Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur
Modulel5 Lecture 15
Const-ness

Welcome to programming in modern C++, we are in week 3 and going to discuss module 15.

(Refer Slide Time: 0:35)

Fal
- + Module Recap
{1

¢ Copy Constructors
o A new abgect is created
o The new object is initiafzed with the value of data members of another object .

¢ Copy Assignment Operator
An object is already existing {and intialized)
o The members of the existing object are replaced by values of data members of

another coject
o Care is needed for self-copy
« Deep and Shallow Copy for Pointer Members
o Deep copy allocates new space for the contents and copies the pointed data
o Shallow copy merely copies the pointer value - hence, the new copy and the crigina
pointer continue to pomt to the same data

In the last module, we have introduced very critical concepts of copying, as a construction
when the object does not exist, and copying is an assignment when the object exists and

being overwritten. And in this context, we have mentioned or discussed about deep and

shallow copy issues, which are very critical.

(Refer Slide Time: 0:54)

Fea
tB¥: Module Objer
x

o Understand const-ness of cbjects in C+—+

o Understand the use of const-ness in class design

In this module, we will look at the effect of const-ness in the design of the user defined types,
we have seen const-ness in the context of built in types. What does const mean? What can

you do what is a constant pointer and all that.

(Refer Slide Time: 1:15)

+ Constant Objects

Constant Objects

We will see the consequence of all that, in terms of the objects data members and its member

functions, that is the basic objective.

(Refer Slide Time: 1:22)

o Like cbjects of built-in type, objects of user-defined types can ko be made constant ol

o |f an object is constant, none of its data members can be changed

o The type of the this peinter of 3 constant cbject of class, say, NyClass is

const const Ut

const MyClass « const this;
instead of

const : gomst Ut
NyClass # const this,

as for a non-constant object of the same dass
o A comstant objects cannot invoike normal methods of the dass lest these methods
change the chject

o
Prgrommey = Modvee Pete Mt De M b

So, a constant object is an object which cannot be changed like user defined types, any object
can be made constant, and an object is constant simply means that it state cannot change,

nothing can change in that object in terms of the data members.

So, when you do that, what happens in the this pointer type of the this pointer in the for that
particular object changes. So, earlier this pointer was it was just a constant pointer, because

you cannot change the identity, but now, you have put you have a const in front of this, which

say that the object pointed to cannot be changed. So, nothing can be changed in that object.

That is the simple extended idea of constant object based on the...

(Refer Slide Time: 2:16)

#incicde <lastream?

t sPab) 1 mpPriMesder, (nfri), ayPdd®esbar, (abub} |
petarn ayfridesher ; |

2 1) { mPri¥esiar, = 1])

at < pyPrifegber, <C ', Y < pyPbianter, << wodl; |

« mdl

ey Oy
Oty setMember| |
Oty nyPMarher

So, here is a non-constant object. So, | have a private member, | have a public member,
please note that here | have not written private, if at the beginning, | do not write anything,
then it means private always. And then | have written so | have a private and public member,

and | have provided get member and set member on my private member vs.

Public, I do not need to do I can directly access that. So, | can make all sorts of changes, I can
read both of them, set both of them, print and all that. This is the usual non-constant scenario.

(Refer Slide Time: 02:58)

Placicte <lastresmd

uslag rasespace and

class MyClass | Lat eyPrivesber ;. pebilic: it wyPsbMesber_;

" (iet oy, lot 2Ped) Frieader_(aPrl), syPlasber_(aiub} ()}
1old satVesber(iat 1] { syPriVesber_ e 1;)
redd prisel) [cout ¢¢ ayPriMesbey ¢¢ Y, " < pyPublasber <C wedl; |

int sanl) (coass MyClass syCoastld)(5,)

eabar, * 0]

o It it rot alowed 1o irecke methody or reabe charges in contant obgect syComtOby
camet comwert ‘this' pointer from "corst MyClass' 1o 'WMyClaws &

myConstOb) wou canmct amign to # warkable thet s comt
reeet this comst MyClans * comt MyOam * comt

constast member fnctions

Prgrommy w Modors

What happens if | make things constants, all that | have changed is in my object creation,
declaration time, | have made it constant like const int, I do a mid const MyClass. So, it says
that if it is constant, then what is the change that is going to happen? The change will be that
this pointer of my constant obj is now cons MyClass because it is a constant object.

So, it is this pointer has changed with this const whereas, these functions, member functions
that you have written whether it is a get member or a set member or print all of these expect a

this pointer which does not point to a constant object.

So, even you would see that why is getting member not working is get member is not actually
changing it get member is just getting the value, but the compiler will not make it work
because get member here expects this pointer of the type which is constant by itself, but does
not point to a constant object, whereas what it gets is including this constant, so there is a

type mismatch and it will not allow that call to happen.

So, with that, you can you can see that this will not work. Obviously similarly print will not
work set member will not work. None of this will work. This will also not work. This is there
is no function call this is just an assignment; this will not work because that is your basic

state. So, you cannot make an assignment to that.

So, that is the, that is the simple interpretation of the constant object. So the key point to note
here is you cannot change anything, that is fine. But the key point is even if you want to
invoke a function, which does not change anything, you are not being allowed to do that,

because the compiler cannot distinguish.

(Refer Slide Time: 5:32)

+ Constant Member Functions

Constant Member Functions

.

Prgrommey = Modire

So, we move on to handle this situation that in a constant object, | should be able to invoke
member functions, which does not change the object with the constant objects in the state

cannot be changed.

So, if I have a member function, which does not change the state of the object, it should be
okay to call that, if it had if there is one, which can potentially change the state of the object

that must be guarded that must be because otherwise the const-ness will disappear.

(Refer Slide Time: 6:11)

Constant Member Function

¢ To declare a constant member function, we use the keyword comst between the function “
header and the body. Like 0

vald print() conet | <ost << mp¥esbey_ << endl; | =

¢ A constant member function expects 3 this ponter a5

const MyClass ¢ 2ozt this 3 !‘
and hence can be invoked by constast objects [
® In 2 constant member function no data member can be changed. Hence,
¢ \
vald cetMesteriiat 1) coast
| sytemder_» 4) fata mesber camst be chasged ‘
gives an error
o nteresting, non-constant cbyacts can invoke constant member functions (by casting -
we discuss later) and, of course, non-constant member functions
o Constant ctyects, however, can only invoke constant member functions
o All member functions that do not need to change an abject must be declwred as ‘
constant member functions ‘.{
Pagonmg & tiow Fri Py e e 18

So, C++ introduces what is known as constant member function, what is simply does is it

puts the keyword const after the prototype header, and before the body between these 2, the

header and the body, it writes constant what change does it bring into the compiler, it tells the

compiler that pass a const MyClass * const this pointer as a this pointer to this function.

So, now, the match will happen. One, the secondary tells the compiler is that this function is a
constant function constant member function. So, do not allow any change to happen to the

state of the object within the body of this function.

So, if I, if we look at 2 functions, there is print, which just accesses the member reading the
value, and there is set member, which | have also defined as const, where | am trying to set a
value now, this will be fine, but this will be a compilation error, because in a constant

function, you cannot change the state of the object.

So, now, you have the full story covered constant object does not change states member
functions, anything that | want to use without doing a change, | can define them as constant
and anything that changes the object cannot be invoked on this particular constant object. So,
if 1 define a function to be constant, then try to do something within that to change the state, it

will not be allowed in the compilation. So, that is the basic idea.

(Refer Slide Time: 8:12)

P
Lﬁ;i- Program 15.03: Constant Member Functions

Outpat
ood —
114
yConstid) . pristl)
myComtOb getMerber() oo print(| wetMoriden)
myConstObyj reyPubMertber. |
« myO%) getMember() print{) wtMemiver() ‘1
Prgonmmg @ thuhes Peds Fryim e

So, now, let us look at this. So, I again have 2 members, public and private, the constructor
the get member | define is const. That is even if the object is constant, | must be able to get
that there is no problem. The set member is done as non const then that is it will not it will
take myClass * const this because it wants to change the data member that clearly tells the

compiler this function will change the state this function will not change the state.

Similarly, print | make const because | only want to read the public and private members and
print them | do not want to change anything. Now, let us define 2 objects one is myQObj and
another one is myConsObj, this is non constant, the second object is constant. Now, if the
object is non constant, then | should be able to invoke any member function.

If the object is non constant, | should be able to invoke anything it does not matter. So, | can
invoke the non-constant member function, | can also invoke the constant member function
because the constant member function says that | am assuming the object cannot be changed.
So, if I give it an object, which is okay to be changed, and that function does not change

anything, 1 am not violating anything.

That is in other words, you are in other words, any pointer like X * const this and const X *
const this where X is the name of the class, any pointer which is non const pointing an | mean
any pointer which is pointing to a non const object can always be treated as if pointing to a

constant object there is no violation. So, this is what as we will see is a valid pointer cast.

Whereas, if | try to do this then it is a violation if it is this is saying that the this pointer is
pointing to an object which is constant | cannot change that to a pointer which is pointing to a
non-constant object. So, for that, so, the consequence as you will see is that on the non-

constant object | can do anything of course, | can do direct assignment also.

But for the constant object, | can do this which is a constant function get member, | can do
this which is a constant function because the guarantee that they will not make change, but |
cannot invoke this if I invoke this, I am trying to change a this pointer pointing to a constant

object with this pointer, which is pointing to a non-constant object which is a violation.

So, if I try to do this, the compiler will not allow me it will give me a compilation error and

obviously, I cannot do the assignment.

(Refer Slide Time: 11:39)

" F—
2 % onstant Data Miembers
==

Constant Data Members

.

Prgrammy = Modirs Fa®s M L

So, by combining the const-ness of the data member and the cons and const-ness of the object

and the const-ness of the member function, we can easily invoke any member function.

(Refer Slide Time: 11:49)

Fal
i‘ﬁi Constant Data members

o Often we need part of an object, that is, one ar more datz members to be constant
(nan-changeable after comstruction) while the rest of the data members should be

changeable. For example

¢ For an Employee: exployes 1D and Do shoukd be ingeablo while ‘
designation address, salary etc. should be ch [

o For a Student: roll nusber and DoB should be } itve while year of ‘
study, address, gpa etc. shoukd be cf

o For a Credit Card'; card nusber and naze of holder should be
while date of lssue, date of expiry, address, cvy nuaber

etc, should be

o We do this by making the ingeable data members 3 constant by putting the
const keyword before the declaration of the member in the dass

o A onstant dotas member cannot be |l\.r|g|'t: oven i a non-constant II"|I'| 1

o A constant data member must be initialized on the mitinlization [ist
May not hold for & caed thas chasges number on re-isus .1

Now, let us see what happens with the data members. Now, if | make a object constant, then
the entire of the object is constant. But oftentimes, | have designs of classes where only a part
is constant. For example, the several examples can be constructed here is an employee

employee’s ID is not expected to change employees Date of Birth certainly cannot change.

So, once you have created they are fixed, whereas, the employees designation employees

address salary this could change for a student the roll number and date of birth will not

change, but suddenly address by GPA year of study will keep on changing for a credit card,
maybe the credit card number and name of the holder should not change but others can

change.

So, it is not enough to be able to just define an entire object as constant, | want to make just
specific data members to be non-changeable as well and it is just an extension of the idea of

const-ness which let me do that.

(Refer Slide Time: 12:53)

Fa
Lﬁ;" Program 15.04: Constant Data Member

xhonx she charges 35 corstant dats membens in myOby
bvalve specifies corat chject

' |
. Ol you Cannat asign 10 2 varlable that ks corst o
Vogommng @ Meders Pabs o L A 1

So, now | have 4 data members created 4 data members in this design for our understanding.
So, there is a data member cPriMem_ which is a private constant data member, which means
that I will I should not be able to change it ever, whether the object is constant or the object is

not constant, and then I have a normal private member.

Similarly, 1 have a public constant data member | have a public normal member | have a get
and set on the constant member. Now, the gait obviously, will work because | can read, but
the set is trying to change this mind you the object is not constant, the object is non constant

object is non constant, but | have told that this particular data member must be constant.

Therefore, making any change to that is not allowed and the compiler will give you this
assignment error whereas, if you want to try the other one this one which is a non-constant
data member, then you will be able to read it as well as write it. So, if you try to try this out,

then you will see that there is a problem with the setcPrime member function which cannot be

compiled because of the const-ness is similarly here you cannot make a direct change to this

data member even though the object actually is non constant.

(Refer Slide Time: 14:44)

Fa
¥ Credit Card Example
il

\Ve now Sustrate constant data members with a complete example of CreditCard class

with the following supporting classes
o String class
¢ Date dass

o liaze dass

o Address cass

4
Prgrammy » Modbes Pt Pptn B (P31}

So, we using this you can you did a practice | hope of the credit card and related classes
earlier. So, now you can introduce the const-ness in this very nicely and make a design,
which can keep all these promises of what values should change and what values should not

change, I am sorry.

(Refer Slide Time: 15:10)

Fa
Lﬁ;{l Program 15.05: String Class: String.h

sar_(strdop(n.esr_ i), len (strlenlazr })

1 praes(l; coos <¢ endl;)
ko) |
tr, = stréupls.ser)|
len, » plen;
|
I
Teturs '
|
“Btring() | cost << “String dtocr *; primt(); coot <¢ endl) freefstr.); }
i sanet { cest << atc;
I
¢ joim g
— @ Uhndrs - A1

So, this is a string, this is a string class, which is just for support, this is a date class that you

have seen, what | have added, we have added const here. That is it is at even if the date is

constant, like in date of birth, I should be able to print it, | should be able to validate it. And |
should be able to say which day is it, right, so there is that. So, and we have also included the

copy constructor and copy assignment operator to be able to work perfectly.

There is a Name class, in the Name class, we have the print made into a constant member
function so that | can print anything that | want. Additionally, we have put the copy

functions, we are now just trying to show you how slowly the design builds up.

(Refer Slide Time: 16:22)

+ Program 15.05: Address Class: Address.h

Sirciude <lostremn
ining omerpace tE;

siazs Mdress | wnsigned int Bszeedo, . Soriag st city,, piagi
Feblic
Isdrensimniped int kn, coast % chare oo, <etet chare pinl

| sze2)i
dddresak o st Addreasd a
beesedy aselio_; street_ » Loatr
“Mdrasal) €< "Address dtar: V) meleti);
vold print riat
e <

Then have the address class. In the address class, again, the print is a const function, copy and
assignment operators are added. | am just flipping through, you have to really study this code,
understand how to write them again and try it out on your compiler and see what you are

getting.

(Refer Slide Time: 16:43)

Plazice Claatowed
using canespace atd
Uate.d"
“Haae b
"Miress)"

., Chosbay

o() cardater,;)

-)
) | secvelate, = d;)
Poted 4) | wxpirgDate, = d;)

e |

So, finally, the credit card class the Credit Card class has again, the same type of changes
print is made const you have, you have the total credit card constructor. And you have been it
will be able to with this construct any credit card information.

So, you have credit card constructor here, you have the red card destructor here and you have
after construction, you have all different functions given to be able to change the respective
values like the name of the holder, address of the holder, issue, date, expiry date, CVV
number and so on so forth. That is our initial design.

(Refer Slide Time: 17:36)

P T -
‘Lﬁ;“ Program 15.05: Credit Card Class Application

Placiste <lastowam?
uzlag rasespace and
#lazisde “Creddtlard 2"

ot sainl) | Credielaxd co{"EIUTIIIONND™,
221, "Baker Eurest*, "Lasdee®,
toet <¢ endl; ce.peint()] cout <¢ endl

o We could chonge adfress, asie date. explry date, 39¢ o, T o Ine
o We coudd change the roeme of the hoider! This shoukd sct be Slowed B
Pogpommng @ e Pk P -

Now, | write an application with that. So, this is the object | am constructing the card name,
the holders name Sherlock Holmes, the holders address 221 B, Baker Street in London, and
so on, and the date of issue and all those I mean, these are all obviously, you know,

meaningless data.

And | can change that to the name of say Mr. David Cameron residing in 10 Downing Street,
in the data and all that | can make all these changes, and you can see the effect. So, you can
see that the designer have provided does everything. But it makes the class vulnerable

because | was able to change even the name of the holder.

I have not changed the credit card number. But the name of the holder has been changed from
Sherlock Holmes to David Cameron, this obviously is not acceptable, right, it has to be

stopped it should not be possible to do this. So, now I introduced the const-ness here.

So, what I do I make name a constant data member that is you can once you have created you
cannot change that anymore. Once | do this, then the set holder function will no more
compile because | am assigning to that right. So, | have to get rid of this function because if
the name is constant, there is no need for it set holder. So, the cleaner one, | have moved the

set older function, done clean code.

(Refer Slide Time: 19:26)

Fa N— -
iﬁi Program 15.06: Credit Card Class Application: Revised

o Mowever, & i il ponsible 1o reploce o edit the cond mardier. This t00. should de disaloned '.‘
s Pus Protm

-

Now, so now | have the revised application. In the revised application, what | am doing is |
have removed the set holder function. So, keeping the card number same and just changing

the name to Mr. David Cameron is not possible. So, that part of the code | have commented

out but it is still possible to edit or replace the card number which should also be disallowed.

So, how do | put that constraint? So, | said this is the card number issue.

So, what is the card number card number is a string which is you know dynamically allocated
and initialized with value at the at the time of construction, right. Now, to make | want 2
constraints 1 is | want to make the card number non replaceable, that is | should not be able to
change that card number and put a different card number. What does that mean? This a
pointer. So, | need it to be a constant pointer because then | will not be able to change that

card number to something else you have already understood.

The other is | also need the card number to be non-editable, I should not be able to change
few digits in it which means that card number pointer, the string that it is pointing to that
should also be a constant it should be a constant string. So, requirements of having the card
number non-editable and non-replaceable is to convert this pointer into a constant pointer to a

constant char*.

(Refer Slide Time: 21:28)

P —
iﬁ;‘- Program 15.07: Credit Card Class: cardNumber. Issue

o Further, copy of Cou ooy of comt e a0t 4
« We need 1o mowe these codes 1o the initiafiation let 4

Vrgrommng @ Medors

So, now, | have done that have made it into constant pointer to a constant char*. So, it is it
cannot be changed after the construction, the name of the holder also is constant. So, that
cannot be changed. So, with this now, we will have some problem, because when we were
doing this allocation in the constructor, this is what we wrote that is at that time, it was not

card number was not no const-ness anything.

So, what | said is it is the initialization list has happened up to this point, the body has started
body ends here within that | have taken the cNumber parameter of the constructor found out
the length incremented by 1 for the null character | have allocated dynamically a character
array of that size.

And then once the allocation is done, | have done a string copy. Now, here, the point to notice
once | have made the type constant pointer pointing to a constant object, the first thing I
cannot do is make this assignment because the card member will be initialized with nothing
that is garbage in the initialization. Once | have entered the constructor body remind you in

terms of the object lifetime has started.

So, now | have an object. So, card member is now an object by card member is now a data
member of an object which data member must be constant because the object lifetime has
started. So, if | had to do anything with this pointer, I had to do it in the initialization list, 1
cannot do it here. So, this will have an error because | am assigning to a constant pointer. In

the other also when | am doing and strcpy.

This is quite obvious because | am trying to copy and change the string that is pointed to by
the card number by trying to make a copy which obviously is not allowed. So both of these
will fail. So, we have a very nice design in terms of the data member of the card number pro
having protected it for making it non replaceable and non-editable, but 1 am not able to

construct object.

So, what I have to do is you must have understood that by now is I will have to use all this in
the initialization list itself. Because once I am here, no changes can be made the object
lifetime has started. So, let us see how to do this final correction.

(Refer Slide Time: 25:00)

K S
iﬁi Program 15.07: Credit Card Class: cardNumber. Issue

a5t chars ¢o, casst chare pis,
aplryteanh, TINT axpiryVear,

VINT zwy)

1, lasseMoond, lseveYear),

coot <¢ endl; deletel] cardbaster |)

vl card¥uaber
o AN comtant data menkers must be initislived in intiakcation int :‘l

So, so | say that card number issue dissolved. So, this is what we have. Now what | do, |
have put a single line initialization for the card number, just see how | am doing it, because
you will often need to do this thing, particularly for constant string to constant data, | have
taken the found out the length how much of a big size array we need, | allocate that and use

that as a destination for strcpy.

And the source is C number, the beauty of strcpy is it returns the copied string, same pointer,
right. So, whatever has been allocated here, will be first used to copy cNumber into that, and

that that same value will be returned by strcpy.

And get initialized in the cart number. So, this is a very typical code. And you might just, you
know, want to try it out with different types and get convinced but this is a very nice way of
making sure that if | have a constant pointer to a constant string or constant object, then how

we can initialize it and get started.

So, once | have that, naturally, the body has a constructor has no further code other than just
printing the object just to make sure that you know, we get to see what is happening right. So

this is my card number completely unchangeable.

This is my holder name, which cannot be edited. | am ready with the kind of design | wanted
for my credit class, credit card class and all data are initialized in the initializer list. And that
is preferably should be done. Unless there is a very compelling reason to put some

initialization code in the constructor body. If you design it, well, it will not be there.

(Refer Slide Time: 27:18)

- J——
2 + mutable Viembpers
=X

“ 8 3

mutable Members

utable Data Members

o While 2 data member is 1 “enina t obyect, 9
mutable data member is ; ina il
¢ xutable & provided to model i ‘ against the default |

fact t-ness of C4+ « |
o Note that
o nutable is applicable only to
r= cannot be declared zatable
cannot be declared nutable
const dat bers cannot be deciared mutable
o |f 2 data member is declared mutable, then it = legal to assign a value to it from a
canst member function g

Before we conclude, | would like to just remind you of another feature what you have seen is

constant is all over the whole object can be constant, and for that to deal with it I may have

constant or non-constant member functions data members can be constant. But what is this

const-ness that means a constant data member means that it cannot be changed even in a non-

constant object.

So, either the whole object is constant or a data member is always constant. But if | want to

say that well, I want to change a particular data member even if in a constant object. How do

| do that? So, that is where the whole concept of mutability and mutable you understand

something which you can change.

So, the const-ness as we have treated so far, is again called the bitwise const-ness that any
data member is const-ness, you cannot change any between. Remember, a whole object is

const. You cannot change anything in the state.

But that bitwise syntactic const-ness is not always enough, I may want logical or semantic
const-ness, which is what is provided by mutable so | can say a data member is mutable so
that even when you consider the whole object constant bitwise that particular data member, |
would be able to change. That is a specific semantic context in which it comes in. And it is

applicable only to data members.

There is nothing like a mutable variable reference data members cannot be mutable static data
members, we have not discussed yet when you come to it cannot be mutable constant data
members obviously cannot be mutable. So, if a data member is declared mutable, then it is
legal to assign a value to it from a constant member function, which is not possible for other

cases.

(Refer Slide Time: 29:30)

Lot getien{) ceast
weld setfanilar 1) | mes_ o
Lot get¥utablees)) cosst | reteen mutebleMes ; |

rold set¥utablefes)int &) const | mutebleMes_ = {;)
ut sa1nl) { cosst MyClass syCoastlb)(l, 1))

<< 25Ceand] getiesi) << exdl]

et << syConutlb) . petMutableMen() << apdl;

2yCoasttd] . setiatableManid) |

+ setMutableMen(| oy ComtOby
» sctMutableMen() mtableMom. mutableMoor. - mutable
myConstOby setMerd | nem.

o " |
D
[—— T Pt Pyt Be A ®

So here, | have a mutable, | have a normal member and a mutable member a constant
member function to read that is, that is fine. But what | have is a constant member function to
set and | can set the mutable this member here. 1 will not be able to set mem_ here, because
not mutable. So, once the function is constant, once object is constant, it cannot be changed.

But this one, particularly just this part can be changed.

So, if I define a constant object, | can invoke get mem on that, because it is constant, | cannot
invoke set mem because it is not a constant member function. This we have already seen, I
will be able to invoke get mutable mem, because it is const, | will also be able to invoke set
mutable name, because it is const, though, it actually changes the value of the variable. So,

there is a very fine grained contextual control on the const-ness that is provided.

(Refer Slide Time: 30:46)

Fa ‘ :
Lﬁ;{ Logical vis-a-vis Bit-wise Const-ness

o const in C++, models ! comtant, Once an object is declared conss, no part
(actualy,) of it can be changed after canstruction (and initialization)

o Howeyer, while programming we often need an object to be logealy constant, That
the concept represented by the object should be constant; but if its rapresentation nee
more data members for computation and modefing, these have no reason 10 be
constant

e mutable allows such surrogate data members to be changeable in 2 (bit-wise) constant
object to mods! logwcally const objects

o To use mutabla we shall look for

e A logically constant concept
o A need for data members cutside the representation of the concept: but are reeded
for computation

o
Prgrommng » Medies Fa®i Ve L My

So, const in general in C++ is bitwise constant. So, once the object is declared as constant, no
part no bit can be changed. But to support const-ness, which is logical, which often
programmers need the mutable feature is provided. So, to use, mutable we will look for a
logically constant concept, and data members need for data members outside the

representation of the concept but needed for computation. quick examples.

(Refer Slide Time: 31:28)

K S "
‘kﬁi Program 15.09: When to use mutable Data Members

o Typraly when 3 cless representy 2 coratant concept, and

o It compites 3 wale firt time and caches the result for Srture e

So, I will just show you positive as well as negative example. So, this is when to use mutable
data members, for example, here, 1 am showing that I have a math object, which has a
function pi. So, on the math object, I call pi, | will get the value of pi. So, to compute the pi |
have provided and what this algorithm is terribly slow and all that, but that does not really

matter. What | do is | cache this value of pi.

So, I have a cashable Boolean, so, what it does the first time at construction, it is put false.
So, the first time | call pi, it is false. So, it does this slow algorithm, but then the value of pi
will not change to whatever value of pi has finally been computed, after this long process. It
will be remembered in pi. And | say that the cache is true. So, from the next time, it will just

look up that well, fill it in pi.

So, that is it, that is the that is a typical design. Now, in the in my use, | have obviously my
object has to be constant, because the value of pi and so on cannot change. And | am
invoking this which is a constant member function, it has to be because otherwise on constant
object | cannot, but | needed to change the both this | needed to change the value of pi in the

context of doing it first time, which is a computational requirement, logically pi is constant.

But the first time | am doing the pi is not there. So, | have to be able to compute and put it so
that is the reason | am putting this mutable and to support that pi cache is also mutable. So,

even in a constant object, the variable the data member is made mutable so that I could

compute it on demand and henceforth, whenever | want | will use it naturally these are these

are somewhat advanced risky design concepts. So, you have to use them properly.

(Refer Slide Time: 33:43)

Proper Design [const)

class Emplayee | cocot string _sase, i

The second | show is when not to use mutable, you know suppose you have an employ class
and you say that mutable double salary because the name cannot be changed, it cannot be
changed. So, it is fine you say that okay. | will make the entire employee object constant and

allow the salary to be changed with the salary can change.

So, | have getName, getld, getSalary all this as constant member function, I have promotion
as constant member function and so on. And it changes a salary which is allowed because it is
mutable. This is a bad design. programmatically, yeah, you will get through, but this is not

the design for which you should use mutable because conceptually employ is not a constant.

Conceptually an employ object is not a constant only its employ’s name and id are constant
but otherwise it is the it is an evolving object. So, this is this is not a preferred design. What
you should do is rather make name and id constant and there is no need to make it mutable

because you should not be treating employ objects as constant.

You just make sure that name and id cannot be changed so, get name will still have to be
constant getld will have still have to be constant, setName and setld must not be there
because you will not be able to change them, they are a constant, getSalary will be a constant

and promotion would be there as a normal member of promotion.

So, please understand this difference that it is not that you can just use mutable with cons and
make something work you have to ask yourself conceptually is this object constant. So, by
conceptually whatever is constant you go by that, then rest of it you handle either by const-
ness of data members or by mutability of data members and you support your design through

the constant member functions.

(Refer Slide Time: 36:08)

‘rﬁ“ Module S
’ s Moduie Summary
=

o Studied const-ness in C+—

o In C+=, there are thres forms of const-ness
o Constant Objects
No change is aliowed after construction
» Cannot invoke normal member functions

o Constant Member Functions
Can be invoked by canstant (as well as non-constant) cbjects
Cannot make changes to the chject
¢ Constant Data Members
& No change is afiowed after canstruction
» Must be initisfized in the initislization list
o Further, leamt how to model fogical canst-ness over iit-wise const-ness by proper use
of mutable members ‘

|
o
Prgramng @ Medies Fe®s Mg L ™

This is in just what your you know design of const-ness should be doing talked a length about
various kinds of const-ness and mutability, Thank you very much for your attention and we

will meet in the next module next week.

