
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture - 26

Polymorphism: Part 1: Type Casting

(Refer Slide Time: 00:37)

Welcome to Programming in Modern C++. We are starting week 6, with module 26. In the

previous week, we took a look at the inheritance mechanism of C++ which is the way to

realize is a relationship or a hierarchy of generalization specialization in C++.

So, we have considered different aspects of that how to define the hierarchy. What happens to

the objects when they are constructed, they are destructed, their lifetime. Particularly taken

look at method overriding and method overloading processes and so on. So, this gives a solid

foundation to the object oriented, second object oriented aspect of C++ which is about

inheritance beyond the encapsulation that we had seen earlier.

(Refer Slide Time: 1:38)

In this week, starting with the current module we will primarily take a look at polymorphism

or as it is said static and dynamic binding on a hierarchy or even outside of that. This will be

the third major aspect of object oriented programming which gives the foundation to the

efficient use of C++ as an object oriented language. Starting with that, we will first take a

look at what is type casting? What is the difference between implicit and explicit casting?

How casting can work on a hierarchy and will introduce the notions of up cast and down cast

on a hierarchy.

(Refer Slide Time: 2:30)

So, this is the outline which will be available on the left panel as usual. So, talking about type

casting, I am sure all of you know type casting from C in a very, I should say compact way.

So, casting is performed when a value or variable of one type is used in place of some other

type. So, when we want to do that then naturally we need to convert an expression in general

which could be a simple value literal, a variable or an expression involving operators which is

of one type and we take it to another type, we say that is typecasting.

So, here is an example there is an int variable and there is a double variable initialized and we

are trying to define a result which is the division of d by i, that is a double value by an integer

value. You know in C this is called mixed mode operation. We will not use those terms

frequently now because we will generalize to a much bigger context.

So, the basic issue here is this is double and this is integer. Since the division in the system

can either be of integer type that is an integer divided by another integer or of double type,

floating point type where a floating point value is divided by another floating point value.

This is what turns out to be as we say is a mixed mode. That is it involves a floating point

value with an integer value.

So, what we will need to do, what the compiler needs to do? Since it cannot do this division,

it will have to convert this integer value to double. Now obviously we will ask the question as

to why i is converted to double for the division? Why not d is converted to int for the

division? That is to preserve as much of information as possible and will look at those rules

later. Now as you can see, as you have known in the C language that such conversions are

implicit in the sense that you did not have to say that you convert the integer to the double,

the mixed mode automatically supports that.

So, that brings us to the first basic notion about casting that it can be implicit or it can be

explicit, consider a few examples. In the context of the above definition, suppose I try to

assign i to d that is an integer to a double, this is implicit because if I assign i to d the value of

i which is an integer will have to be converted to the value in a double format.

So, if the value of i is 3, it will have to become 3.0, it has to take the format of the floating

point number and so on and this is allowed implicitly, I am not explicitly saying that the

compiler knows that the int is being assigned to a double and it will allow that.

I can do the reverse also. Assigning d to i that is trying to convert double to int, this also

implicitly be converted but the compiler will give a warning. GCC will give a warning

because when you convert a double value to an integer, you may not have a correct

representation. For example if you convert 2.5 to a integer, it will possibly become 2. So, you

are losing information. So, there is possible loss of data. The compiler allows you but not

silently, it will give you a warning.

In contrast, you can do these things if you do not want the compiler to advise you or if you

really know what you are doing, then you can write explicitly that I want the integer i to be

converted to double and this is the type of casting that you have seen in C or you can do the

reverse in either case the compiler will allow it and will allow it silently because it knows that

as a programmer you know what you are doing. That is the basic assumption.

So, when we write like this where inside this pair of parentheses there is a type given it is

considered that it is an instruction to the compiler to convert the value from the given type

which can be obtained from i or from d. This is int or this is double to the type that you have

specified and this is known as a cast operator. This is more specifically known as C style

casting.

So, we will in C++, this will get into lot more of depth. So, what we will do we will look at

the different casting rules in certain groups. First we will look at the casting for the built in

types, then we will look at casting for unrelated types including classes, you know C++ deals

primarily with classes. And then we will talk about what happens to casting when we have an

inheritance hierarchy. What happens at the compiled time and what can happen at the

runtime? So, there is casting all over. So, these different aspects are what you will see in the

next couple of slides.

(Refer Slide Time: 8:26)

Now before we proceed further, I would just like to highlight the basic differences between

implicit and explicit casting, you may find this, you may want to revisit this slide after you

have understood the casting well. So, in implicit casting as you have seen it is done

automatically by the compiler but explicit casting has to be done programmatically by the

developer.

In implicit casting there is no loss of data, if you are promoting that is taking a smaller sized

data type to a bigger size data type and compiler will be silent. But if you do the reverse as

you have seen, so for the case of int to double compiler was silent. If you do the reverse, if

you do a demotion that is from a bigger size to a smaller size naturally in the smaller size data

type you will not be able to fit all the information when you convert a double to an int, the

compiler will issue a warning.

For explicit casting, there may or may not be loss of data int to double. Possibly there will be,

there will not be loss of data, double to int there will be lots of data in most cases compiler

will always be silent because it knows that the developer is knowingly doing this. Implicit

casting does not throw an exception you would still have not, we have not done exception so

you will see that more when we do that and therefore it is type safe whereas explicit casting

may throw exception.

In implicit casting as you have seen, there is nothing specific that you are writing down so

there is no specific syntax but for explicit casting it requires cast operator either C style as we

have just discussed or as we will see that there are four specific operators provided in C++

const_cast, static_cast, dynamic_cast and reinterpret_cast which allow us to do a casting in

the proper semantic manner in any of the, between any two different types, it will let you do

the casting or will through exception, error compile time error and so on to let you know what

you are actually doing and whether it is acceptable.

Implicit casting it is advisable that you avoid because it cannot be easily figured out from the

program you will have to really think what is happening like when we do divided by i, it is

not written, nothing is written. So, if you avoid that do explicit casting when you need to do

then anybody reading the program would find it easier to follow and even in that I would

advise and that's what the community strongly says that in C++ avoid C style casting, do not

do it unless it is absolutely necessary but such situations will not occur if you are using C++

casting properly always use C++ style casting.

Implicit casting is possible only at the static time, compile time as we will see explicit casting

can be both at the static as well as dynamic time and implicit casting may be disallowed for

user defined types. There are ways to do that, we will see that but it cannot be disallowed for

the built in types. For explicit casting you can define the way you want the casting to happen

for the user defined types. So, these are kind of the basic differences between the casting two

forms of casting that we have.

(Refer Slide Time: 11:56)

So, let us move on to the, discussing the rules for the built-in type. This is the example you

have already seen. We have seen this, these are implicit casting, these are explicit casting but

not everything can be explicitly cast either. For example, I have a pointer p, which is a

pointer to a double.

Now, if I want to assign that to an integer, I will get an error, there will be an error because a

pointer is not implicitly allowed to be treated as an integer but explicitly I will be able to do

this kind of a conversion. Why we, at all we will do that is something we will discuss

subsequently but this is the basic rules of casting in terms of the built in types.

(Refer Slide Time: 12:48)

Now built in types if you consider then there are primarily you will see there are primarily

two kinds of types. One is numerical types which are all of these some of which are integral

like this, this, this these are integral whereas float, double, long double these are of floating

point type. Now casting is safe if you do promotion. That is if you take a smaller sized data

type to a larger size data type, so this arrow chain shows what is the chain of promotion that

is safe.

So, this promotion implicitly or explicitly among numerical types will usually be safe. The

casting of built in type does not invoke any conversion function. You are converting 2.5 to

say 2 or you are converting 3 to 3.0. So, naturally there are bit patterns which has to change

but it does not happen through invocation of a function which we will subsequently see. It

just reinterprets kind of things whatever is written here as a double 2.5, it just thinks that it is

integer 2 and creates the bit pattern for that. Casting will be unsafe if you do demotion. For

example, if you take a double into an int, smaller size data type it will be naturally unsafe, we

have already seen examples therein.

(Refer Slide Time: 14:20)

Now, the other type which is dominant as a built in type is a pointer type, pointed to different

types. Let us say we restrict to only pointers to numerical types. So, implicit casting is not

allowed. You cannot have implicit casting so if you have a integer pointer here and a double

pointer here, then you are not allowed to cast either into the other. Mind you, the integer or

double can directly be cast but their pointers are not implicitly castable.

You will have to cast with an explicit intention of the cast operator. Any pointer can be

implicitly cast to void*, here I have a pointer void* which means that it is a pointer but not

known to which type. You can convert any pointer, for example p, pointer to integer to void*

implicitly, compiler will not complain because when you do that you are not making any

additional assumption. You knew that this is pointing to an integer, you are just choosing to

forget that. But if you try to do the reverse that is void* to int*, the compiler will give an

error because obviously by saying that r is void*, you are saying that it points to something I

do not know.

So, you cannot implicitly say convert it to integer saying that it is now pointing to an integer,

if you have to do that then you will have to explicitly say that, so, this is the second main

point. The third which might arise to your mind is, we have often used array and pointer I

mean one in the place of the other. You must have seen this in C quite often. This is called

array pointer duality particularly important for multi-dimensional arrays.

So, this conversion is not actually a type casting. Please keep that in mind, it is just a

syntactic form of writing the same intended expression in multiple syntax. For example, if I

have an array a, 10 of integers and I have an integer pointer p, then I can assign a to p

because it is a address, the base address of the array. I can assign that to p and then I can use

pi, ai, *p plus i, *a plus i, all these are equivalent of accessing the ith element. So, this is not a

case of conversion.

If you try to do the reverse, if you try to assign a pointer to the array base address, you will

get some kind of an error like this, the basic reason that you get the error is the base address

of an array is a constant. It is a constant pointer. So, we will come to the role of const-ness in

this but simply you can remember that you cannot change the base address of an array. So,

you cannot assign a pointer of the same type to the base address and you will get an error.

(Refer Slide Time: 17:39)

Now, this is about the conversion between pointer types. Now, if you want to do a conversion

between pointer type and numerical type the basic rule it is not allowed. But even there are

situations where explicit casting between pointer and an integral type, I mean not a floating

point type but an integral type like int, short int, long, long long and those kind of are the

common practice and actual is the only way to do certain tasks like serialization and

deserialization.

You may not be familiar with these terms, what does it mean is when you store a file, save a

file like you are editing a document in word and you say, you do control s and save the file

you are actually serializing from the in memory data structure of the document to a linear

sequential file in the system. Similarly, deserialization is a reverse process when you load or

open a file.

So, this context, I mean maybe later we will try to explain why you need this kind of

conversion but certainly the basic intuition is when you have, when you are editing your

document you have a data structure in the system which has pointers.

So, when you write it to the system to save it as a file, you need to write those pointer

addresses but those pointer addresses are not going to be available next time you open the

file. So, you need to convert them in some form of binary representation which is best done

in terms of an integral type.

Now when you do this, you must be careful that your integral type is large enough to fit the

pointer address. Typically it is advised that you always choose an integral type which is the

same, which has the same size as of the pointer type. Just as an example, here I show, I mean

this code I tried in online GDB. So, we can see that I have an integer value, a pointer to an

integer and a long value j and if I look at the size, you will see these are the size that is the

integer is of 4 bytes whether the pointer is of 8 bytes because it is a 64 bit system.

So, the long as well as the pointer are of 8 bytes. So, they are compatible but this is not

compatible with int, the size of int. So, the first thing is if you just try to do an assignment

between the integer pointer and the integer and otherwise you will obviously get errors

because they are not allowed.

If you try to, now convert the point at p to i with an explicit cast of int, you will still get an

error. Why would you get an error? Because p is of size 8 bytes and i is of size 4 bytes. So, it

cannot and losing this information for a pointer is absolutely critical, it is not like reducing

precision only from 2.5 to 2 but it basically you have lost the address. So, this is not allowed.

Even the reverse, if you want to do, convert an integer value i to an integer pointer by explicit

conversion well the compiler will allow it to do but it will give you warning because the

value that you have in i is a 4 bytes and the value that you expect in p is of 8 bytes. So,

certainly when you do this conversion, there are 4 bytes of you do not know what kind of

values. So, to do this properly what you can do is, you can use the long type in this case. For

example, now if you explicitly cast, the pointer to integer to long then the compiler will not

say anything because it is ok, both have size of 8 bytes.

Similarly, the reverse that is taking a long and casting it to a pointer of integer type is also ok.

So, I mean I took a specific case where the integer and the pointer types are of different size

in your machine, they could be of the same size in your compiler, they could be of the same

size. It does not matter what that reality is, all that you have to ensure is you do this kind of a

conversion between an integral type and a pointer only based on the fact that they have equal

size. So, this is some of the nuances of conversion in the pointer type and we close the built

in type rules here.

(Refer Slide Time: 22:29)

Now, let us look at typecasting between unrelated types particularly unrelated classes. This is

not permitted, if I have just two classes A and B, I have two objects, I have two pointers to

these objects and then I have tried to do all kinds of mixed stuff, that is assigning the one

object to another not allowed. Trying to explicitly cast it is not allowed because there is no

conversion available.

Similarly, the other way these are not allowed, I try to cast the pointers they are not allowed.

The only thing that is allowed is, I can cast the pointer if I explicitly cast it. So, here you can

see that I am explicitly casting the address of b which is of type B* to the type A* but it could

be very very risky. So, this is the basic ground rules for unrelated classes.

(Refer Slide Time: 23:49)

So, what you can do is certainly as we have done by the explicit casting. We can forced this

cast to take place but this could be really dangerous. So, the same example, we have put some

values it has an integer i, it has a double d. So, we have put respective values put two pointers

and now I print this with p pointer i, I get the correct value, I print q point and d, I get the

correct value everything is ok.

Now, I make a change? What I do is, I take the address of b and cast it to A* and take that

value in p. So, p is a, A type pointer which is now pointing to a B type object and similarly

that is what I have done for q. So, what will p pointer i print? p knows p is declared as a type.

So, p knows that p pointer i is an integer but what you actually have that? You have taken a B

object so what you actually have there is a floating point value. So, the formats of these two

numbers are very different. So, what it prints, it does compile but it prints garbage. Similarly,

it happens the other way because you are thinking that you are printing a double but actually

there is an int.

So, when you do forced casting between unrelated types be very careful because it can lead

you to really really severe errors. We will show what are the proper ways of doing such

things.

(Refer Slide Time: 25:24)

The third set of rules relate to the classes on a hierarchy. If the classes are on a hierarchy then

the casting is permitted in a limited sense. So, I have a class A which is the base class, I have

a class B which is the derived class. I have pointers to A and B and I have a void pointer as

well. So, this is called up-cast, why up cast, because I have A and B is A. So, A is above. So,

I am taking from B to A. So, actually pb is pointing to a B object which has a base which is a

and then whatever additional.

So, if I treat this as an A object then I do not lose any information because the base part is

already there only restriction would be that I will deal with the base part. But if I do the

reverse that is, I take A object pointer and think that it is a B object, then I will have serious

problem because the B pointer pointed to B type will expect those additional data of the B

class above the base class part which are not there. So, this will not be permitted this is called

down cast. Now, I can assign any one of them, convert any one of them implicitly to void

pointer which we have seen earlier as well but the reverse naturally is not allowed.

(Refer Slide Time: 27:13)

So, we conclude that up casting is safe, so if I now take explicit classes A and B with two

data members and create, so A has one member, B has an additional member and of course it

will have the member of A inherited. So, in the A object I set the dataA_, in the B object I set

dataA_ as well as dataB_ and I create two respective pointers with the addresses, I print

through the pointer to A, I print through the pointer through B, I get correct values.

If I do this, then on the right hand side, I have an address of a B object and I am taking that to

be an A object. So, what I will be able to do is, I will be able to print the A part of it, that is

this three. But if I try to print the B part, I will get a compilation error because pa is of type a

class.

So, it does not know of a data member which is of type of the dataB_ which is dataB_. So, it

is actually there because the address is of a B type object but I will not be able to access that

in this way through the because the compiler will not know this type.

(Refer Slide Time: 28:42)

Now if I do down casting forcibly in the same example, the same initialization all that I am

doing, I am doing a down casting here that is I am taking the address of an A object and

putting it, as if it is a B object. So, I am leading to you know information which does not

exist.

Now compiler cannot do anything in this case because you have told the compiler it is an

explicit cast, explicit down cast, but with this, with pb, I can access dataA_ and I think, I can

access dataB_ also because it has both of this. It is a, pb is a b type pointer. Now naturally, if

I access pa, pb, I am sorry, if I access dataA_ with pb then I will get this value 2 which is

correct.

But when I do the other that actually does not exist, though the pointer thinks that it exist. So,

it will be compilation ok, but it will print a garbage. So, you can see that why down casting is

risky and why it needs to be severely restricted and done only in the proper context.

(Refer Slide Time: 29:58)

So, to conclude we have talked about, the introduce a basic notion of type casting with

particular reference to implicit and explicit type casting and different type rules for built in

types, numerical types, pointers, unrelated classes and introduce the notion of up-cast and

downcast on a class hierarchy. Thank you very much for your attention and we will meet in

the next module.

