
Programming in Modern C++

Professor. Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecturer 19

Overloading Operator for User-Defined Types - Part 2

Welcome to programming in modern C++. We are in week 4 and we are going to discuss module

19.

(Refer Slide Time: 00:43)

In the last module 18, we started discussing about operator overloading, that is how to define

operator functions for user defined types so that we can build complete algebra with our user

defined types much in the same way the algebra is available for built in types like int like double

and so on. We have looked at overloading operators using global functions and member

functions of classes and we have also outlined the semantics for overloading binary and unary

operators.

(Refer Slide Time: 01:26)

Building a further on that, we will now try to understand overloading all types of operators for a

user defined type or a class and particularly focus on the aspect of overloading by friend function

and what advantages does that specifically provide.

(Refer Slide Time: 01:45)

This is the outline will be available on your left panel.

(Refer Slide Time: 01:51)

So, a quick recap from the last module, we have three options to overload using global function,

using member function or using friend function. So, if a and b are of MyType or MyType is sum,

enum, struct or class type, then I could write the operator function say for operator plus, which

takes two parameters left and right and returns me the final result.

I can use a member function of the MyType class and in that case, my operated function takes

only one parameter which is the right argument because the left argument is the implicit

parameter which is the object on which this operator is being invoked. Doing it with a friend

function is very similar because it is like just like another global function, but it is prefixed with

the keyword friend and its prototype is declared within the scope of the class declaring that this

is the friend function.

This is what holds for the binary operators for unary operator similarly, I can have global version

with one parameter, member function version with no parameter or the friend version, which is

also with one parameter. What is to be noted here, which we saw at that time is the fact that if the

unary operator is prefix or postfix, if it is postfix particularly, we will need to pass a we will need

to declare it not pass declare it with a dummy int parameter.

(Refer Slide Time: 03:47)

So, equipped with this, let us now, look into the issues in operator overloading and we will

present two specific cases where we have issues. So, consider a Complex class and we have

learned how to overload the operator for two complex numbers. So, we have two complex

numbers we can overload it like this to get the result. So, actually what we get is d1.operator+

and that takes d2 or it is called as a global function whatever we it is it will work.

(Refer Slide Time: 04:32)

Now, suppose we want to extend that operator, so, that the complex number can be added to a

real number also that is it which has no imaginary part. So, if we have these complex numbers, I

want to make this addition that is d1 plus 6.2 which actually means 6.2 plus j0 or 4.2 plus d2

which means 4.2 plus j0 to be added to d2, if I want these also to be valid for my operator plus.

Now, we have to see why global function is not good for this and why member operator function

cannot also do this and only friend function can achieve this. So, this is the context in terms of

which we are trying to refine the operator function.

(Refer Slide Time: 05:27)

The other context that we will deal with is of the io operators, streaming operators. So, we have a

Complex class. So, I want to write these kinds of streaming expressions to print or read the

complex values. So, we know that cout is the ostream object, we know cin is an istream object

predefined.

Again, we show why global function is not good for this purpose, why member function also

cannot achieve this task and we finally show that how friend function will provide a solution. So,

two different contexts that we are highlighting here where our the solution we have looked at so,

far is not going to extend and we will see the specific difficulties that we will come up with.

(Refer Slide Time: 06:31)

So, first let us try to address the first issue try to extend the operator plus. So, if I have to extend

this, then what I can do is I can define using global function. So, since we are looking at three

forms, that is d1 plus d2 is one form, d1 plus say 6.7 is another form, 4.2 plus d2 is another form.

So, since we are looking at three forms, and you can see that they have different types of the

parameters.

So, we can overload this operator plus thrice one for a pair of Complex which will work for this,

one for a Complex and a double which will work for this, and one for a double and a Complex

which will work for this. This solution apparently will not have any difficulties and you can try

out with these examples and it will work fine.

The only difficulty that arise is with the fact that being global function, this will not be able to

access the data members of this class. So, I have to make the data members public the moment I

do that, for do it this operator overloading I have to break the encapsulation that I have created

with so much of care. So, it is this is not a very good approach.

And we have also provided explicit we will I will talk about explicit explicitly later on, but all

that it means that if you are constructed is explicit then it has to be directly called either through

this or through new it cannot be used implicitly for doing a conversion. So, the global function

cannot work because it is breaking the encapsulation, so, that the whole paradigm falls apart.

(Refer Slide Time: 08:34)

So, let us look at member function. So, as we look at member function, then I have one member

function, which takes a Complex takes care of d1 plus d2. I have another member function which

takes a double which takes care of d1 plus 6.7. So, the first expression works the second

expression works, but how about the third one. If I have 4.2 plus d2, I cannot write a member

function to do this because a member function always binds with the left hand side parameter left

parameter.

So, 4.2 plus d2 basically in member function notation means 4.2.operator+(d2) which means that

operator plus has to be a member function of the double type and you know built in types like

double cannot let their operators be overloaded. So, this is not going to, this is going to partly

work for this, this of course restores the this restores the encapsulation, the data members are

back to private, but this does not solve the problem because the third form of the expression is

not permissible.

(Refer Slide Time: 09:59)

So, let us look at using a friend function. So, how does friend help friend on one side is like a

global function in terms of function call and all that and it has the ability to access private data

member of the class because it is a friend. So, while writing global if I want to protect the

encapsulation and use a global function for working on the class, then I will have to give get into

all that get set mechanism lot of extra code has to be written, but with friend function, I do not

need to do that.

Now, the operators can actually be overloaded either by a global function or by a member

function is what we have seen, but, the question is if the left operand is not an object of the class

type, then it cannot be overloaded through member function that is precisely the case we are

getting into when we have expression like 4.2 plus d2. So, to handle such situation, we can make

use of the friend.

(Refer Slide Time: 11:14)

Now, let us say there are two objects d1 and d2 of the same class we cannot overload constant

plus d2 using the member function. However, using friend I can do all three of them, because I

could do them with global function, friend is just I mean in this case it is like the global except

that it does not break the encapsulation for everybody. So, the reason is while computing d1 plus

d2 the member function d1 with member function, if I tried to do with member function d1 calls

operator plus and d2 is an argument.

Similarly, for d1 plus constant we have seen that, it calls operator plus and constant is a second

argument, but when we have this, we cannot do it because the constant cannot call a member

function. So, similar analysis will also hold not only when this other mixed parameter is a

constant, but when it is an object of a different class, which is what is happening in case of the

iostream also we will come to that. So, operators like streaming like relational should be

overloaded using the friend function.

(Refer Slide Time: 12:32)

So, let us try to do that for operator plus. So, now, what we do is, we have again three overloads

Complex Complex, Complex double, double Complex instead of global they are all friend

function the encapsulation is perfectly maintained and all three become correct.

(Refer Slide Time: 13:05)

I could have done a different solution also, which we will discuss further in a much later module

when we talk about casting is that do not provide these do not make the constructor explicit and

just provide one operator mind do this will also work. But, it will work differently. The way it

will work is since d1 plus d2 is fine, but when I do say d1 plus 6.2, 6.2 is a double and what I

need as a second argument is a Complex fit does not match.

But what the compiler will see is, is there a way to construct a Complex object from a double,

well it is there. Therefore it will construct a temporary double object and call this function that is

a different way the mechanism will work which is often not very advisable because then it will

be able to possibly cast integer also. It depends on what I want to define. When I make the

constructor explicit, I actually stop all of these irritating silent conversions from happening and I

exactly know what are the data types that I am going to add through my operator. So, the friend

function friend operator function really provides a good solution.

(Refer Slide Time: 14:28)

Just as an illustration take a look at overloading a comparison operator say equal to operator. So,

what am I having? I have included string here because I want to use the string type of the library.

And I am defining a class MyStr which is kind of a simple wrapper string for me which just

copies takes a cstring copies and makes an object later on at the time of destruction frees that up.

I want to compare a library defined stream, string object and a MyStr object for say equality. So,

there are 3 possibilities, 4 possibilities actually because there are two classes. So, there are four

ways I may compare. So, one is my string with my string which is these two cases. So, I have

defined objects mS1, mS2, mS3 which are MyStr objects sS1, sS2, sS3 are library string object.

So, I compare mS1 with mS2, mS1 with mS3 one have kept equal another I have kept separate.

These two are equal these two are separate just to show that comparison outcome being true and

outcome being false both work. So, this will work with the first overload. Because both are

MyStr.

In the second, I have mS1 and sS2, mS1 and sS3. So, it is MyStr and string MyStr and string. So,

the second overload will work and I will have correct response based on that. The third is string

and MyStr string and MyStr that is a third overload this will work to give result in this these two

cases all are correct you can see match mismatch match mismatch.

And finally, the fourth possibility is I compare a library string object with the library string

object that is sS1 sS2, sS1 sS3. Now, in this case, I am not providing anything here because my

class is not even involved and library has already provided a overloaded comparison equal to

operator for this string class.

So, here it will also work with the comparison operator from the C++ standard library. So, you

can see that I can define operators, I can mix operators from other class obviously with judicious

design, and this was possible without breaking the encapsulation or anything by using simply the

print function.

(Refer Slide Time: 17:39)

So, let me move on to discuss the io operators. The other issue the second issue I talked of. So,

we want to say create an output streaming operator for Complex class. So, that any complex

number I have I should be able to just write this two Complex number d1, d2 as you know this

will be done first. It is left associative this will be done first, which will which must return the

cout again because I want to change that this will be done next this is.

So, if I want to this is the behaviour that I get for integer character double these kinds of built in

types. So, I want that behaviour to be present. So, let me see of the three options what will be the

different signatures of the overloaded function

(Refer Slide Time: 18:43)

If I have a global function, then my first operate is this one which is ostream is passed on as a

reference because certainly you do not want to copy the entire output stream and also pass the

Complex object as a constant reference. This is not to be made const the ostream reference is not

to be made const because I am going to write to it. So, it is going to get changed.

And after I have written I must get back after I have written I must get back the same ostream

object. So, that when I do the chaining, this is what I have got back will be able to go into the

second instance of the operator. So, that is the basic style that we will have to maintain. So, this

is if we do it by global function.

(Refer Slide Time: 19:38)

What if we do by a member function of the operator class member function of the operator class.

So, I am sorry, not the operator class member function of the ostream class that is there in the

library. So, the operator now is ostream colon colon operator output. It takes one parameter

which is a Complex the ostream is already there, and it returns the reference to the ostream

object, which should be fun.

The third option is the other class involved here is my Complex class. So, I can make it an

operator of the Complex class, if I make it the operator of the Complex class. So, basically the

operator will be invoked on this, then the parameter it has to take is the ostream object, and it has

to return that ostream object, it has to return the ostream object in every case.

(Refer Slide Time: 20:39)

Now, let us see what happens in these cases. So, with a global function, if I do it with a global

function, if I do it with the global function, then it will work fine, except for the fact that I have

to break the encapsulation, the good old problem. So, breaking this encapsulation is not going to

be a good thing to do. So, global functions are not preferred.

(Refer Slide Time: 21:05)

So, my next option is to use a member function. Now, let us say it is a member function of what

suppose it is a member function of the ostream class, which is has this signature. Now, this is a

perfect solution. But the reason it will not be possible because as a developer, I am not allowed

to make changes to my C++ standard library. So, ostream object is a part of ostream class is a

part of the C++ standard library.

So, I cannot make a change, I cannot add a new operator overloaded operator for my Complex

class argument to get this implemented. So, this is technically a possible feasible solution, but

this is not allowed according to the rules of the library.

(Refer Slide Time: 22:06)

So, I have to then look at as a member function, I have to look at as a member function for the

Complex class. So then, this is the signature that will have it is Complex colon colon operator

output, which takes ostream as an object as an argument. So, ostream becomes the second

argument or the right argument. Therefore, when I want to output this, I have to write it as d

output cout like, it gets inverted, which is not neither it is good for streaming. So, if I have to.

(Refer Slide Time: 22:45)

Actually, I would have liked to write cout say there are two objects d1 and d2, I would like to

write this, this is what the built in types write. But here what I will have to write, I will have to

write because unless my object d of the Complex class come on the left of the operand, I will not

be able to invoke this operator and pass the cout to it. So, I have to this is completely unnatural,

and then I have another problem is that this operator is left associative.

So, if I write this and do not do anything, it will try to first execute this instance, which takes two

complex and does not make any sense. So, it is not only this, I have to actually put a parenthesis

around it. So, while this is the form of the expression for a built in type, my overloaded operator

with my overloaded operator the expression will look something like this, which is really really

annoying, this is not something that that is making the natural extension of the type as I wanted

to do.

(Refer Slide Time: 24:09)

So, the only choice left is to have a friend function. So, now what I do is it is like the global

itself, take the ostream and the Complex istream and the Complex return the ostream for output

operator, return the istream for the input operator and you can make the encapsulation re, in

again, because you have friend functions.

And the way you write this operator is very simple this you have got this a. So, as a friend, it can

access re and im. So, you take re you take im and I am assuming that to mean it is a complex

number I am writing it in the form of real component plus j imaginary component. So, I stream

that two ways this is this operators will work according to the respective built in type.

For example, here the output streaming operator for double will work here the output streaming

operator for constant string or string will work. Here again the double will work and so on. So,

ostream is now got whatever I have outputted. So, what I will have to do I will have to give it

back as a result.

(Refer Slide Time: 25:38)

So, I returned ostream which actually comes back as a as my stream reference result. So, when I

now write cout d1, d2 and chain it by left associativity this is done first, this goes as os, this goes

as a and into that cout this is written and what comes back is again cout. So, the result of this is

cout.

So, again when the second instance is happening cout goes in as ostream, d2 goes in and a and

what comes out is again cout to which I can stream anything else. So, it perfectly falls in order in

terms of the syntax of the expression of output, you will not be able to see any difference from

the ordinary built in types. So, the same thing will also hold for the istream.

(Refer Slide Time: 28:49)

So, this was about operator overloading to summarise here has some general guidelines. So, out

of the three options, what will you choose when? So, you can choose a global function, when

you do not care about encapsulation, it is not a concern. For example, you are trying to write

something for a struct in C++ which means there is no hiding, no encapsulation.

So, then you can just use global function to keep things simple. You will have to use member

function when the left operand is necessarily an object of the same class for which you are

overloading the operator then you can use a member function. And specifically there are

operators which will have to be member function overloaded as member function like operator

assignment, you have already seen that operator new, operator array new, operator delete and so,

on they all will have to be necessarily member.

So, it is not a generalisation that you will always do friend, you will do global if you do not if

you want to keep things simple and to not have encapsulation concerned you will have to do

member function if it fundamentally defines the behaviour of your class and always has will

have the left operand as an object of the same class that that is a simple solution.

Otherwise, for example, other operators like your increment operator and post increment pre

increment could also be done as member functions. Otherwise, you use friend function for

operators like streaming for relational and so on. So, this is the basic structuring rule of operator

overloading.

(Refer Slide Time: 28:56)

In terms of semantics, it is good to preserve the natural semantics. For example, if we are

overloading operator plus for say set, then you should do that for union not for intersection. So,

that same sense so similar sense must be prevailed. Similarly, for usually for parameter passing,

follow the usual convention that pass the built in types by value and the user defined types by

constant reference.

The return type will decide based on whether you want to have a reference if what you are

returning is an existing object like cout or whether you will return by value because it did not

exist and you are creating like in operator plus for Complex and so on. So, based on that choose

the return type appropriately should consider the effect of casting as well.

We will look at this more when we deal with casting operators. And last but not the least is do

not overload an operator which you do not need to that is keep to minimal design. Because the

more you overload operators you are adding semantics to your design and it may be confusing

for someone who is not well acquainted with your design. So, only add operators that you really

need for your class.

(Refer Slide Time: 30:52)

So, we have talked about several issues of operator overloading discuss that and particularly

highlighted the context and the mechanism by which friend functions can be used for operator

overloading to get a really nice solution for IO operators and so on. These operator overloading

can be used to build algebra for various different types as we will see more and more.

Thank you all very much. Thank you for your attention. I hope this will this concludes our

discussion on operator overloading. I think you have got a good grasp to that. I will record a

tutorial to show you how using this operator overloading and other features, you can create

Complex like data type much in the to behave and to lexically, syntactically look very similar to

the built in type and you can get to the creation of algebra.

