
Programming in Modern C++

 Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

Lecture 16

Static Members

Welcome to Programming in Modern C++. We are in week four and starting module 16.

(Refer slide time: 0:35)

We have in the last week covered a major part of the core object-oriented programming

features of C++ including what is a class, what is instance object, attributes, data members,

methods or member functions, what is meant by the state of an object encapsulation by

private and public access specifiers?

How to create a properly designed information hiding structure by using get-set idioms,

various types of constructors, default, parameterized, free and so on, destructor and copy

mechanism, copy constructor as well as copy assignment operator with deep and shallow

copy options for pointer values. We also based on this we also understood the lifetime of

different objects, which is very key to our design.

And finally, we took a look at const-ness at a bitwise level where we can have objects which

are constant or data members can be constant, member functions can be constant and a

combination of these can give you a good design in terms of the logical const-ness which is

further supported by the mutable feature of C++. So, we have got a foundational basis on the

object oriented programming aspects. Now, we will build further on this.

(Refer slide time: 2:07)

What I am going to discuss in this module is, understanding of static data members and

member functions.

(Refer slide time: 2:18)

So, they will be extensions to the class design we have already talked off and they will cover

some specific areas of problem solving. Here is outline as you can see.

(Refer slide time: 2:28)

And we will start with static data member. Static data member in contrast to the data

members that we have seen, which henceforth, we will have to call them as non-static data

members, a static data member is associated with a class not with an object that is that is the

basic difference that is a class that I define can have multiple instances of objects created, all

of them will share the same static data member, it is like a global value, but limited to that

particular class only.

So, it will have to be it will be declared inside the class scope, but it will be defined with its

type outside the class scope to avoid linked error. And it must be since it is declared defined

outside the class scope, it will also have to be initialized in a source file. So, any static data

member will be constructed before main starts and will be destructed after main ends. So, this

is something which is which is very, very critical that it works, it encompasses the whole

lifetime of main. So, all static data members of all, all classes will be initialized before main

start.

So, now we can see that it is like the global variables which I said will be initialized before

main and will be destructed after main. Similarly, the static data members will also be done in

that way, which is a basic difference in the initialization of C++ compared to the initialization

of C. A static data member like a non-static data member can be private or public.

Now, since it is a static data member, it is not dependent on the instance of the object. So, it is

possible that I can access a static data member by just using the class name that is fully

qualified class name class name::the data member name, the static data member name.

Alternatively I can also access a static data member using an object but just using object . this

member, but what compiler actually does, it does not, since it does not relate to the specific

instance from the object it will know its class and find out, internally it will find out that what

is the class scope where the static data member belongs and therefore, it will be access

through that manner.

So, virtually it eliminates the static data members eliminates any need of global variables in

an object oriented environment after this, we will not need any other global variable which is

defined outside of any function scope or any class scope. So, let us first go ahead and show

you an example, where there is a printed task where there is a printer which can be loaded

with paper from time to time.

So, there is a tray as if you that you are modeling logically by a variable which says that how

much paper is there, and you can load paper into that, and there are several print jobs that are

fired on this printer one after the other, and every print job has a number of specified pages,

the number of pages that it has to.

So, after that job is done, the number of available pages on the tray will get reduced by the

number of pages required for that job. So, this is the basis of this requirement.

(Refer slide time: 6:18)

So, we do the design like this, we have a first we show you example of a simple example and

then we go to the print job. So, let us say I have a this is a simple example. So, I have a class

MyClass which has a non-static member x, so, I can do a get I can do a print. So, if I

instantiate two objects then each object has a separate data member x in it, they are distinct.

So, when I do get on this, basically that data member is getting set to 15. So, when I do print

on that, for object one, this was set to 15. Now, in print this has been incremented, increased

by 10. So, it will print 25. For object two, also it will print 25. That is that simple. Now, here,

on the right hand side, I have made this a static data member, the difference that I have made

is I have put a keyword static before the declaration of the data member which says the static

data member.

Which means that now I have only one variable for the class, not object-wise instances, I

have the same get set functions. Since I have a static data member, I have to provide a

definition for that. So, I provide that definition in the source files outside the scope of the

class. This is my fully qualified name of the member variable MyClass::x. I put its type

which is int, the initialization value which is zero.

Now, I again instance, I create two objects. Now, in contrast to the previous case, where x

was a part of the object, so I had two different x's, here, I have x, which is the same object,

which is not a part of any of these objects, it is outside of that it is just belonging to the class.

So now if I do get x, this x is set to 15. I do get on the second object again, this is reassigned

again 15. So its value is 15. Now, when I do print, the x gets incremented by 10. So it prints

25.

Then when I do print for the next time, x is 25. Because it is the same x here I had a different

x, so 15 incremented to 25, 15 incremented to 25 but here it is the same is the same x so it is

already incremented to 25. So, now what will happen if I add 10 to it, it will become 35, the

second time it prints 35. So, this is this clearly tells you what is the difference between a non-

static data member and a static data member. So the explanation is written below for your

reference.

(Refer slide time: 9:40)

So with this, let us go on to the print task that I just described. So I model that there is a print

job. I am creating a print job. What is a print job? Print job is print will print something so it

has a number of pages which is a non-static member. Then in public, I have two static data

members, which is number of nTrayPages, that is how many pages are there in the tray. And

another is nJobs, which says how many jobs are there in the printer, has been put to the

printer.

So, with that, when I do this print jobs constructor, I set nPages, that is how many pages the

job has with the parameter, I increment the static member, because one more job is getting

added to it. And I decrement the nTrayPages by nP because this job will print nP pages. So,

the tray will be left with nTrayPages minus nP number of pages. So, this is every time a job is

placed a constructor is construction is that this will happen and what will happen in the

destruction naturally when they destroyed it means that this job is over.

So, now, there will be one less number of job to do right. So, it will become nJobs minus one.

So, with that, let us look at some of the initializations so this is a static initialization. So, this

is the definition of nTrayPages in the global qualified name as I said, and we have initialized

to 500. Assuming that initially 500 pages have been loaded nJobs similarly is initialized to

two because there is no job to start with.

So, then I initially print what is the job number of jobs and what are the number of pages zero

and 500 is what I get then I create a print jobs with 10 that is 10 pages to be printed, I check

these values printing 10 jobs, it says and it is now has jobs one because one job has been

submitted and the pages becomes 490 because that job submitted has 10 pages 500 minus 10,

490 is what I get. Now in a scope, I create two more jobs.

Mind you I have created a job one here, I have created a job one here and the rule of scoping

holds. So, the job one created inside the block scope is different from the job one created the

outside the block scope. So, the job one prints the printing 30 pages, because it is taken as 30,

job two prints printing 20 pages, then I print what is my status of the printer.

I get there are three jobs print job one outside the block scope job one inside the block scope,

job two in the block scope, three jobs and the pages remaining are 440, 490 I had minus 30,

460 minus 20, 440 pages remaining. Now, when I before coming out I load in other 100

pages. So, after loading, when I come out of the block, what will happen at this point, you

know you have learned that lifetime.

So print jobs, job one and job two inside the block will get destructed at this point as they get

destructed number of jobs will decrease for each by one. So, my jobs after this becomes one

and the print jobs has now changed increased with the value of 100 so from 440 becomes

540. So, that is how the logic goes. This is I wrote on top that this is not a very safe way of

doing it, because these are these static data members are kept in public.

So besides being static, they are also exposed. So the encapsulation the information hiding

part is not there. So anybody can mistakenly change that and we will have difficulties in

terms of, so we will talk about how to handle this.

(Refer slide time: 14:39)

Now comes a question of what is the order of initialization we talked about this for non-static

data members and we learned that it does not matter in which order I write the non-static data

members in the initializer list. The ordering which I list them in the class is the order in which

they are initialized. You will be surprised to see that for static data members the rule gets

different. So here I have a class which has two data members, which are static, static data one

static data d1, static data d2.

And in the source file, I am initializing constructing them, first d1 with the obj_1, then d2

with obj_2, and I can see that this is the order in which the construction happens, the structure

obviously in the reverse order. So now the question is, the order that I am seeing is it because

of the order in which I have initialized or the order in which I have listed them in the class.

To check that I just swap, I just swap these two and do not change this as I swap, I find that

the order of construction has not changed and so, the order of destruction, but have already

swapped this. So, I conclude that it does not matter in which order I list them within the class,

but it is the order in which I initialize them in the static area, in the source file is what decides

the order in which they be initialized.

Which is different from what we saw for the non-static data member case where the order in

the initializer list does not matter, but the order in the listing of the non-static data members

in the class actually dictates the order of their initialization right. So, here this rule is

different, you will slowly realize why it had to be different and what are the advantages of

that, but for now, just know that when you are dealing with static data members, it is the

order in which you write the initialization is the order in which they will actually be

initialized and constructed.

(Refer slide time: 17:04)

Now, let us we have already seen that the encapsulation is broken, there is no information

hiding, because if I put the static data members in public, it can be changed without the

notion of the class at any point of time. If I put them in private, then I cannot change them.

So, along with static data members, I also need static member functions.

(Refer slide time: 17:34)

What is static member functions? Static member functions, the first difference is they do not

have a this pointer, unlike the non-static data members, because they are not associated with

any object, they are just associated with the class. So, there is no object instance whose this

pointer can be or need to be passed here, they cannot be accessed, they cannot access any

non-static data member or any non-static member functions.

Why they cannot access because they do not have this pointer. The non-static data member or

the non-static member function is specific to an object instance but a static member function

has no this pointer. So, it cannot face just like a global function only difference being that it is

in the class scope it is qualified by the class name.

So, it can be accessed with the class name with the :: operator or with any member of the

class exactly the same way you could refer to a static data member exactly in the same way

you could also invoke you can also invoke a static member function.

So, using this once you have this, you can now again create the same information hiding

encapsulation paradigm as we did for the non-static data members, all that you do is

encapsulate static data members as private and provide the required get-set idiom in the in

terms of static member functions in public. And you can create that same model except that

now, this particular encapsulation model is not specific to an object it is specific to the class

or the entire ensemble of objects that can be instantiated from a particular class.

So, you may initialize static data members, even before any object creation, because I told

you it can potentially it will get initialized before main starts. It is possible that you

instantiate some object also before main starts, but it may it is not necessary. Also remember

that if I have a static member function, then I cannot have another non-static member

function by the same name. That is overloading a member function between static and non-

static is not allowed.

Similarly, static member functions cannot be declared as const which you will understand by

now, because the consequence of declaring a member function const is to actually change the

type of the this pointer, which becomes now a pointer to a constant object, but since static

member functions have no this pointer, there is no semantic sense of saying that a static

member function is const it cannot be done.

(Refer slide time: 20:36)

Now, with this with this improvement in the encapsulation and information hiding paradigm,

let us take a relook at the print task which is which remains the same except that now, I have

made this in the private put them before public. So, these are all private now, you cannot

directly access them, and we also provide three static member functions all that you need to

do you write the function as you had been doing earlier, except you put the keyword static in

the beginning which ensures that these are static functions.

And therefore, they will not have any this pointer. So, this tells you this is a I mean get set

kind of So, here what you say that, you are not allowing the set on any of this all that you are

doing is you are giving get on the number of jobs and the number of trays number of pages, if

you want to set that you have given separate load page function right.

So, it is it is perfectly conforming to the get- set edm based information hiding model that we

had done for the non-static data members and non-static member functions. This is same the

initialization you create the print jobs in the same way you do everything in the same way.

Now, when you are actually trying to find out how many jobs are there and how many pages

are there, instead of directly accessing the public static data member which you could now

you invoke the public static member function.

Similarly, for loading this, this behavior will remain the same, but now, you have the safety

of being encapsulated in terms of your actual static data member values.

(Refer slide time: 22:38)

So, this gives you a very nice model to work with where any object in specific information

can be kept at this level. So, we will just take a quick look at what could be potential use of

that, for example, here and here what we showed in terms of the printer task. If we had to do

this without the static data members and static member functions, we would have required to

use global variables because a printer is one and does jobs are many they are not specific to

that.

So, by it is it is clear as to how by using the static data member and static member functions,

how we have nicely encapsulated everything within the class. I will talk about a different

example. For example, say if you want to track the number of objects that you have created.

Now, the question is obviously, why do you need to do that there may be several reasons for

that, for example, your every object could be a lock on a port memory port, you have a

memory port object, now, you have three memory ports.

Now, naturally, you cannot create four memory port objects, because the fourth one will not

have anything to lock right. So, lot of physical and logical situations will need that you can

count the number of objects that you have created. So, how can you implement that could be

very simple. So, I assume that there is an nObjCons which is which is incremented every time

an object is constructed, and there is a desk which is decremented every time his object is

destructed.

At any point of time if you take their difference, you will get the number of objects that are

live in a simpler model, you can just make a one single static data member in life incremented

in constructor decremented in destructor, but by doing this you will have a more informative

model here.

(Refer slide time: 24:40)

So it is example is very easy to see I have these two in their private I have the way to get

obviously I will not have a way to set because I cannot allow the programmer to change

either the number of objects constructed or the number of objects destructed that will have to

happen either in the constructor or in the destructor right. I can only read them take their

difference say how many objects are there.

So with that, this example shows some objects which are created before main. And I had

shown you this trick earlier also. So I am I am just as if initializing a dummy integer, I am not

interested in that integer, all that I am interested in is to pass it a value, which initially would

be zero. But actually, I am not interested in that even all that I am interested in is to invoke

the static member functions even before main has started.

So, I get to see how many objects are there then one global object gets created, then I again

do that and I get to see how many objects are there then I get into the main see different

objects created destroyed, entering the scope leaving the scope actually, you can, you

basically get a trace of the object lifetime and the count of live objects at any point of time.

So, static could be of great help in terms of that.

(Refer slide time: 26:18)

To compare static versus non-static, I have given you a complete comparative information all

of these I have already discussed in terms of what we have been learning, but this is a

compile chart which if you want to refer to if you have a doubt as to well whether Can I can I

access non-static data member from a static member function?

You can look up here, no you cannot access, why you cannot access there is no this pointer,

but if I have a non-static data member functions, can I access static members? Yes, you can,

because static members are always available by the class name right. So, all these differences

are listed here, you can you can make references to that study to understand it, better.

(Refer slide time: 27:05)

Before I conclude, I will tell you a very simple you know, design, which is which we will talk

about separately in tutorial also, it is called a design pattern like this is something which

repeatedly occurs in different design scenarios. And therefore, you can have a solution for

this pre designed so, that whenever that occurs, you can just use that solution.

So, it is called a singleton pattern, that is one only pattern which says that it is a class which

ensures that only one objects kind can exist only one object is funny, we have a class instance

in any number of objects, we do not want that you want only one object and then that object

there must be a single point of access for that singular object, right.

If these two conditions are satisfied, we say that we have a singleton. Now, conceptually what

is a singleton something which is in the real world, which is unique for example, President of

India, Prime Minister of India, Director of IIT Kharagpur, CEO of a company and so on, so

forth. The question is how do you implement this kind of singleton design in C++.

(Refer slide time: 28:17)

So, two things one is you have to make sure that you can create only one instance now, so,

you have to make sure that you cannot let anyone arbitrarily create the object. So, how can

you stop creating an object simple ways put the constructor in private nobody can access it

other than members in the class.

Now, this might become this becomes a chicken and egg problem if I cannot construct I

cannot have an object if I cannot have an object I cannot call a member function. So, how do

I go about that is where the static member function come in, because static member functions

do not depend on object being constructed.

So, I provide a static member function say called printer different from the class name has to

be because it is not a constructor which simply will find out that do I have an instance so,

how do I know if I have an instance. So, for that I provide in the private a static pointer and

initialize that pointer to null. So, what will happen when, when the system starts this pointer

is null which tells me that there is no printer.

Now, we ever once calls this printer static member function calls printer, as it calls printer. I

go and check is this pointer null. If it is null there is no object constructed so far if it is not

null, then object has been constructed. So if it is null I construct an object. I do a new

construct the object and put that pointer to this and return that object. Now if it has been

constructed that is if the pointer is not null then I do not construct it again, I will just return

the same object.

So I get both the points that were asked for in a singleton that is, this will ensure that I can

create exactly one object not more than that because the my constructor is private. And there

is a single point of access that point of access is this static member function. Every time I

need that printer I call that member function, it gives me the same printer. First time it

reconstructs and gives, second time onwards it just keep on giving the earlier.

So this is the basic idea of a singleton and this is by using the static data member and by this

design paradigm that is you put the constructor in private, you have a marker to remember

that object that is in private and you have a single point static member to decide whether you

need to construct and object or not and return that will give you a singleton module which

here we are showing in terms of printer, it can be done similarly, for any other object type.

(Refer slide time: 31:34)

Interestingly there is another alternate design to this where again all that I do is in this access

function for the printer. I have defined a function local printer. I am not maintaining, my

constructor is private, my destructor is private. Because I am not going to allow any other

construction but I am not maintaining a separate pointer as a private member, rather I have a

local static variable in the access function which is of the printer type.

So what happens, what is the property of local static variables? Is that, they get constructed

the first time the control passes through this point and then they are remembered because they

are static, they are remembered across the calls to this function. So the compiler does your

job what you have been doing by putting a pointer, checking that whether it is null, setting it

to be not null and returning it everytime, you do not have to do any of that.

The compiler will take care of all of that because that is the behaviour of a static local

variable of any function. So in the access function I simply make it static local and then I

simply return. So what will happen first time I call this here, it has not been constructed, it

will get constructed and remembered, second time I call it, it is it will not constructed again

because it has been and the same object will be returned.

So it is even a simpler solution this was originally proposed by Scott Meyers. So often this is

referred to a Meyer’s singleton. You can use this design which is very simple, I mean you do

not have to remember anything, all you need to do is put the constructor and destructor in

private and then have the access function.

(Refer slide time: 33:47)

So this brings us to the conclusion of module 16, where we have introduced static data

members and static member functions and discuss the use of static member in the C++ design

and particularly discuss the singleton class design pattern. Thank you very much and we will

meet in the next module.

