
Programming in Modern C++

Professor. Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture - 20

Namespace

Welcome to Programming in Modern C++ we are in week 4. And I am going to discuss module

20.

(Refer Slide Time: 00:38)

In the last module, we concluded our discussions on operator overloading, looking at how to

overload operators using global function, member function as well as friend function and how it

can be used to build more complete algebra of user defined types.

(Refer Slide Time: 00:59)

In the present module will take up another concept which enhances the readability and

expressability of C++ provides a lot of engineering benefits, it is called namespace.

(Refer Slide Time: 01:12)

So, these are this is an outline of things to expect.

(Refer Slide Time: 01:17)

So, let me define what is namespace? Namespace is a declarative region that provides a scope to

identify. You are familiar with the scope, you know function scope, block scope, global scope.

So, you know that every time you put a pair of curly braces, you are creating a scope. If it is

associated with the function, you have a function scope. If it is not inside any function, it is in the

global scope. If it is associated with a class, then it is class scope and so on.

Namespace provides a class like modularization. But without the semantics of the class, which

creates a it is a very strong paradigm, where the fine level scoping of C static can be avoided. In

in C program file, and therefore, in C++ program file as well, you can declare a variable to be

static or a function to be static, what it means? That this is local, so, if I have two files, say,

file1.c, I have another file2.c and I have int x here, then I can use this extern int x in a different

file.

So, what happens is this is meant to be a global variable, which can be referenced here. If I do

not want that to happen, then I can write it as static say int y, I can write int y in the other. Now,

what it means that this static int y is available only within this file, it is not available here, this is

not same as the global int y that you have.

So, this is called a file local scope, which is very useful because when two developers are

developing into different, why was this given in C is the basic factors, when two developers are

developing, at the same time, they are writing into different files. And it is quite likely that they

will use the same name. Now, if they use the same name, but they are not actually the same

variable, if they are actually the same variable, then one except everything else will be externed

and linker will put them together.

But if they are not the same name, so, if I in this I have int z and int this two I have int z, then it

is necessary a linkage error because you are defining two different global variables by the same

name. This is which is not permitted. So, (file the) static in the file scope was provided in C to

take care of such situations, which is eliminated by the use of namespace, we will see how.

(Refer Slide Time: 04:34)

So, let us first look at a program. The namespace is defined with the keyword namespace. And

then, the name of the namespace. So, you can see that the syntax is very similar to struct or class,

except for the keyword. So, what I have is in this namespace, MyNameSpace, I have met

different declarations. I have declared a data, I have declared a function, I have also declared a

class. Now, all of these names are scoped inside the name of the namespace.

What it means is if, if I had declared say somewhere here, if I had declared int myData, then how

do you refer to myData? By myData, it is global. But in this case, the name of myData is

qualified by the namespace name. That is called a namespace scope. So, when I say

MyNamespace::myData it means this particular variable. When I want to talk about this

function, I write it as MyNameSpace::myFunction.

Name of this class is MyNameSpace::MyClass. So, it is exactly like the class scoping that we

have already seen the name scoping in the class of qualified names in the class. But namespace is

just a grouping, it has no other behavior, like data member, public, private, instance, it is just a

lexical concept, it is just a, syntactic concept. It just allows you to resolve your name structured

your names in a nice way. So, that is a that is a way you use the namespace.

(Refer Slide Time: 06:40)

So, what are the different scenarios? Let us say, I mean I will just illustrate you some of the

pitfalls where namespace can really help. Let us say, talking about the C standard library, stdlib,

there is an abs() function, which takes the absolute, which gives you the absolute value of an

integer. Now, suppose you want to create a specific abs() function, a special abs() function, so

that it will return the absolute value of parameter n, if n is between -128 and 127.

Otherwise, it should return 0. So, it is like it is like, so it is 0, it is 0, and in between only. If it is

positive, it remains positive. If it is negative, it remains, you get positive between -127 to 128.

You want to do this, you want to write this function. Now, if you have to do that, then you will

write a function like this. If n is less than -128, return 0 greater than 127 return 0, otherwise

return -n.

It is not difficult to write that function. The question is what do you call the function? The

moment you give it the name abs() and have the same signature, what it does it hides, it will hide

the original function in the cstdlib library. So, now, whenever you use abs(), it will use your

function only, this is what you get. So, there are two aspects, one is if you do not want to use a

different name for abs(), because that is not semantically expressive, you cannot, you do not

want to call it myabs(), that can always solve the problem.

But you want to have, call it abs, but provide it with a different definition. You cannot do that

without hiding the original function that exists in the library. So, this is, this is the basic problem

of name clash. So, you have a name in the global already int abc() in terms of. And you want to

create another identity for that name in your space. So, that is when the namespace can help.

What you do is you do not clutter the global space, you write your function, but put that into

your own namespace, say myNS. If you put it in your namespace then what is the name of this

abs()? The name of this abc() is qualified by this. So, when you want to use your function, you

call it with the namespace qualifier. When you call it independently, separately without the

namespace, just call it as abc(), you still get the global function that exists in the cstdlib. You can

see the differences in the output to understand this.

(Refer Slide Time: 10:17)

We are doing it for -203, -677, 179. So, these two are within the range of -128 to 127 and these

two are outside. So, here you get 0, 0. And here you get the absolute value. Whereas, if you use

just abc() which is from cstdlib in every case, you will just get the corresponding positive. So,

this is one place where namespace can be really really useful.

(Refer Slide Time: 10:51)

Let us look at a different problem, not I should not say different, but an extension of this

problem. Think about an organization that is developing an application to process student

records. So, class St is for students and class StReg (register) is a list of students. So, here, we try

to define the class St and class StReg (register). It has a typedef, for enumerated gender. It has a

constructor, which constructs a student record with the gender.

It is, it can set roll number, it can get the gender, and it has an output operator, you have just

learned how to do that. And it has the name, gender and roll as its private data members.

Similarly, in the registry, all that you need is a list of students. So, it is array of these pointers.

And you want to know what is number of students and you can have constructor, adding a

student and getting details about the student. This is, this has got nothing, nothing to do with

namespace, I am just trying to create the context for a near real situation.

(Refer Slide Time: 12:29)

Now, after having written this, let us say the organization has a lead engineer called Poornima.

And there are two developers by the name of Sabita and Niloy. So, Poornima writes these

classes, your St class and StReg class, the header file says student.h. And then allocates the task,

divide the task of implementation to Sabita and Niley. So, both are given student.h header to

work with.

And Sabita is told that please write all the code that are specifically applies to the male students.

Niley is told write all the code that specifically applies to the female students. So, I mean, what

those codes can be what differs, what, their requirements and all that we are not getting into all

those. So, because that is not relevant for us. The point is that both of them will work with the

same set of classes and write separate applications for certain subgroups of objects.

Sabita for male student object, Niloy for the female student object. Then just to model this

processing function is say it is just printing, it is for male students, it is printing the student

record if it is a male student here, the female students and female recordings. And corresponding

to this they create application, main application where they test it taking Ravi as an instance and

gender as male, and check that the registration and processing are happening right.

So, does Niloy, she creates Rhea whose gender is female registers and process this. So, but once

Poornima has given them the input to them is the processing requirement. And in terms of code,

this student.h header file which has the classes. Otherwise, they are working independently,

mostly.

(Refer Slide Time: 14:51)

Now, after they are done, then they give their code back to Poornima. And who has to integrate,

because finally, the application has to work for both male students as well as female students.

And she has to integrate both into a single main function, in our main function. So, she also

includes student.h, she includes the processing function header from Sabita, as well as Niloy

includes the instances that they have created makes a call as the date.

But this integration as you can see will fail because of the name clash. Because what happened is

Niloy and Sabita, both have chosen to use the same function name. Therefore, when Poornima

has to integrate code from them, then naturally there are two ProcSt() functions in the same

project, which cannot exist. And you do not know which one is being called. If you, if you have

this, you do not know that it is from App1 by Sabita or this from App2 by Niloy.

So, this becomes now a real nightmare. Now I am just trying to highlight the problem at a very,

very miniscule level and pathological level. But in a even in a medium sized project with 5, 6, 10

developers working on different parts, such type of name clash is very, very likely to happen,

because everybody has a, has a kind of inherent tendency to put natural names. So, if I am

working on electronic circuits, I will call an adder as an adder.

And my friend Shamir who is working on other types of adder will also call an adder as an adder

and the function names global names all will start clashing. So, this has happened, umpteenth

time in the industry that because of such now, if it could be planned and designed thoroughly that

well, this is the name you use, this is the name that you will use. Often that is not the case, often

that is not if Poornima had to do so much, then possibly she would have written the code itself.

She has created the skeleton, the classes, given to Sabhita given to Niloy told them to do details,

and they come back having a number of name clashes.

(Refer Slide Time: 17:51)

So, the way to one way to very quickly resolve this is to basically put these into different

namespaces. So, what Poornima does, she puts a namespace App1 for Sabita’s code and

namespace App2 for Niloy’s code puts everything there. So, what now happened what happens?

The ProcSt which was ProcSt and ProcSt was clashing in the name. Now this becomes

App1::ProcSt, this becomes App2::ProcSt, they become different.

So once you set the namespace, then you can either work as Sabita or work as Niloy. If we just

change the namespace, then it is a different code space that we are working in, without actually

having to change the code, edit the code that are embedded inside.

(Refer Slide Time: 18:44)

So, all that Poornima does, she puts them in the different namespaces and qualifies the name

with this, the clash is resolved. So, that is a, this is one of the very big advantages of having

namespace. Besides, there are several others but this is one of the big advantages that you can do

quick engineering, of merging code spaces from different without bothering about the name

clash.

And I just talked about to developers doing this, it could also happen that you have a lot of

developed code and you decide to integrate with a third party library, that third party library has

global symbols, you have global symbols and there is a clash. So, it is always a preferred practice

in C++ that when you work for your particular sub project, sub module or for yourself, you do

everything inside a namespace, which is unique for you so that there is no possibility of clash

with other global names.

(Refer Slide Time: 19:55)

So, what are the features of namespaces? So, just a quick set of details. In namespace may be

nested within another namespace. So, I have a namespace name 1, this is something which is

outside the namespace. So, it is global. I have one namespace and I have another namespace

within that namespace. So, what it happens is basically the scope resolution gets nested. So, this

data, the data, which is global, is called data, no namespace.

The data which is just in named one will be named1::data, that is a, now what is this data? This is

name within name2, but name2 itself is in name1. So, the actual name of name2 is name1

::name2. Therefore, the data they are in is that ::data. So, this is basically given in this way. So

you can nest it in in any form. So, very simple logic, all intuitive things that you get in terms of

this.

(Refer Slide Time: 21:18)

Now often what happens as we saw name1::name2::data, you have to write long prefixes. So,

there is a shortcut feature given, which is through another keyword using and we say using

namespace, you must have seen this line couple of hundred times by now, but what does that

actually mean?

What it means is, this is a shortcut to say that if I have a namespace name1, having two symbols,

and another namespace name2 having two symbols not nested, I can specify by saying using

namespace and then give a name of a namespace or a specific symbol. So, when I just write this,

using namespace name1, then subsequently whatever I write, the symbols will be looked inside

that namespace.

So, for example, for name1, then I have written v11, but v11 actually is name1::v11. But I did

not have to write that, because I have said using name1. So, when I do v11 it knows that it will

look for the scope of name1, and it will access this. I can do v21, I have, I am sorry, v12 after

this, I can, it is not necessary that I will have to call it v12, I can always also use the fully

qualified name.

I could have called it as v12 as well. But I have written it as (v1) name1::v12. Similarly in the

other, I have said that using name2::v21 that is here that using is not on a namespace. So, I have

not said namespace, I have just said using this, which means that it is a symbol inside some

namespace. So then, so it is name2::v2 that is this one. So, when you say v2, it actually means

this.

I do not have to say anything else. But and I can do fully qualified also. But mind you see the

difference that if I put v22 which is in name2, I will get an undefined error. Why? But for v12, I

do not get I will not get I mean I can I can use simply v12 and that will also be perfect. Why is

this difference? Because in case of name1, I have put a using on namespace overall. So, all

symbols in that are in the available list.

But here, I have just specifically said that I am going to use v21 from name2. So, I am not saying

that I will use v22. So, it will if I have to use it I have to specifically say name2::v22. Now

naturally, this way it, I mean a lot of writing can be shortern, but it might lead to other problems

also. For example, if I had say, a say suppose I had a symbol v21 here also, then with this, I will

have a problem.

Because what happens if I talk about v21. The fact that my name1 namespace is default, it means

the v21 here. But I have said that name2::v21 must be default, but that is a different variable. So,

I have to make sure that by this using I do not again by using what I am doing I am again

shortcutting the names, so I am creating possibilities for clash again. So, this kind of using will

have to be avoided.

(Refer Slide Time: 25:49)

Now the question is what happens with the global names? There is a data here, there is a data

here. And I am saying using name1::data, which means that if I say data, it means the data of

name1. So, when I say data now it means data of name1. If I say name1::data, it also means data

of name1. How do I talk about the data in the global. So, when this using I am hiding the global

data?

The global namespace does not have a name. So, there is a special syntax given where you do

not have a name, but you just say ::, which means a global namespace. So, if I want to refer to

the global data, I just write it as ::data. So, writing data will mean this one because of this using.

But writing ::data will mean the global one, that is how you can access all the namespaces

appropriately.

(Refer Slide Time: 27:02)

So, now, you can understand the std namespace we have been talking about. So, all C++

standard library components are put under one single namespace std. So, that allows, that leaves

the global namespace completely free for the user, you can put anything there. Though it is

advised that you do not put anything you put in your own namespace, but you are free to do that.

So, if I have to access symbols from this, so I have to typically write it as std::, only then it will

work.

So, when I put this using namespace std, I mean that these symbols should be looked into this

namespace. So, std::cout can now be written simply as cout, that is a basic difference. So, that is

the reason we always keep on doing this. And if we do not do that, then we would have to put the

fully qualified name in the std namespace where all standard library symbols belong.

(Refer Slide Time: 28:20)

One very nice thing about the namespaces they are open, what it means that you can define a few

symbols in the namespace. For example, I am doing here in a namespace called open, then I can

again say namespace open and add symbols to that. This is not something that you can do in a

class. So, it is not that whole of the namespace has to be created together.

So, for example, all of the standard libraries put in the std namespace, but if I want I can get say

namespace std and add five symbols to that. So, this is a so what happens is when you when this

when you say using namespace open, it means this as well as this as if all of them have been

taken union off, as if they were declared at the same point but they were actually not. And then x

and y will refer to the respective one you can figure it out from the output that they are resolved

and getting accessed properly.

(Refer Slide Time: 29:22)

Comparing a namespace with the class, very easy in every namespace is not a class but every

class defines a namespace, we have been talking about this. Namespaces can be reopened and

more declarations can be added, classes cannot be reopened. No instance of a namespace can be

created. It has no sense, class has multiple instances. using namespace is a shorthand for name

qualification.

No such thing exists for a class, even when you are going to say defining the static variables and

so on. And namespace maybe unnamed also. That is I may just say, I may just say that is not

putting anything here, yes, there is. We just guard safe from any other namespace or global, but

does not allow you to reopen, because there is no name, it can be done only once. So, these are

some of the specific things that happen.

(Refer Slide Time: 30:27)

So, with the introduction of the namespace, now, if you look at we have a wide variety of lexical

scope that is available.

(Refer Slide Time: 30:34)

I started talking about that we have lexical scoping in C++, its scope is within which a particular

name has a binding, has a meaning is available as a variable or a function or class etc. So, you

have a scope for the expression, which is restricted to only one expression. You have a scope for

the block, which is the local context, you know what is a block. You have a scope for the

function, you have a scope for the class.

We just learned the scope for the namespace and you have a file scope, where I explained the

meaning of the word static for a, for a in the fine scope, which is again, not something that you

should be using any more. And you have the outermost global scope, which again, you should

not be using except for putting your classes. So, these are your different lexical scopes that are

available in a C++ program.

(Refer Slide Time: 31:36)

And scopes may be named or unnamed. So, named scopes or class scope named scope with the

name global when qualified with the ::. Unnamed scopes are expression scope, there is no name

given. Block scope, blocks cannot be given name. Function scope, no separate name same as a

function. The file scope again, there is no separate name and they may be nested or not nested.

Block, class namespace this can be nested, but expression, function, file or global scope cannot

be nested. So, this is an overall scenario in terms of the scoping in of different symbols in C++.

(Refer Slide Time: 32:22)

So, we have understood and talked about various aspects of namespace as a scoping tool in C++,

which is of great use and importance in terms of organizing the symbols, particularly at a, at a

global or near global level. And we have studied different features for that. Thank you very

much. I hope you have enjoyed this discussion. And be very careful as you start your engineering

projects.

Be careful to define your namespace, define the namespace of your sub module properly, and

then work on it so that you will not be having nightmares with name clashes. Thank you very

much.

