at the runtime. It will invoke the B class function, B::f but this is

happening through dynamic binding.

Now take a look as to when we have pd, what is pd? pd is of type base class but it is actually

pointing to a derived class object. So, when it does that for a non-virtual function, you have

static binding so it is decided by the type of pd and B::f() is called. But when you call the

virtual function through pd though pd is of type base class but it is actually pointing to a

derived class object. So, it resolves at the run time that it will call the g() function in the

derived class of which the object is currently there. So, this is the illustration of the dynamic

binding.

Similar behaviour will be seen also for the references. So, the references and these calls if

you tally, you will see exactly the same mechanism. So, I mean, we get to see that dynamic

binding is possible with only with virtual functions that are overridden and if you are making

the access to the function through a pointer or through a reference.

Otherwise it is static binding, if you are dealing with non-virtual functions then it is always

statically bound. If you are invoking through the object directly, it is always statically bound

but only with pointers and with references and virtual functions, you will have this dynamic

binding behaviour. This is a very, again, a very profound one slide summary of the difference

so please mark this slide and keep on referring to it whenever you have some confusion.

(Refer Slide Time: 20:33)

Now this dynamic binding leads to polymorphic and non-polymorphic type notions of

polymorphic and non-polymorphic type. Polymorphic again, I would reiterate means that

something that can multiply morph or multiply interpreted. Poly is many, morph is change.

So, same thing but can be seen in multiple ways.

Dynamic binding is basically giving as the polymorphism. So, as we have noted dynamic

binding is possible only for pointer and reference data types and for member functions that

are declared as virtual in the base class. Such member functions are called virtual functions.

So, we say access by pointer or reference and available for virtual functions only.

If a member function is declared at virtual, it can be overridden in the derived class. As you

override non-virtual functions as well but you can do the same thing for virtual functions. If a

member function is not virtual and it is redefined in the derived class, then the later definition

hides the former one. We have already seen that, how by overriding you actually lose the

earlier definition.

But unless you explicitly do using and want to use it but there are complications if you try to

do that often. But in dynamic binding that is the mechanism, that you are overriding but all of

the functions from the base to the current class, all of these overridden functions that are

virtual will be available based on the actual type of the object that is being used in the

invocation of the function through the pointer or a reference.

So, given all this any class which contains a virtual member function at least one, it may be

many but if a class contains at least one virtual member function which could be either by

definition that it is declared it as virtual or it has got by inheritance because its parent had a

virtual function and being a specialization, it has inherited from the parent, virtual functions

are always inherited as virtual functions. Then such a class or such a type is known as

polymorphic.

So, it will lead to dynamic binding for that class. So, a hierarchy may be polymorphic or it

may be non-polymorphic. I may not have any virtual function from the at the base, so that the

whole hierarchy is non-polymorphic. The reality is well, so far whatever we have been

discussing with about the hierarchy were naturally non-polymorphing but in the actual

practice a non-polymorphic inheritance hierarchy has little value.

It is used only for certain specific cases but most often you will see that the real power of

object oriented programming in C++ will come when you have polymorphic types, that is

you have a hierarchy where you have say root and you have inheritance. There could be

inheritance, so this is child one, this is child two, this is child three classes, this is grandchild

one, this is grandchild two, this is grandchild three, this is grandchild four and so on.

Now if I have a virtual function here, one or more virtual functions those will all be available

all through this hierarchy. So, that is what is the meaning of a polymorphic type or a

polymorphic hierarchy which will be the main stay of object oriented design for C++.

(Refer Slide Time: 24:59)

So, that is just a quick set of illustrations. Here is a class a, so this is the hierarchy diagram,

class a which is a base class, which has one virtual function g(), f() and h() are non-virtual.

Then it specializes into b where f() continues to be non-virtual, g() is virtual. You would

asked, why is g() virtually? You have not written virtual here?

The rule is once a function is virtual in a class then in all its derived classes, it is virtual. You

cannot change that. But you can do the reverse, for example in here h() is non virtual but

what I have done while overriding I have made it virtual. So, in class A, h() is non-virtual but

in class B, h() is virtual.

So, B becomes a new route for the subsequent classes where h() will be treated as a virtual

function. Now I have C, which is overriding all three of them. Now f is non-virtual because it

was non-virtual, g() and h() both have become virtual in B, so it will be virtual in C as well.

So, with that, if I create a C object and put the address to a B type pointer and have another

pointer p where I have up cast this pointer, so p is a A-type pointer, q is a B-type pointer and

the actual object both of them are pointing to is a C-type object.

So, what will happen? If I do p->f(), what is f()? F() is a non-virtual function. So, what it will

do? It will decide by the type of the pointer, p is A-type. So, this is what you get, A::f(). What

if you do p pointed g()? P->()g is a virtual function and p is currently pointing to a C-type

object, g() is a virtual function in class A, p is of class A. So, in class A, it checks whether

this function is virtual or non-virtual, decides whether it will be statically bound or

dynamically bounded. It decided for f() earlier, now it is deciding for g() it finds that it is

virtual. So, it is dynamically bound.

So, it does not decide based on the type of p, it decides based on the type of the object it is

actually pointing to which is C. So, what it calls? It calls the g() function of class C. What

happens when I do p->h()? H() is non-virtual. So, it has to be statically bound. So, it will call

A::h().

Now, let us think about the pointer q, if I do q->f(), q is of type B. So, it will look for this B

class for resolving whether it should statically bind or it should dynamically bind. So, it finds

that f() is non-virtual here, it has not inherited virtualness from the parent either. So, it will

bind by the type of q, the type of the pointer. So, it type of the pointer is B, B* so it calls

b::f().

Now if I look at g(), what will happen? G() is not explicitly written here but is inherited the

virtual function property from its parent. So, it is a virtual function so it will not be statically

bound. It will be bound to the current type of the object q is pointing to which is a C-type

object. Therefore it calls the g() function of the class C. Finally a it is q->h(), which was not

inherited as virtual but has been defined as virtual in the class B.

So, q will treat this as a virtual function now, so q will not this binding the compiler will not

generate based on the type of q, if we would have done that you would have called the

function B::h(). But it will not do that because the actual object is of type C and this is a case

of dynamic binding. So, it will call the function h() of class C, C::h().

So, this is, again one slide summary rules I would say, that you can use to quickly refer to any

time you have any issue in understanding this. The example is worked out with pointers, the

same example can be done with the reference also. You should run this, check this out, make

changes. The basic idea is once a virtual downwards its always virtual. But I can take a non-

virtual function and make it virtual in a class but I cannot do the reverse. The virtualness

cannot be erased but it can be added and when I resolve for the binding, the pointer of the

reference looks at the class of the type it is defined by.

So, a pointer to a will always look for the status of the functions defined in a. Whether they

are virtual, whether they are non-virtual and based on that for virtual functions they will do, it

will do a dynamic binding for non-virtual function it will be static binding.

(Refer Slide Time: 32:03)

If you understand this rule then the whole of polymorphism or so to say handling of

polymorphic hierarchy in C++ which is the core (core, core) of object oriented design in C++

will be like an easy cake for you.

So, here we have discussed about static and dynamic binding and we have just introduced the

polymorphic type. We will talk more about that in the coming modules. Thank you very

much for your attention and we will meet in the next module.

