
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture No. 02

Recap of C/1

Welcome to Programming in Modern C++. We are going to discuss some preliminary

content, which will be useful for you. So, we are sharing this as a week 0 content. So, I mean

week 0 is not where the course formerly has started, but you are seeing this video to get

prepared rightly for the course. So, there will be couple of videos on the week 0 which will

enhance your, requirement of, I mean meeting the requirements for the prerequisites.

So, the first step that I will discuss is quick recap module, is called a quick recap or QR

module where I will run through the C language in brief. Now, you might think as to why are

we discussing C language, while you have come here to learn programming in modern C++.

And what we expect is you are already familiar with the C language and preferably, you have

already done quite a, quite some programming in C.

So, if you have done that, this module is not for you, you can just may not waste your time,

just skip it. But if you have some, some brown areas, gray areas that well, what happens here

in C and so on, then it is good to go through this module, this will at least tell you what are

the things that you must be aware and good at when you come to the first week lecture and

start discussing C++.

Because in the entire of this course, I am going to assume that you know C, I am going to

make innumerable references to C because C++ has built on top of that, it has the legacy of

that it has the power of that, it has the compatibility issues with that, it has mixing issues with

that. So, knowing C is very, very important.

(Refer Slide Time: 02:38)

So, quickly, we will revisit some of the concepts. And just I mean, this module also is I mean,

if I want to talk about C as a language, it will take probably 40 modules, 50 modules, this is

not that. This is more like pointers, that these are the things just check you know, if you have

issues, go back, check the text, check the C books and so on.

(Refer Slide Time: 03:08)

So, this is everybody starts here, the Hello World program, which includes stdio.h for being

able to print something and it is included as an input for input and output. And you must have

a main function, which by the current standard must return int, do not write main function

with returning void that, that is not, that convention is over, that is become dated now.

And then you return 0 at the end, return 0 means that whatever your program had to do, it has

done successfully. Otherwise, we will see later on that you will return minus 1, minus 2

different other values, typically negative values which tell that you have some error. So,

when you, you will see me during the different modules through the course you will, many

times you will see that I have not, I am not writing return 0 that is just to keep the program

text short. But return 0 should always be written, even if you do not write return 0, main is a

special function where the compiler ensures that unless you are returning anything else, it

will return a 0.

(Refer Slide Time: 04:35)

So, you know there are different data types it is very important to understand the data types of

the language. The basic ones are char, int, double and float. There are a lot of variations of

that, which are, which are called integral types like char, int. These are integral types so is

enum, and there are floating types or floating-point types which are float and double.

Additionally, C89 standard, if you are not familiar with the standards in C, do not worry, I am

going to talk about the different standards of the C language. Because the language, C

language itself is also changing. We will wonder that it is changing, almost as fast as C++ is

changing.

So, if you are using something, some C language which is, which is expected that you are

using something which is C89 Or later C95 Or C11. Then you have another type which is

defined as underscore bool in a particular header, you will, you will hear me discussing this

in the first week of the course. So, enumerated type is also another subset.

(Refer Slide Time: 05:54)

Besides this, you have a special type known as void. Understand void very well, void is not a

type, but it can be placed at different places where a type is expected but you do not know

what the type is. But not everywhere, like you cannot have a void as a function, a function

parameter has a type void and passing. The most two most common use of void in C and

subsequently in C++ also in C is.

One is when you are when a function does not have anything to return, it just returns a

control but no value to return, you put void as a return type. This is one use which is which is

very important. The second use is using a pointer to void, void*. So, whenever you are, you

have a pointer to a memory location, but you do not know what kind of data type is residing

there, what data of which kind of data type is residing in that memory you call that pointer as

void* and it can be then cast to any other int*, float*, double* this kind of.

Or many of the common library functions like malloc uses the void* pointer as a return. So,

these are the two primary usages, there are a few more shades, which I will discuss when you

actually go through the course. Naturally, there are different derived types, all of which you

must be good at, array, structure which includes struct and union, pointer, function and string

is not exactly a type.

But with the string.h header, you can deal with a string as if it is a type but it is not an, I mean

do not get me wrong, it is not a part of the language. And therefore, it is not a data type in

that way, C does not allow you to define data types of your own. Then there are certain type

modifiers, which say I have int, then I say I have short int, so it is a modifier. So, what we are

saying that it will behave like the int, except that it is shorter than int.

Maybe my int by default is four bytes. Short int will be say two bytes. Your, your system

manual will define that there is no, it is not defined in the C standard. Short int may also be

abbreviated or written in short as just short. If we just say short x, it means short index.

Similarly, you can do the other thing, you can widen a data type up to the extent supported

that is by using long. And you can treat a data type as signed or unsigned, whether it is int or

it is particularly used with int and char.

(Refer Slide Time: 08:50)

You know the variables, the name given to a storage area. Every variable will need in C as

well as in C++, every variable needs a declaration. So, when you put the data type and the

name of the variable and that must happen, that statement, declaration statement must be

there before any use of that variable is possible. So, that is a declaration which is must for a

variable.

You cannot use variables without declaration in C or C++. Variable names as can have alpha,

all alphabetic characters, lowercase, uppercase, and all ten numeric digits. It can also use

underscore. But it must start with an alphabet or a letter or the underscore character, it cannot

start with a numerical. Like 10i is not a valid variable. You have done all this, just to you

know recap into.

(Refer Slide Time: 09:56)

Then variables, once you have the variables declared, you can also initialize the variable.

Initializing it is while you are declaring, at that point itself, you can set what is the value it

should start with. So, these are different examples of initialization, it looks like an

assignment, but it is not an assignment. Because you are just defining this, what is an

assignment?

Assignment is when you have a value and you are putting another value into that. But here,

the variable does not exist till it is declared. So, you are saying that I am declaring density as

a double type variable to start with the value of 0.0. That is the, there is the initialization. And

then you can define different values for the variable by doing assignment operator or by

analyzing pointers and so on you, you must have had used this. So, these were more, these

were initializations were these are assignments that you get. So, know your variables and

their declaration, initialization and definition and assignment will.

(Refer Slide Time: 11:08)

Note that, every data type that you have in the language. We call them the built-in type has

certain format in which the constants of that type can be written, these are called literals. So,

if I write 212, it means a decimal literal. We are writing it in the base 10 number system, it is

an integer in the base 10 number system. So, it is int and the decimal literal. If I put a 0 in

front, you will think okay, it how does it matter?

It does not matter? No, it does matter in C, if you put a 0 in front, it is not taken as 173 in

decimal, it is taken as the number 173 in octal literals. Where the base is basically 8. So, it is

3 into 8 to the power 0 plus 7 into 8 to the power 1 plus 1 into 8 to the power 2. Similarly,

you can have a binary literal by starting with 0b and then writing the 10 digits.

You can have a hexadecimal, that is based 12 literals, written with starting with 0x so no.

And remaining are, I am, I am sure you are more familiar with how to write a floating-point

literal, a character and a string. Now C89 onwards, you have something called, a something

called values being constant, it is called constant. So, these are literals are always of the

constant type.

When we when I talk about constants in the course, you will be able to relate to that. But just

if you are not familiar with constant C, because it is a later addition and maybe not so,

frequently used in C. Then you may want to remember, that all literals in C and C++ are

constants, that is they cannot be changed, literal has a value and that is.

(Refer Slide Time: 13:35)

Naturally there are several operators. And most of the operators are binary, some are unary

and there is one which is ternary. And these operators are for example, these are as you know

these are the most common is a binary. These are unary and occurs in two versions, prefix

version and postfix version. These are comparison operators; these are logical operators and

or and the third one is unary which is negation.

These operations are bitwise and in two-bit patterns or whoring two-bit patterns or negative a

bit pattern or shifting a bit pattern left or right. Varieties of assignment operators, other

operators like sizeof, address of dereference, question mark colon the ternary operator and so

on. So, be very clear about the arity of the operator and depending on the context some

operators have different arity, though they look the same.

For example, star occurring between x and y, two integer variables will be treated as a

multiplication. But if x is of type integer, or p is of type integer, let us say then star p just

occurring before that is a dereferencing operator, which is going to take the, take the address

that p carries and go there and find out, take the value. So, I mean for several please, remind

yourself that the context really is important.

Like plus is binary for addition and plus is unary if you just want to say this a positive value.

By default, every value is every integer or floating-point value is positive, but you can still

write plus 5 to mean that it is, I really mean plus 5. Similarly, four minus, ampersand also has

that it is, it is a bitwise ending operator as well as it is an address of operator and so on. So,

here I have kind of summarize very quickly and in a very short space as to what the arity of

the operators are including, that some of them are used in more than one way. And you must

be very clear and familiar with that.

(Refer Slide Time: 16:07)

So, now along with the operators come the notion of precedence. That is if I write say x plus

y into z or let me make it, let me make it simpler. Say if I write 2 plus 3 into 4, you know that

even though I go through the expression from left to right, 3 into 4 will be done first into 12.

And then 2 will be, it will be added to 2. It is not like you will add 2 plus 3 to make it 5 and

multiply it with by 4.

Because this has a higher precedence in school itself, we learned about BODMAS rule and so

on. So, over the entire range of operators, that precedence you will have to know. So, the list

is given but do not get, do not stay scared. I will, I always follow a very, conservative

principle that, some of course, I know like BODMAS rule, nobody can forget. Or the fact that

in an expression if there is a function called that is going to happen prior to anything else.

These who cannot forget, but there is the list is long. So, if you are confused about what is the

precedence, it is better to use parenthesis, to mean exactly what you meant. So, use this safety

in C as well as in C++. Now, operators do have associativity, that is if there are multiple

occurrences of the operator in this, in the same expression, 2 + 3 + 5, then the question

obviously is that which one will be done first.

In plus it does not matter. But the moment I write it as minus, it matters as to whether I do 2 -

3 first or 3 - 5 first. If I if we do the left one first, we say it is the left associative operator. If

we do the right one first, we say it is a right associative operator. And say in terms of right

associativity in usual, algebra or arithmetic that we learned, we get more often the left

associative operators. Because that is, that is algebraic.

And right associative operators are primarily as we will see are computational. For example,

if there are three variables a b and c of type integer, in C I can write this. So, in C++, so, what

does it mean that I take the value of c put it to b, and the value that have put in I take that

again and put it to a. Now, naturally this cannot start happening from left, it has no meaning,

it has to happen from right.

So, assignment operator is right associative. So, if assignment operator is right associative,

then naturally its different variants like +=, -=, they are also right associative there are a few

others which are right associative as well. So, remember the associativity. And again, if you

are confused, if you do not, remember, use parenthesis to make it clear as to what you are

saying. But the native behavior of the operators will follow the precedence and associativity

along with its arity from the context.

(Refer Slide Time: 19:49)

An expression is what we need in the computation and expression has a value. This is what

you must remember always. The difference between you, I mean I often come across

programmers, when students were confused between what is an expression and what is a

statement. There is no confusion, an expression must have a value. That is the basic thing. So,

a literal or a constant is an expression, a variable is an expression.

And any one, two or three expressions, connected by operators we have just discussed, is an

expression. Because each one of them will have a value, a function call is an expression, if

that function is returning some value. If it is a function, is return type is void, then the

function call is not an expression. Because it does not represent a value. And, of course, there

are near list of examples of expressions. I will not go through each one of them. I am sure

you will know that, I just wanted to highlight the fact that you understand always get it deep

into your mind that whenever we talk about expression, it means it must have a value.

(Refer Slide Time: 20:55)

In contrast, a statement is an action. It is a specific action, so it has no value. So when, when

you keep on taking, I mean literals, variables, operators, expressions, more expressions, keep

on building up building up building up, you always have a value. And then if you want to say

that, well, I am done with it, you can make it into a statement that now this expression, value

I am done with, so make it into an action.

An action might actually have some side effects. For example, I will just give you a simple

example. an assign 3 is an expression because assignment is an expression because it has a

value. Because unless it had a value, you cannot, you could not have done, you could not

have assigned it to b. So, it has a value. But it has a side effect also, the side effect is there is

a memory called a.

Where you have, you are putting this value 3. What is it is an expression? an assign 3 gives

you a value 3. But the side effect is you are putting this value 3 into the memory location of a,

which is an action. So, you can see that, I mean the language is kind of, playing around with

this thing. So, it is not only mathematics, mathematically, an assign 3 is as a value 3. But

programmatically an assign 3 has a side effect.

So that is action, this side effect is action. So, I will say an assign 3, a is an expression, an

assign 3, I would say, I am done with it, that the action. I put a semicolon, and I said this is a

statement, I am done with that. b assigned an assigned 3 is an expression, I make it into an

action, because there are two side effects. One is an assign 3 has put 3 in a b is that 3 assigned

to b as put 3 in the memory location of b.

So, this is now a statement. So, that is that is the basic difference you must always carry in

mind. In addition, there are several statements, which are basically for controlling, the control

I mean controlling the flow in the program as to what you do. So, we call them as control

constructs. And for convenience of the language expression, we say that if we are doing

multiple statements, then we can put them as a block by using curly braces. And think as if it

is one statement. This is a, this is a state textual convenience that we, that we use.

(Refer Slide Time: 24:09)

So, there are several control constructs, I will not go through them. Just a reminder, that you

have selection statement if, if else and switch three, three different ways. One is, if is one way

actually two ways but the else part will just fall through. If else naturally, two-way switch is

multi-way. And you have labeled statements, like case default these are labeled statements.

You have three iteration constructs in C, carries on to C++ for, while and do while.

You must be aware of all of that. And you have variety of jump statements. One is explicit

jump using goto, using a label of, for a for a statement, which as you must be aware is

strongly recommended that you do not use. But again, at some point in the course, I will tell

you some very rare, but strong context where using a goto is useful. But normally you should

keep in your mind that the goto does not exist in your language.

If you want to be a good programmer. Always manage your jumps either by continue or by

break and certainly by return when you are coming back from a function. So, this is about the

statement. So, there are arithmetic expressions which are converted to statements by

semicolon. So, those are called it arithmetic statements and you have variety of control

statements. Besides that, you have statements like declaration statement index and so on. You

know, there are some other, management kinds of statements which actually do not compute,

but actually give tells, tells enough information to the compiler. So, that the overall variable

and memory all these can be managed properly.

(Refer Slide Time: 26:08)

So, in this, quick recap, first quick recap module, I have taken you through the revision of the

concepts of variables, literals, data types, operators, expressions and statements. And again, I

will remind you that it is very important that you understand all of these very well to start

making good progress from the beginning of the course. So, if you are, blurry, gray in any of

these then do make a good preparation on that, do a recap.

Obviously, when I walked through in the first week of the course, after module one, which is

introductory, so in the remaining modules of the first week, I will also show a number of C

examples as a reminder, as well as to show that how coming to C++ will keep on improving

things. So, thank you very much for your attention. I hope this will assist you get properly

ready for the course. And I will have another quick recap module.

