
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

Tutorial 05

Mixing C and C++ Code Part: 1: Issues and Resolutions

Welcome to Programming in Modern C++. This is another two-part series of tutorial to give you

an idea about how to mix C and C++ ports.

(Refer Slide Time: 00:47)

Due to legacy and reuse and several business compulsions, we often need to mix C and C++

codes in the same project. So, what we are primarily studying in the course modules is either

how you do a C project or how you do a C++ project. But in reality, you may need to do a mixed

language project.

So, in this tutorial and the next, we are going to discuss what are the issues of mixing C and C++

programCs or C++ codes in the same project and what are the ways to handle that what are the

resolutions and we will also in the next tutorial work out a detailed example for your complete

understanding.

(Refer Slide Time: 01:50)

So, this is the outline will be available on the left as you know.

(Refer Slide Time: 01:56)

So, first let us look at what are the different aspects of mixing C and C++ code starting with why

at all we need to mix. Now, the primary reason for mixing C and C++ codes is legacy and reuse.

As you know that C has been around from much earlier than C++ and also till date C is the most

widely used language in the community.

So, there are there is no exact known quantum of how much of well tested C codes exist. But it is

estimated to be over a trillion lines, trillion you understand million, thousand million is a billion

thousand billion is a trillion. So, reusing them and or with C++ needs mixing of code because

certainly if there is a well tested C library, I would not like to reimplement that if it serves my

purpose.

So, and it is also that mixing of C and C++ is not a specific issue between these two languages

because they are siblings. But it may be used across various pairs of languages like C and Python

or say C# and Python or C++ and Java and so on to harvest the best features best benefits of both

languages like we know C, C++ are primarily known for their efficiency.

In addition, C is lightweight, relatively and easy to use in embedded programming. We have

discussed these things in the main course module. Python has reached libraries, it is good for the

web, Java is good for applications with GUI and so on. So we should, in general, the community

of programmers try to mix languages if it is giving a specific benefit, and use those proven

libraries.

And actually in several projects, we may mix more than two languages as well. Now, there are

obviously several articles on projects using multiple languages because I am sure when you hear

from me that well, this kind of multi language programming often referred to as polyglot

programming, are people really doing it? So, here are some references where you can see the

variety of small, min, medium and large projects which use the mixes. But we will restrict our

discussion only to C and C++ mix.

(Refer Slide Time: 05:10)

So, if we want to mix then there are typically two situations one in which both C header and the

C source file are available and editable and the other where only C header file is available. Now,

if we if an existing project that needs to be migrated to C++ in full or parts to be reused, there

could be two options.

One is certainly we can mix the C and C++ code that is whatever we want to reuse from C, we

take that compile it by C compiler and whatever we are using from C++, we use C++ compiler

and then link by C++. I have left it with a question here as to why do we link by C++ not by C.

And the discussions in this tutorial will give you a comprehensive answer to that. The other

option would be to build everything in C++, we have been taking C is a subset of C++, well, it is

true and it is not true at the same time. And we can so, we can build both of them C and C++

code with C++ compiler that is say G++ and link. So, this is this is a typical options where we

can we have the header in the source file and are editable they are editable in C.

(Refer Slide Time: 06:51)

Now, if we have C header files only, not the source file, that is third party is source is already pre

compiled available as an object binary. So, the third party just does not give us the

implementation of the headers, it just gives us the header file. And this is typical what we will

get to see in the standard library situation also you just get the header file, not the

implementations in the source file.

And further, it may also happen that the header file itself may not be editable. If I mean, header

file you need otherwise, you would not be able to use that code. But the vendor may mandate

that you cannot edit the header file. And which is exactly the case for the standard library and

could be for any, any third party library that you use or you want to build.

So for example, I mean and why I mean what are the situations very typical situations you need

that, for example, you want to write a C++ program or library that does scientific calculations. I

am not sure if you know, there is a GNU library called GSL, GNU Scientific Library, which is

written in C and it is as a very rich library in terms of scientific computations, very rich set of

functions.

Obviously, lot more than what your math.h has a lot more of complex functions, different types

of defined data type structures in C and so on and well tested very efficient. So, if you are

writing something for scientific calculation, it is always it is most often at least advisable that

you use this GSL instead of writing the code from scratch, and going through all the pains of

development

There are a lot of C games, I mean game codes efficiently written in C which you want to use

with the C++ graphic engine to make the whole thing work. So, there could be I mean, I just

picked up to somewhat common examples, but there could be several situations where you

would have that you want to use the C code in C++ project and you have only a header available

and which by itself may not even be editable.

(Refer Slide Time: 09:31)

So, we would like to often wrap the C functions for use nicely in C++ type functions. C

functions have certain limited capability. For example, they do not support exceptions I mean not

as richly as C++ does. They do not support very common data types like string which you have

in C++.

So, you might so the function if it has to return conceptually a string it will return C string that is

char*, cons char*, but you may want to have a wrapper which takes that char* and converts it

into std::string. So, that it can very seamlessly work with the other C++ codes or the C++

function, the same thing can be said about the parameters that you pass. So, here the option only

is to mix C and C++ codes.

(Refer Slide Time: 10:35)

So, as we can see from the two scenarios here, that in both scenarios, you can mix the code that

is compiled C by C compiler, compiled C++ by C++ compiler and linked by C++. And in one

case, you can you have the option of building everything in C++ as well. So, let us see what are

the what are the different perspectives under which we will choose which pathway to take, is it

only based on availability and editability of header and source or there are other factors that are

involved.

(Refer Slide Time: 11:08)

So, first let me focus on what if I built the entire thing as C++. So, naturally you built everything

with C++, use G++ which compiles everything by C++ rule, and naturally links by C++ linking.

So, that eliminates the need for mixing.

(Refer Slide Time: 11:48)

Now, the question the point is, however we might think that C is a subset of C++ and so on, it is

often not easy to build a C code by a C++ compiler. Unless that C code strictly uses the common

subset between C and C++. This concept is somewhat, maybe sound like a jerk to you, but that is

true, there are certain features in C, which does not work in C++, that is the reality.

And we have a separate tutorial on compatibility of C and C++ languages where we talk about

these and give you examples to expose you with what these issues are. So, consider a simple C

program here. So, you have a call to square root I mean we just ignore the fact that math.h has

not been included, that is we will need to be included this is just for the illustration.

Then you print the size of character a, you define some void pointer and do implicit casting put

values and so on. So, some few this program by itself is not meaningful, it is just trying to

illustrate the issues.

(Refer Slide Time: 13:00)

So, here of course, math.h is missing as you can see. So, in C89 this will be a warning. Because

glibc or libc in general will have that and GCC at least and many compilers would by default

include the header that is required. But it is an error in C++98. So, the first thing is well, you this

is editable, but you will still have to bring in math.h here and edit. Now, interesting things

happen when you try to print the size of a character, a character is considered a char is

considered an int in C. It is represented as an int internally.

So, if you print it size, it will it outputs 4 if your size of int is 4 in C89. Whereas character is

actually a separate type in C++, it is not a part of the integral type. So, in C++ it has a size 1 or

something different, at least because if there unicode characters the size, maybe 2 and so on.

So, if you just run this in C++98, you will get an output which is 1. So, you can see that, the

programmer has written this, expecting that the value would be 4 but when you compile it with

C++ compiler, the value actually is taken to be 1. Then here I have a void pointer to pointing to a

character and I am implicitly casting that to an integer pointer.

So, implicitly conversion, this is okay in C89 there is an error in C++98 is because C++ 98 does

not like this implicit cast of pointer types, because that causes a lot of pain in the programming

then you have int class assigned 5. Now, class was not there in C. So, class is not a key word is

not a reserved word. So, in some C program somebody may have used a class as a variable

name, there are several keywords which have been introduced in C++, which were not reserved

in C. So, the program might use any of that.

So, this will be okay in C89 and obviously, this is an error in C++98. So, these are some of the

scenarios a lot more or somewhat kind of comprehensive list and discussion will be available in

this tutorial of compatibility. But, my core point here was to see that even from a technical

perspective of the language specification, it is not easy to build a C program as a with the C++

compiler considering it to be C++ with seamless operation.

Now, when you get compiler errors, you are better off because at least you know that this is there

is some error that you have to take care of. Situations like sizeof character a is kind of disastrous,

because the compiler will not say anything, it will silently build because it is correct code, but

the result the logic becomes different and that is where your porting issues will be very, very

difficult to handle.

(Refer Slide Time: 16:45)

Now, there are several issues that happen beyond this technical feasibility of building C code as

C++. So, obviously, you have seen the difficulties of building C in C++, because C++ compiler

is simply more strict. So, you cannot just build you will need what is known as porting. Porting

our activities like I had to include math.h so, I had to edit.

 I will need to change now the size of character a and its use to proper way we will have to

somehow make that an explicitly as an integer type and then take the size of so, that C++ gives

the same thing. Now, what happens porting involves substantial cost the moment you are trying

to reuse the code because it has a value proven value of having been corrected tested used by the

community or your customer for a long time, but the moment you change the code all those

values disappear.

Because you have made the code different the moment I change from size of character, a to size

of character a treated as int cast to int of character a, I have made the change and therefore there

may be consequences of subsequent errors and all that that creep in. So, the question is it

avoidable from the business perspectives?

The moment you do these kinds of porting you are changing the code you need a new test plan

for the C code in C++, for the purpose of extensive testing, you will have regression test suites

which exist you will have to those will have to now pass in the C++ compilation, it involves test

a time further cost again, the affordability from business perspective becomes an issue.

If the C++ code is stable and it is regression tested even then, it is likely to break some existing

functionality, that might even break your customers code because you may have given this

library to the customer for their use in part of their code. So, the moment you convert to C++ and

do a porting, then your code might break something in the customers code which you cannot

even test.

So, business wise, it is not liked by the top management. So, building C as C++ is feasible from

technical as well as business perspectives only in some select situation, though it is preferred.

(Refer Slide Time: 19:40)

So, the actual engineering practice will much less do building C as C++ rather it will like to do a

mixing which means the meaning of mixing is compile C by C compiler, compile C++ by C++

compiler and then link the whole thing together all these .o’s. So, basically what you are saying

that we will rather instead of using G++ for doing this, we will rather use GCC for doing this

which selectively can do the build.

So, now we are getting another sense of why we have two different compiler target names like

GCC and G++ G++ is building everything in C++, GCC is targeted towards doing a mix. Now, if

you do that, the issues will arise as we work with different versions of compilers and link .o files

in the translation units and control flows, because the control will not be limited to the C code

that you have built by your C compiler, it is it will be in the C++ will come to C will go to C++

will come to C and so on. So, as you do that, you the question is what will be where will be

main.

Because if main is one function, so it will either be built a C or be built a C++, that makes a

significant difference because there are a lot of static initialization issues that are handled

differently in C and in C++, the static initialization issues are how initialise your static objects

defined in their static scope, whether they are global, whether they are class static members or

their function local static and so on.

How do you initialise them before main? And how do you deal initialise them after main? So,

this is this is a big issue area, which we will have to keep in mind. There could be compiler

compatibility issues, so do not ever use different compilers. For C, C++ use the same compiler

that is what is preferred.

So, if you use GCC to do the both, then you are safe that they are not incompatible, because it is

the same compiler two parts of that, but if you use some version of GCC to build your C code

and some other version of C++ to build your C++ code or some other compiler, then there may

be several issues in terms of calling conventions definition of basic types and so on.

There may inherently be compatibility issues between C library. The C++ compiler provides its

own version of C headers. So, the headers used by C compiler must be compatible with the

header provided by the C++ compiler for the standard libraries at least. The linkage convention

and this is a big heartburn area, I raise this question earlier as to why do you always link by C++.

The linkage issues are a big thing which need to be handled. There could be exception issues

because C and C++ use drastically different exception models. If you are not on top of

exceptions, you may not be able to realise all of that very well, C either you does not use

anything, most programs do not use anything just they do a you know code involved error

checking or they may use a paradigm known as setjump, longjump kind of whereas C++ as a full

grown exception model.

So, how to integrate them is a big question in the mix. Then, there are some specific issues like

scope of struct, the nested structure, if you have nested structure, structure within another

structure, their meaning differ between C and C++ I mean and you can look at the compatibility

tutorial go through that and you will get to know what those things are.

(Refer Slide Time: 24:07)

So for the static initialization issue, say they both initialise C and C++ both initialised static

variables. There constructed and initialised before main, but they have different semantics. In C,

the static initializer necessarily is a constant that is, if I want to initialise i, I cannot call a

function.

I mean this is just a just to show you there is a trivial function which returns a value 10. If I write

it as 10 a constant then it is okay in the C compiler. So, C compiler will not compile this kind of

a code. So, if I want to compile main as C, then we will not be able to write this which often may

be required. I have written this as a placeholder.

But if you instantiate any object as a static, then the constructor will need to get called which is

equivalent to the init that I am putting here just to show you obviously, this is okay in C++. So,

C++ what it does the basic difference of static initialization is it generates an additional start

function, where all global function calls constructors and so on are executed before the main

starts.

And the C compiler does not generate this kind of a start function. So, the main starts as soon as

it is loaded. So, the lesson that we get from here is obviously C++ does more in terms of static

initialization. So, we form the rule number one, which is use C++ compiler when compiling

main, never compile main by C compiler. This is the first rule we must be followed following

when you are mixing.

(Refer Slide Time: 26:07)

Then there are compiler and C library compatibility issues. So, preferably use library from the

same vendor like GCC and use same or compatible versions, if it is preferable if you use the

same version, so that you do not have issues of mismatch of data type size and so on, runtime

library we must of C must also be compatible with the C++ compiler.

So, if you take the from the same vendor and the same version compiler, you will not have a

problem if you have to, if you are mixing in that, then you have to make sure that rule number

two is satisfied that is C and C++ compilers must be compatible.

(Refer Slide Time: 26:55)

Now, linkage is a big problem, because C and C++ linkage conventions differ in the basic

philosophy, because in C every function is global, it is in the global space. So, every function

name is unique. Whereas as you have learned in C++ , a function may have multiple scope it can

be in the global scope, it could be a non static member function in the class scope, it could be a

static member function in the class scope, it could be in the namespace scope, a function may be

overloaded and so on so forth.

The name is just an indicator of the function and then there are several other factors, which

decide exactly which function is that which include the name besides a name, it includes the

complete signature. So, what does C++ compiler do? In contrast to the C compiler is that they

take all this information mangle them, kind of encode them into a new name called the mangled

name of the functions. Whereas C does not have that kind of feature.

(Refer Slide Time: 28:03)

So, just to show you I mean just to show how this is what kind of mangling you get here is I

show that there are overloaded functions in the global overloaded functions as class member, non

static, overloaded function as class member, which has static and namespace overloads. So, I

have all these overloads, which are perfectly valid, all of these different print can exist in the

same programme, actually in the same code at the same time C++ is perfectly okay with that. So,

how does it handle this issue? It does handle this issue by mangling.

(Refer Slide Time: 28:49)

So, if you look at the names they actually generate, there are ways to ways to access these names

by looking at the compilation by looking at the assembly. So, here is the original function and if

you look at these are, I have given it two different I mean just to give you an example, I have

given you the list from GCC as well as from Microsoft, visual C++ and you can see how the

names have been mangled.

So, that they can be actually distinct in terms of the functions called by the compiler. So, you can

see all of these are mangled, except for main. Because main, even in C++ is a unique function,

you cannot have another main function or anything by that name. So, this mangling really makes

it difficult because your C linker does not know about mangling, there is no mangling in C. So, C

linker does not know about mangling whereas you C++ linker will always have to deal with

mangling.

(Refer Slide Time: 30:00)

So, when you want to use a C function in C++ or other ways, you will have to instruct the C++

compiler not to mangle and also tell the C++ compiler if you are using a C function that is not a

mangled name, it is a pure name, which means, if you stop this mangling, that means that you are

going back to the C style of function naming which means that you cannot have overloaded

names for those functions. So, this is handled by using a specific phrase linkage specifier as we

say extern within double quote C, which says that this is the what we write inside this is pure C

link this as C.

(Refer Slide Time: 30:09)

So, if we do that here, you can you can do it for a single function or you can define extern C as a

scope. And so, both of these in the scope will be treated as C function or you can actually put an

entire header as extern “C”. And, again, the problem is this we are doing for to help the linker.

Now, the problem is C compiler does not understand extern “C”, because C does not have

anything like that.

So, you have to make sure that the C compiler does not get to see it, only the C++ compiler gets

to see it because that needs to know that C++ linker needs to know that the mangling is not there

or mangling is not being preferred. So, you have to make use of this particular macro from the

CPP we discussed this which is true only if you are compiling as C++.

So, if you are compiling as C++ this to comment in the entire scope and you take cognizance of

that, whereas, if we are compiling by C, these are just skipped, because __cplusplus does not is

not defined and therefore, everything is treated as C and is not mangled anyway.

So, this is the kind of, solution that you can have for this, mixed type of linkage. And after that

you naturally with this C++ linker has more information, and it has to deal with the decision of

whether something is mangled whether something is not. So, we will leave it to the C++

compiler to complete the linking process do the linking process.

(Refer Slide Time: 32:55)

There are other issues I put them as advanced because unless you know these in the in your

language, well, you will not be able to understand, but there are issues relating to propagation of

exceptions and mixing the exception models. So, exception is a big problem. So, for now, I am

just assuming that well, you are not I mean we are not discussing about mixing codes, where the

exceptions are used either in C or in C++. The basic points I have told here, but in a different

tutorial, I will come back with talking about exceptions where I will deal with this particular

aspect.

(Refer Slide Time: 33:38)

So, some of the common code mix scenarios. So, this was the so we have three basic rules

compile main by C++ compiler, C and C++ compiler must be compatible, their libraries runtime

all must be compatible and third is linked with C++ linker, write and use extern “C” as and when

required to guard.

(Refer Slide Time: 34:03)

So, with that I have listed here is some of the common scenarios obviously, how do you call a C

function from C++? How do you call a C++ function from C? The this is just simple because you

have only global type of function here. You will have to decide what should be done of all

different types of functions that C++ has. So, how do I call a function of each type from C? Then

the question is, how do I include a C header file in a C++ project?

If it is a system header or if it is a non-system header, how do I use pointed to functions? And

finally, last, but not the least, how do I manipulate objects in C, C++ project mix? Because C

does not have objects, whereas C++ certainly will have objects.

(Refer Slide Time: 34:58)

So, some of the quick techniques all are primarily based on few very simple strategies. One is to

call a function from C to C++ as we have seen, use extern “C”. So, you do not do actually need

to do anything for the C code. Just in C++ code, call them as extern “C” so that when you

compile either .o will be told that these are unmagnified names, these are global names, and you

can make the call directly from here and that will perfectly work.

But you here the C++ type rules are not getting where are being used not in when you compile

this you are using C++ rules only have told that these are C functions. So, a function declared

extern “C” cannot be called with wrong number of arguments in C you can C++ you can do that.

But here you will not be able to do that. So, if you call this as say, it does not have a parameter if

you pass two parameters, then it will be you will have an error now, which is unexpected

arguments which is actually fine, which actually makes it safer.

(Refer Slide Time: 36:18)

Doing the reverse is somewhat of a difficulty that is how do you call a C++ function from C. C

does not know mangling. So, if you want to call a C++ function from C the name of that function

must be explicitly unmingled. So, now, we have a situation of a C++ function, but for that, we

say that extern “C” that function signature. Which ensures that the compiler will generate f as a

unmingled name and then from C I can easily call that function (does not a).

So, if I do f(i) it will be called with no difficulties, but obviously, this will work only for non-

member functions only for global functions. Now, what happens if you call want to call a

member function? What is the speciality of calling a member function you would recall that a

member function always gets in implicit this pointer that is the address pointer of the object. So,

you need to know that and if I want to kind of make the member function globalised not having

the behaviour of the member function, I will need to pass this address.

(Refer Slide Time: 38:02)

So, the most common and most reliable way to do that is define a wrapper function that is if p is

an object pointer and you want to call the function f which is a member function of the class of

which p is pointed object is an instance then you want to make this call. Now, in C there is no

way to make this call. So, what do you do you define a C unmingled function name say call cf,

pass the parameter that you need for the member function, but most importantly you pass the

address of the object this pointer of that object on which this call has to be made.

(Refer Slide Time: 38:59)

So, you can see what I mean the workaround that we are getting on here is the C++ code is as it

is, this has been added and you are telling the compiler that link it as a unmingled name. So, treat

this as a global function which it will do. And that to that global function we are passing the

object and this is an in C++. So, here I can make a call to a member function and call the

member function.

Whereas, in C you do not know about what these are, what is this pointer and all these are? So,

in C you will have to call it simply as a global function. Now, the question is what is C*? What

will C* p? So, there is a other feature that C/C++ boundary has provided that any class can be

treated as a struct in C. Because class is finally an aggregation. The data member part of it forget

about if you forget about private, public access specifiers, and all that everything is public in a

struct, but it is just data collection format.

(Refer Slide Time: 40:18)

So, you in terms of the C code, you declare it as struct C*, which is a C* pointer, but treating C

as a struct which C understands which I am sorry too many C so which C language understands

this class C. So, taking that you can now have a C function which calls this. So, when you call

with this, then on that object, the function f will get called.

So, this is the basic addition to in addition to the extern “C”, doing proper wrapper function is a

basic strategy that you keep on doing to create the plethora of varied C++ function types that you

need to call. Anything that you need to call from C, you will have to give a wrapper with a

unique name and C calls that wrapper, C++ treats that wrapper as a global function which who’s

named must not be mingled. So, it is put in the extern “C” that is the basic strategy.

(Refer Slide Time: 41:27)

So, if you have overloaded function, I have two overloaded functions here. So, for each one of

them, I will have a wrapper which we just do the same thing it just makes a call to the C++

function, but they are global and treated as unmingled name. So, in C, you get to see these global

functions, the wrapper functions only you call the wrapper functions as you want because you

cannot have the advantage of having the overloaded name in C.

So, you have to explicitly called f(i) with an integer parameter if you wanted to call f(d) with the

double parameter and correspondingly the wrappers will be called in C++ and the overloaded

functions will be invoked. So, it is strategy wise now you have got the strategy the strategy is to

have a wrapper to take the function name to the global space.

(Refer Slide Time: 42:26)

Now, there is some caveat that can happen for example, you are trying to do this you are trying

to define a function foo which takes a function pointer. Function pointer is another type of way

to call function and that function pointer is defined here this code is in C++. And now, when you

use g to call foo(g), you will have a type mismatch error. Why? This is both of these are treated

as unmingled name.

So, g is a C function to C++ which you are passing here whereas, the typedef that you have done

is not in extern “C”. So, typedef expects this to be mingled name typedef expects this to be a

mangled name, whereas, it gets an unmingled name it cannot handle it does not know.

(Refer Slide Time: 43:52)

So, the simple thing is to take care of this all that you need is to put everything in extern “C”. So,

that now, the typedef knows that this function pointer is an unmingled name and this is an

unmingled function name. So, this will work perfectly fine now.

(Refer Slide Time: 44:09)

So, finally, to include the standard library headers, it is you have already seen that C standard

library headers are available in C++ in the namespace std. So, that is the cstdio that we have

discussed several times you can the C code could use printf in C++ this simply becomes

std::printf rest of the functionality remains the same. So, care needed if there is a difference

between the C header and the corresponding C++ version which by rule two we have said we

must not try to do.

(Refer Slide Time: 44:52)

The header conventions I will not I mean this slide I have included in the tutorial just for your

quick reference in case you have forgotten, but this we have discussed what are the different

naming conventions of standard library headers and how to use but when. So, we will just follow

that.

(Refer Slide Time: 45:14)

Now, the question is if we are this was good for the standard library or system headers, what if

there is a non-system C header, the header that say I have written so, then you have two cases

when the if the header is editable. If you can edit the header, then all that you need to do is to

parenthesize it in the extern “C” scope.

So, what will happen when that header is included in a C++ file if this macro is going to be true

and all of that header all functions they are in will be treated as unmingled name. So, it can you

can simply include that header you do not need to do anything in the C++ side. You and this

header could be common between C and C++ because when you use a C compiler for the C

code, this particular macro is false. So, it will not see anything, it will see a pure simple C

header.

(Refer Slide Time: 46:31)

Now, what if the header is C header is not editable? If you are not allowed to edit the header,

then you cannot do what we said. So, in that case, you do not have a choice but at your use place,

which is the C++ code, instead of including it directly, you will have to include it within extern

“C”. So, that the entire header becomes that is a basic thing you are trying to do that put

everything of the C header into extern “C”.

If the header is editable, it is most preferred to do it in the header itself and use that same header

everywhere. Otherwise, you have to do this inclusion within the extend “C” in C++ and without

the extern “C” in the C code that results all the.

(Refer Slide Time: 47:21)

So, these were the different scenarios in which you can mix C and C++ codes function calls of

varied crimes compilation linking and all that and the besides the three rules that we have given

the summary is to know that you have to use extern C++ properly. So, that all functions can be

called between C and C++ as needed. You have to guard extern “C” with the C++ macro

__cplusplus macro for C code.

And everywhere else when you have the any context of mineral names overloading you have to

use wrappers to specifically provide global names. So, this way, the kind of so, here we have

looked at our overall requirement and issues of mixing what are the different problems and

talked about the resolution the remedies that are possible. Continuing in the next tutorial, I will

walk you through a complete mixed code example of a project switches which you will be able

to actually run on your system.

And see that you are being able to understand the whole issues of mixing and how to work with

them. Thank you very much for your attention. See you in the continuation of this tutorial later.

