Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture — 14
Copy Constructor and Copy
Assignment Constructor

Welcome to programming in modern C++, we are in week three. And we will be discussing

module 14.

(Refer Slide Time: 00:32)

[ﬁ} Module Recap

o Objects are initialized by Constructors that can be Parameterized and / or Overloaded

o Default Constructor does not take any parameter - necessary for arrays of objects

o Objects are cleaned-up by Destructors. Destructor for a class is unique

o Compiler provides free Default Constructor and Destructor, if not provides by the
program

o Objects have a well-defined lifetime spanning from execution of the beginning of the
body of a constructor to the execution till the end of thesbody of the destructor

o Memory for an object must be available before its construction and can be released
only after its destruction

.
Programming In Modarn 4+ Parths Pratien Day Mi2 “l

In the last module, we have taken a look into the constructor and destructor that the basic
process of creating an object and releasing it with taking care of all dynamic data and so on,
to have a very well defined lifecycle. And we have shown examples of the lifetime of

variables that are objects, that are automatic, that are static and that are dynamic.

(Refer Slide Time: 01:04)

Eﬁé} Module Objectives

o More on Object Lifetime

o Understand Copy Construction

o Understand Copy Assignment Operator
o Understand Shallow and Deep Copy

-

Programming In Modern 4+ Parths Pratin Doy My M

In the, in this module, we will take a couple of more examples of object lifetime, which you
should practice. And we will primarily deal with the issue of copy, how do you make copies

of objects? And what does that mean, in C++ and why is it important.

(Refer Slide Time: 01:24)

“
oramming In Modern C 4+ Parths Pratien Day Mies 9

As you will see, in several slides in this presentation, the title is prefixed with practice in
blue. And those slides are not what I will discuss in the presentation, but those are included
so that you can study them in depth and possibly try them out to have a better understanding

of the respective issues.

(Refer Slide Time: 01:49)

EE Object Lifetime Examples

Object Lifetime Examples

5
Prograising I Modim CH+ Parths Pratie Das Mus o

Here is the module outline as every time.

(Refer Slide Time: 01:51)

#include <iostrean> #include <iostrean>
Hﬂ:ns nmospaco i(d; umng nanespace std;
int init_mi(int @) { t t int init_mi(int) { t t
cout << "Inft mi_: " << m << endl; cout << "Inft mi_: " << m << endl;
return m; return m;
int init m2(int m) { // F t int init_n2(int n) { t t
cout << "Inft m2_: " << @ << endl; cout << "Inft m2_: " << m << endl;
return n; return n;
} }
class X { int ml_; t t class X { int m2_;
int m2_; tializ :‘\ int m1_;
public: X(int iptp2) : public: X(int mi, int m2) :
1. (init_ni(a1)), d 1st sl (init_mi(a1)), |
nZ_(init_n2(x! | n2_(init_n2(a2)) alled 1st
INeott << "CtorT " << endl; } { cout << *Ctor: " << endl; }
X() { cout << "Dror: " << endl; } }; “X() { cout << *Dror: * << endl; } };
int main() { X a(2, 3); return 0; } int main() { X a(2, 3); return 0; }

Programming In Modern 4+ Partha Pratin Do Mieo 9

So, in terms of object lifetime, we want to answer a very specific question in this slide as to
what is the order in which the different data members of a class is constructed, when the
object of that class is constructed? So, you have an object and you have different data
members. So, to construct the object, you need to construct each and every data member.

Those may also be a user defined types, so they will have data members.

So, the process goes recursively in that manner. But with a simple example, we try to
illustrate what is the order in which they are constructed, is it by the ordering which you write

them in the initializer list, or is it by the order in which you list them in the class definition.

So, to start with, we have a sample class containing two integer data members.

And to be able to understand as to which 1 is actually getting constructed, we have created
two insertable dummy functions. So, instead of directly copying the value, we will pass the
value that we want to initialize into this into data member to the init function, corresponding

init function. So, that I can print the message and know in which order they are happening.

So, these are the two data members and | have that in the initialization list, | put the
initialization of m1 first. And I initialize it with the value returned by this function that is, that
is, this is just an instrument to tell us that we get to see in in which order they are happening,
because the print messages will happen in that way. So, | do that and when | see I see that init

m1 has happened first and init m2 is happening second.

Now, the question is, is it because is init ml initialization of m1 construction of ml is
happening first is it because m1 is earlier than m2 in the list of data members in the class? Or
is it because in the initialization list, it has been initialized first? So, to test that, let us change

the let us change the order of data member list in the class.

I now list m2 first and m1 next and | do not change the order they are ordered in the
initialization list. Now as | do this, | find that in the invocations are in the same way using the
functions. Now | find that init m2 is happening first. So, this clearly tells us the init of m2 is
actually listed later in the initializer, but it is happening first because it is the first data

member it occurs before m1.

So, this is this simple program tells us that the data members will always be constructed in
the order in which they are listed in the class and not in the order in which they are given in
the initializer list, which could be anything. And this is very important to understand because

a particular class may have multiple different constructors as we have seen.

So, they may list the data members, they may need to put the data members in any order
whatsoever they want to. So, if that were detected, that were directing the initialization order,
then there would be ambiguity. So, when it is in terms of the order in which they are listed in
the class, obviously, there is no ambiguity because there is only one list, irrespective of how

many constructors you may have for the class. So, let us see the consequence of this.

(Refer Slide Time: 05:53)

C Style

C++ Style

#include <iostream>

#include <cstring>

#include <cstdlib>

using namespace std;

struct String { char estr.;
size t len_;

b.

void print(const Stringk s) {
cout << s.str_ << i *
<< s.len_ << endl;

int main() { String s;

s.8tr_ = strdup('PAnha");/

s.len, = strlen(s.str.);

#include <iostrean>

#include <cstring>

#include <cstdlib>

using namespace std;

class String { char estr.; }
size.t len,;

public: String(char s) : str_(strdup(s)),
en_(strlen(str.))

{ cout << *ctor: *; print();
“String() { cout << "dtor: *; print();
free(str); tch malloc()
void print() { cout << "(" << str_ << *: "
<< len, << ")* << ondl; }
size_t len() { return len_; }

b

strdup()

print(s); int main() { String s = "Partha";
tree(s.str); i s.print();
} }
artha: 6 ctor: \F.\rthyﬁ’
(Partha: 6)
. str. . | y 0l

Programming In Modern C+-+ ey ¥

And for that we pick up a simple string class having a char* pointer for the containing the
string and another variable len to keep the length of the string. And this is the order in which
they are given. And there is a print here. So, I first in, in the C style | first do a copy of the
given string, put the length of that string.

And finally, 1 free up the space created by strdup. In the C++, actually, | put them in this
same order. And I initialize str first and then len, in terms of the initializer list. And what | get
to see is, well, it is it is working fine. | can see the call to the constructor and the call to the

destructor. But that is not dependent on the order.

(Refer Slide Time: 06:52)

Eéé]

Program 14.05: A Simple String Class:

#include <iostream>
#include <cstring>
#include <catdlib>
using namespace std;

class String {
size_t len’ enber ga t rinted or prog handled except
char sstr

public: @ @
String(char *s) : str_(»rdup(s)), Jen_(s¥Tle ,Q { cout << "ctor: *; print(); }
“string() { cout & Tqor: ¥; print(); Traalerx.); /)
void print() { cout << *(" << atr_ << ": * << lem_ << ")" << endl; }

’4

int main() { String s = "Partha*;
8.print();

1

4 &

v

o len. precedes str. in list of data members

o len.(strlen(str.)) is executed before str.(strdup(s))
o When strlen(str.) is called str. is still uninitialized

o May causes the program to crash

ctor: (Partha: 20)
(Par 20)
dtor: (Partha: 20)

5e

Programming In Modern C+4-+ Parths Pratim Doy Mi4s

Now, let us question that what happens if | change the order of these data members? If | swap
the order of the data member, | first put len, and then put the char* str. If | just change these
two, and as you will know that the order of construction will be in the order the data members
are listed. And you will see that this will cause a disaster. Because even though here, this is

given first, that is you should copy the str, copy the string s into str.

And then you are saying that from the str you will construct, you will compute the length to,
this is the order given, but the order in which they will execute is first the len. So, this will be
first to execute and this will be second to execute. Now obviously, when you are executing
this first, you are passing on str, the second data member, which is still not been constructed

is still not been initialized.

So, itis, it is, it is a garbage pointer, basically. So, you are passing a garbage pointer to strlen,
S0 you do not know what it is going to do. So, if you if you run this program, then there are
several possibilities. One is what | found on the minGW compiler that I am using on my
Windows machine is that it does not crash it constructs, destructs but it arbitrarily takes some

values 20.

Well, the actual length of the string, partha is 6. And when I run it on my visual studio,
windows, visuals Microsoft Visual Studio, then the program simply crashes saying that there
is an unhandled exception, because you have passed the garbage to strlen. And so you will
have to be very careful in terms of the order in which you if there is dependency between the

values of one initialized data member to the other.

You have to put them in the right order in the listing of the data members. So, that is what so
it says that the lifetime of | mean the reason | am discussing it here is it says that the lifetime

of str has to start before the lifetime of len is expected to start, because len depends on the str.

(Refer Slide Time: 09:06)

% : Program 14.06: A Simple Date Class

L

#include <iostrean>
using namespace std;

char monthNames() [4]—{ "Jan®, "Feb", "Mar®, “"Apr®, "May", "Jun®, "Jul", "Aug", "Sep", "Oct",.'Nov", "Dec
char dayNames(][10) ={ *Monday", "Tuesday", "Wednesday", *Thursday®, "Friday", *Saturday®, "Sunday" };
class Date {

enun Month { Jan = 1, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec };

enun Day { Mon, Tue, Wed, Thr, Fri, Sat, Sun };

typedef unsigned int UINT;

UINT date_; Month month_; UINT year_;
public:

Date(VINT d, UINT =, UINT y) : date_(d), month_((Month)s), year_(y) { cout << "ctor: "; print(); }

“Date() { cout << "dtor: "; print(); }

void print() { cout << date_ << */" << monthNames(month_ - 1] << "/* << year, << endl; }

bool validDate() { /¢ Ct ty +/ return true; } t lmplemente

Day day() { /¢ te day fr te +/ return Mon; }

int main() {
Date d(30, 7, 1961);
d.print();

Ha

Partha Pratien Das LULE]

So, now, I have put a number of examples for you to actually trace the constructor destruction
and the use of object lifetime. And as you can see here, the title is prefixed with practice. So,
we will not get into the details. We will possibly come back using them in, in different
contexts later on. But | | insist that you try out these programs, read every line of it and

understand it well.

(Refer Slide Time: 09:36)

f? : Program 14.07: Point and Rect Classes:
/4 _{ Lifetime of Data Members or Embedded Objects

L'

#include <iostream> class Rect { Point TL_; Point BR.; public:
using namespace std; Rect(int tlx, int tly, int brx, int bry):
class Point { int x_; int y_; public: TL.(tlx, tly), BR_(brx, bry)

Point(int x, fnt y): { cout << "Rect ctor: *;

x.(x), y.(y) print(); cout << endl; }
{ cout << "Point ctor: *; “Rect() { cout << "Rect dtor: *;
print(); cout << endl; } print(); cout << endl; }
“Point() { cout << "Point dror: *; void print() { cout < "[*; TL_.print();
print(); cout << endl; } cout << * "; BR..print(); cout << *]*; }

void print() { cout << "(* <«<x_ <« ", *
«Cy <« "))
h
int main() {
Rect r (0, 2, 5, 7);

cout << endl; r.print(); cout << endl;

cout << endl;

}

o Attempt is to construct a Rect object
o That, in turn, needs constructions of Point data members (or embedded objects) - TL. and BR. respectively
o Destruction, initlated at the end of scope of destructor's body, naturally follows a reverse order

Programming in Modern €+ Partha Pratim Das Mo 8

So, there is a, this is the design of a date class. This is our good old friend, point and rec class
and | have shown the expected output everywhere so you can check and get convinced that
things are happening in the right way.

(Refer Slide Time: 09:48)

m 14.08: Name & Address Classes

#include <iostrean>
using namespace std;

#include "String.h"

ng class String fros
#include "Date.h"

class Name { String firstName_, lastName_;

public: Name(chare fn, chare 1n) : firstName_(fn), lastName_(1n)
{ cout << *Name ctor: "; print(); cout << endl; }

“Name() { cout << "Name dtor: "; print(); cout << endl; }

void print() { firstName_.print(); cout << " *; lastName_.print(); }

b
class Address (unsigned int houseNo_;
String street_, city_, pin.;
public: Address(unsigned int hn, chare sn, chare cn, char® pin) :
houseNo_(hn), street_(sn), city_(cn), pin_(pin)
{ cout << *Address ctor: "; print(); cout << endl)
“Address() { cout << "Address dtor: *; print(); cout << endl; }
void print() {
cout << houseNo_ << " *;
street_.print(); cout << * ",
city..print(); cout << " *;
pin_.print();
}
}i

Programming In Modern C+-+

Patha Pratim Das wen 8

Then there is a name, class and address class.

(Refer Slide Time: 09:52)

m 14.08: CreditCard Class: Lifetime Chart

street London NWl 6XE

Sharlock Holmes 221 Baker Street London NW1 6XE 1/Jul

Use of Objec
6321711 0027 Sharlock Holmes 221

Destruction of Objects

Baker Street London NW1 6XE 1/Jul/2014 1/Dec/2016 811

Sharlock Holmes 221 Baker Street London NW1 6XE 1/Jul/2014 1/Dec/201

reet London MW1 6XE

String: Holmes
“String: Sharlock

Programming In Modern C+4-+

Partha Pratim Das Mty

These are all for your practice including the credit card class which uses all of these.

(Refer Slide Time: 09:58)

String
“String

“
Programming In Modern 4+ Partha Pratim Das [T

And if you if you do that, if you run that, then this is the kind of the, the magenta is the kind
of output that you expect from this, while you have on the right top the design of different

classes. So please practice them out to get more confidence.

(Refer Slide Time: 10:15)

E%}] Copy Constructor

Copy Constructor

«
Prograsimiieg Iy Modem C4++ Partha Pratien Dss T

Now, let me move on to the copy issues.

(Refer Slide Time: 10:19)

[ﬁj Copy Constructor

o

o We know: c\'l;
Complex - c1(4.2, 5.9); / C/
invokes

Constructor Complex::Complex(double, double); ‘/ 8.
o Which constructor is invoked for?
Complex 62@; \/

Or for?

Complex ¢2 = @é

o |tis the Copy Constructor that takes an object of the same type and constructs a
copy:
Complex: :Complex(const Complex &);
—_——

«
Programming In Modern C+-+ Partha Pratim Das Mt ¥

The first is a copy constructor. So, what we do is, this is a normal construction, we all have
seen this. So, when we do this, we can we can do it by this or we can actually write it as 4.2
5.9 like this also. So, it constructs it expects a constructor which double double and construct
by that. Now, what if you construct, invoke it like this. That cl is already constructed as a

complex object, and you are trying to construct c2, putting c1 in the parameter of this.

Or putting cl in the initialization value. This, this is the point where copy construction is
taking place. Why? Because you already have an object of the complex type here or here.
And you want to create another object of the complex type as a copy of this object. So, the
copy constructor takes place. So, in the copy constructor, naturally, what you are passing as a

parameter is an object of the same type.

So, naturally, it is it has to take a parameter which is complex. We will avoid using the |
mean, we would avoid using the call by value as you know, so we will put it as call by
reference. And we do not want the source object to be changed by this copy constructor. So,

we will put a const. So, that is the that is a basic copy constructor design, that we will have.

(Refer Slide Time: 11:50)

#include <iostrean>
#include <cmath> = eeeee
using namespace std;

class Complex (doudle re_, im_; public:

Complex(double re, double im):
re_(re), 1m_(im)
{ cout << "Complex ctory; print(); } 14.2
Complex(const Complexk ¢): \/ i
re_(c.re.), in.(c.in.)
{ ¢6UE & "Complex copy ctor: "; print();
o —

“Complex()
{ cout << "Complex dtor: "; print(); }
double norm() { return sqrt(re_sre_ ¢ im_oin); }
void print() { cout << *|" << re_ << "+§* << im_ << "| » " << norm() << endl; }
b
int main() { /
Complex ¢1(4.2, 6,3)Y tr r - Complex(double, double)
c2(c1), r Complex(const Coaplexk)
3= c?;\/ nstruct Complex(const Complext) ‘/

cl.print(); c2.print(); e3.print();

.

Programming In Modern C+4-+ Partha Pratim Das Mite

So, here is an example of this, where this is the copy constructor. So, what we do is, | am
passing a object ¢ of complex type to this constructor. And | take the real component of ¢
copy to the real component of the object to be constructed similarly for. So, basically, item by
item, I am data member by data member | copy. And if those data members are user defined

types, then their respective copy constructor in turn will again get invoked.

It is, it is the same process as as the construction where construction in general can take
parameters of any type, or may not have a parameter for default. In copy constructor
specifically, you take an object of the same type. So, when you write this, you are invoking a
constructor, and when you are writing like this or this you are invoking the copy constructor.

And | have put messages here specifically.

So, that in the output trace, you can find out which constructor is being called and in which
order destructors of course, will happen in the reverse order as we have seen. So, this is a, this

is the basic story of copy construction. So, it is like copying variables we have.

(Refer Slide Time: 13:11)

[ﬁéj Why do we need Copy Constructor?

o Consider the function call mechanisms in C++:

o Call-by-reference: Set a reference to the actual parameter as a formal parameter. |
Both the formal parameter and the actual parameter share the same location
(object). No copy is needed n

o Return-by-reference: Set a reference to the computed value as a return value. Both
the computed value and the return value share the same location (object). No copy
is needed

o Call-by-value: Make a copy or clone of the actual parameter as a formal parameter.
This needs a Copy Constructor

o Return-by-value. Wake a copy of clone of the computed value as a return value.

This needs a Copy Constructor

o Copy Constructor is needed for initializing the data members of a UDT from an
existing value

o

Programming In Modern C+-+ Partha Pratim Das M1y

Now, we have given ourselves a mechanism to copy any object that we have created for our
user defined types. Now, the question is, when do you need to do this copy construction? The
primary reason you need copy construction is to support call by value. As you know, if you
do call by reference or return by reference, then only the reference is being passed, no object

copies as we have seen already.

But if you do a call by value, then naturally you need to copy the given actual parameter
object to the expected formal parameter object. So, you need a copy and that copy is what is
done by the copy constructor. Similarly, if you are returning something by value, then you
will need the copy constructor. So, copy constructor is needed for initializing the data

members of a UDT from an existing value.

(Refer Slide Time: 14:06)

Eié%!

Program 14.10: Complex: Call by value

N
#include <iostrean>
#include <cmath>
using namespace std;
class Complex (doudble re_, im_; public:
Complex(double re, double im): re_(re), im_(im)
{ cout << *ctor: *; print(); } ~
Complex(const Complexk c): re_(c.re.), im_ (c.im) truct 1
{ cout << “copy ctor: *; print(); }
“Complex() { cout << "dtor: *; print(); }
double norm() { return sqrt(re.sre. ¢ im_*in.); }
void print() { cout << *|" << re_ << *+§* << m_ << *| = * <« norm() << end); }

{ 1 1
cod << "Digplay: "; c_param.print();
int main() { Chaplex ¢(4.2, 5.3); Jonstructor - Complex(double, double)
Display(c); tructor d t € to ¢ param
o—
! ¢ in pain()
I ¢.paran py of ¢ Display()
¢_paran
r ¢.param on exit from Display()
f ¢ on exit main() 4

#include <iostrean>

#include <cmath>

using namespace std;

class Complex (doudble re_, im_; public:
Complex(double re, double im): re_(re), im_(im)

{ cout << *ctor: *; print(); }

Complex(const Complexk c): re_(c.re.), im.(c.im.)

{ cout << “copy ctor: *; print(); }

“Complex() { cout << "dtor: *; print(); }

double norm() { return sqrt(re_sre_ ¢ im_*in)); }

void print() { cout << *|" << re_ << "+§* << qm_ << "| = * << norm() << endl; }

void Display(Complex c_param) {
cout << *Display: "; c.param.print();

int pain() { Complex c(4.2, 5.3); Jonstructor - Complex(double, double)
bt eabeplidd e Joied

Display(c); tructor to copy ¢ to ¢_param
o ol AV

{ ¢ in pain()
I ¢_param fc Display()
¢_paran
tor ¢_param on exit from Display()
r of ¢ on exit ain() o
M 8

So, this is the reason without the copy constructor, you will not be able to call functions by
value. So, here | give an example, this is a copy constructor. And | am trying to write a global
function, which is displayed which takes a complex parameter by value. I am not putting the
&. So, as | take it by value, and I call it so my actual parameters ¢ needs to be copied to the

formal parameters ¢_param.

And when | do that, this copy process will invoke the copy constructor because it has to copy
the fields of c into the fields of c_param. So, as you can see here is really that initially when
you do, initially when you are doing this, you have a constructor call. And then when you you
have not made any explicit copy constructor call here, but when you call display try to call
display, you have a copy constructor called copying ¢c_param as a copy of c¢ in display.

And then the display is actually called it does the display process. And when you are done,
when you are done, you are here you have constructed a an object here. So, the lifetime of
that object has started, that formal parameter object has started with the call of display. So,

when you get to the end of display, your control is going back, you are out of that scope.

And by that same rule, the destructor will be called for ¢_param. So, the destructor is called
and with the same set of values. And then finally the destructor of c is called at the end of

main. So, this is how the call by value is supported.

(Refer Slide Time: 15:56)

Lc‘ Signature of Copy Constructors

o Signature of a Copy Constructor can be one of:

MyClass(const MyClassk ozner):‘/
— e —

Source ¢ anr.‘u/ﬂ-a changed

Source needs to change

HyClass(MyClassk other);

MyClass(volatile const MyClassk other);
MyClass(volatile MyClassk other);

o None of the following are copy constructors, though they can copy:

HyClass(MyClasse other);
MyClass(const MyClasse other);

o Why the parameter to a copy constructor must be passed as Call-by-Reference?

MyClass(MyClass other);

The above is an infinite recursion of copy calls as the call to copy constructor itself
needs to make copy for the Call-by-Value mechanism

«
Programming In Modern C+4-+ Partha Pratim Das Mt M

[ﬁi} Signature of Copy Constructors

o Signature of a Copy Constructor can be one of:

MyClass(const MyClassk other);
Source cannot be changed
HyClass(MyClassk other);
Source needs to change
MyClass(volatile const MyClassk other);
MyClass(volatile MyClassk other);

o None of the following are copy constructors, though they can copy:

MyClass(MyClasse other);
MyClass(const MyClasse other);

o Why the parameter to a copy constructor must be passed as Call-by-Reference?

HyClass (MyClass ‘ $

i ;
The above is an infinite recursion of copy calls as the call to copy constructor itself
needs to make copy for the Call-by-Value mechanism

-

Programming In Modern G4+ Partha Pratim Das miate o

You can see the same thing if you do return by value as well. So, what is what should be the

signature for the constructor function. So, this is the most common signature that you pass the

parameter to the copy constructor by reference by reference, and you make that a constant so
that the source cannot be changed. It is also possible that you write a copy constructor where

you have not used constant.

In it, you might wonder that while I am copying, why do I need to change the source? See
there is a subtle difference between what we say is a copy and what you say is a move. If |
want to realize move, which does not exist in C++ 03, then what | want is not only make a
copy but actually invalidate the source if required. So, that there is only 1 because if you are
just to copy there are two copies of the variable.

If 1 just want one, that the source has moved to the destination, then I will need to use this I
will talk about this in more details when | talk about smart pointers and how they use this.
And we will come back to that in C++ 11 when we talk about the move semantics, which is
specifically supported. So, this is the most common 99.9 percent of copy constructors are like

this, some are like this and very rarely you may use other qualifiers like volatile and all that.

So, it it may also be noted that if you pass a, if you pass a pointer, like if you try to do a call
by address for the copy constructor, you can, you will still be able to make a copy. But that is
not a copy constructor, that is if you provide this, the compiler will not use it in the context of
call by value or call by reference. So, do not consider that these are functions. These are

obviously some overloaded constructors, but they are not copy constructor.

Now the final question is why do | need to pass the parameter to the copy constructor as
reference? What if | pass it as a value? Now what will happen? If | pass it as a value, then to
be able to call the copy constructor needs to copy this value, which in turn needs the copy
constructor itself. So, I am passing it called by value, so call by value needs, the value must

be copied that needs the copy constructor must be invoked.

And if | do that for the copy constructor, then the copy constructor itself will have to be
invoked. So, it will have to be called. And to call that I need to copy the actual parameter
again. So, the copy constructor will be called again. So, | end up having an infinite recursion.
So, this is not if you write this, then you will basically have an infinite recursion you will
never be able to end. So, the only way to write copy constructed is by reference and
preferably by constant reference.

(Refer Slide Time: 19:04)

F

P

Program 14.11: Point and Rect Classes: Embedded Ot

Default, Copy and Overloaded Constructors M

#include <iostrean>
using namespace std;

classfoint { int x_; int y_; pudblic:
ofnt (int x, int y): x_(x), y.(y) { cout <¢ "Point ctor: "; print(); cout << endl; }
Point(): x.(0), y.(0) { cout << "Point ctor: *; print(); cout << endl; }
int(conat Pointk p): x.(p.x.), y.(p.y.) { cout << "Point cctor: *; print(); cout << endl; }
“Point() { cout << *Point dtor: *; print(); cout << endl; }
void print() { cout << *(" ¢« x_ <« ", "«y «")} L
class Rect { Point TL_; Point BR.; public:

Rect(int tlx, int tly, int brx, int bry): TL (tlx, tly), BR_(brx, bry) tor of Rect: 4 Y
{ cout << *Rect ctor: *; print(); cout << endl; es Ctor for Point
Rect(const Pointk p_tl, const Pointk p_br): TL_(p.tl), BR_(p_br) tor of Rect: 2 Point
{ cout << "Rect ctor: "; print(); cout << endl; // Uses CCtor for Point
Rect(const Pointk p.tl, int brx, int bry): TL_(p.tl), BR_(brx, bry) tor of Rect: Point +
{ cout << *Rect ctor: *; print(); cout << endl; } Jses CCtor for Point
Rect() { cout << "Rect ctor: "; print(); cout << endl; } tor of Rect
Rect(const Rectdk r): TL_(r.TL.), BR_(r.BR) tor of Rect

{ cout << "Rect cctor: *; print(); cout << endl; } Jses CCtor for Point

“Rect() { cout << "Rect dtor: "; print(); cout << endl; } t
void print() { cout << *[*; TL_.print(); cout << * "; BR_.print(); cout << *]"; } };

oW prameter (elx, tly) to TL. by TL.(tlx, tly): parameterized Ctor of Point
o When parameter p.tl is set to TL. by TL.(p.t1): CCtor of Point is invoke
When TL. s set t in DCtor of Rect: DCtor of Point is invoked
ber r.TL. is set to TL. by TL.(r.TL.) in CCtor of Rect: CCtor of Point
Programming In Modern C4+ Partha Pratim Das

DCtor Point

=
na

So, these are again, our point and rect class the different instances. For example, if you see
that in the initializer list, you are constructing tl the top left object point by x and y the integer
value, so this will invoke the normal constructor. But if you are doing this, that is where your
ptl is already a point object and you are trying to create the t| member of the rec class by

copying it then you will have the copy constructor invoked.

So, you can study it well. The notes are all given explaining what every stage is doing and

understand. Where does the default constructor come in? Where does the copy constructor

come in? And what does the other overloaded constructors come in?

(Refer Slide Time: 19:57)

: Program 14.11: Rect Class: Trace of Object

Code

iot mata() {
Rect 1100, 2, 5,)i
//Mect (o, fnt, lat, iot)

Rect r2(Poisa (3, 6),
Polat(6, 9));
//eet(Poisth, Polsnd)

Roct ri(Potat(2, 2), 6, 4);
I/Mest (Potnta, int, int)

Programming in Modern C++ Partha Pratim Das

4
w8

So, if you run that program and you will see that actually, this is the kind of output that you
get. And it will be a good exercise that you do not look into this, right hand side column first,
keep it blank on your copy, guess take output, and then try to put the lifetime information as
to when things are getting created, when things are getting copied, when things are getting
destroyed, when things are getting used and so on, that will give you a good practice. So, this

is a, this is yet another practice slide that | have put for you.

(Refer Slide Time: 20:29)

r‘
f

i!' Free Copy Constructor

L

¢

o If no copy constructor is provided by the user, the compiler supplies a free one
o Free copy constructor cannot initialize the object to proper values. It performs Shallow Copy
o Shallow Copy aka bit-wise copy, field-by-field copy, field-for-field copy, or field copy

o An object is créated by simply copying The dafa of all variables of the original object

o Works well if none of the variables of the object are defined in heap / free store

o For dynamically created variables, the copied object refers to the same memory location

o Creates ambiguity (changing one changes the copy) and run-time errors (dangling pointer)

o Deep Copy or its variants Lazy Copy and Copy-on-Write
o An object is created by copying data of all variables except the ones on heap
o Allocates similar memory resources with the same value to the object
o Need to explicitly define the copy constructor and assign dynamic memory as required
o Required to dynamically allocate memory to the variables in the other constructors
i Deep Clone

Programming In Modern C+4-+

E:éj Free Copy Constructor

o If no copy constructor is provided by the user, the compiler supplies a free one
o Free copy constructor cannot initialize the object to proper values, It performs Shallow Copy
o Shallow Copy aka bit-wise copy, field-by-field copy, field-for-field copy, or field copy

o An object is created by simply copying the data of all variables of the original object

o Works well if none of the variables of the object are defined in heap / free store

o For dynamically created variables, the copied object refers to the same memory location

o Creates ambiguity (changing one changes the copy) and run-time errors (dangling pointer)

o Deep Copy or its variants Lazy Copy and Copy-on-Write
G An object is created by copying data of all variables except the ones on heap

o Allocates similar memory resources with the same value to the object
o Need to explicitly define the copy constructor and gssign dynamic memory as required

o Required to dynamically allocate memory tozﬂﬁmrinhlcs M\the other constructors

Programming In Modern C 4+

Now, like the constructor, if you do not provide a copy constructor, then the compiler will
give you a copy constructor. Now, the copy constructor, the compiler provides, because if |

mean, if you have not given a copy constructor, and you are using that object of that class, by

in call by value or call by reference, | mean call by value or return by value, then certainly the

compiler needs a copy constructor.

So, it will provide you a free one. Now, it does not know what to do, what so what it does, it
just copies a bit pattern, whatever the object had it copies a bit pattern. So, this is called the
bitwise copy field wise copy, field for field copy, field copy, field copy and so on. So, if you
have data members, which are just, built in types, whose actually they do not have any

specific thing to construct, their values will come properly.

But if you have some reference variable, some pointer variable, which has allocated a
location, then what will happen this is your original object. Now, you have if you have copied
that pointer value, then in your copied object, the pointer value will be the same. So, you
have two copied objects having the pointed values, which are same, so they are basically
referring to the same object.

So, this is a very ambiguous copy. And this might lead to unexpected results because, for
example, after cloning, if I clone is another process used for referring to the copied object.
So, after cloning, if | use that pointer to change this reference object, then the same value will
be reflected in the original object. So, this type of copy is called shallow copy, where you are

just copying the pointers, because you are doing a bit copy.

That is what the compiler has given you. The other which is which is basically the preferred
or the correct way of doing this is to have a deep copy. So, what you do in a deep copy in a
deep copy, you for the, every built in type, you copy the value. For every other data members,
you call the copy constructor of the corresponding class and for pointers, you actually make a

fresh allocation and copy the pointed value as well.

It is not enough to just copy the pointer that is not semantically correct. So, you have to
explicitly define the copy constructor assign dynamic memory as required. And put the so we
have in terms of a deep clone or deep copy your original object is giving you the clone object.
You have a reference object, you are not copying this pointer, you are not copying this
pointer rather, you are doing a fresh allocation and copying this object by that object's copy
constructor. So, that is a, that is a big pitfall of having a free copy constructor from the

compiler or the pitfalls of shallow copy.

(Refer Slide Time: 23:43)

2

P ,_
iy Pitfalls of Bit-wise Copy: Shallow Copy S
iﬁi Y

o Consider a class:
class A { int &_;
inte p

public:

A(int 4, fat §) : §_(1), p (new int(§)) { }

"A() { cout << "Destruct ™ << this << ": ";

GOTT TP = * << 4. << " p w " <p. <" epm < ap. << endl;
,
|1

o As no copy constructor is provided, the implicit copy constructor does a bit-wise copy. So
when an A objecyis copied, pZis copied and continues to point to the same dynamic int:

int main() { A M(2, 3); A a¥(at); natruct a2 py of al
cout << "Eal = " << kal << * ka2 = * << ka2 << endl;

o The output is wrong, as al.p. = a2.p. points to the same int location. Once a2 is destructed,
a2.p. is released, and al.p. becomes dangling. The program may print garbage or crash:

kal = QOBFF83§ ka2 = Q08FF828
Destruct F828: i_ = 2f -%%:SNO? tor of a2, Note that a2.p. = al.p.

Destruct 008FF838: {_ = 2 p_ = 0D f al. al.p.=a2.p.

— —_—
o The bit-wise copy of members is known as Shallow Copy
im D

.
Programming In Modern C+-+ Partha Pratim Das wen o

So, to just to illustrate, I have shown here a class with one integer value and one pointer two
integer. So, naturally in the constructor, a value is in a dynamic allocation is made and that
will be deleted later on. Now, | have not provided any copy constructor. So, what the
compiler will do? It will provide a free one which will copy everything. So, what happens |
have two objects, one is originally created, the other is a copy of that which has been created

by bit copy, shallow copy.

So, when | print the addresses of these two objects, | find that different objects. But when |
go deep and print the pointers, this particular p_ pointer that has also got copied. So, they
have same values and both of them will try to point to the same location. Now what is
happening, what when | do this, then at this point, you can see that my destructor is actually

making the print.

So, when | come to the end of main, this object will be the first to get destroyed. The last
created first destroyed. So, this object, when this object is destroyed, this p_ pointer is
deleted. So, now it becomes a dangling pointer. So, when you go to destroying al, which is a
first object created the second to be destroyed, then you are again trying to do a delete p_ or

you are trying to print the value of pointed to by this.

But p_ has already been deleted, because it was pointed to by a2 and a2 has done the
destruction. And it is deleted that pointer is a dangling pointer, so, you get a garbage value
you might get crash also. So, this is a problem with the shallow copy.

(Refer Slide Time: 25:41)

[ﬁ?} Pitfalls of Bit-wise Copy: Deep Copy

o Now suppose we provide a user-defined copy constructor:
class A { int §_; tor dat I
inte p_;
public:
A(int 4, dmt §) : £_.(1), p_(nev 1nt(§)) { }

Alconst Ak a) : Axta i), // Copy Constructor
p.(nev i V% {} // Allocation done and value copied - Deep Copy
“A()"{ cOUT << \Qegsfuct * << this << ": ¥ t identit

cout << Mi_w << i << Mp wt<Cp <CMape " <Cop << endl;
delete p.;
}
hi
o The output now is correct, as al.p. # a2.p. points to the different int locations with the

values *al.p. = *a2.p. properly copied:
kal = 00BSFOEO ka2 = 00BSFODO antities of object
Destruct 00BSF9DO: 1. = 2 p_ = 00C05480 sp = 3 tor of a2, a2.p. is different from al.p.
Destruct 0BEFOEO: 1_ = 2 p_ = 00CO5440 op = 3 rof at

o This is known as Deep Copy where every member is copied properly. Note that:

o In every class, provide copy constructor to adopt to deep copy which is always safe
o Naturally, shallow copy is cheaper than deep copy. So some languages support variants as
Lazy Copy or Copy-on-Write for efficiency

.
Programming In Moders G4+ Partha Pratim Das M ¥

Pitfalls of Bit-wise Copy: Deep Copy

o Now suppose we provide a u
class A { int &_; |

ser-defined copy constructor:

inte p_;
public:
Adne 4, ot §) @ £(1), p.(new dnt(§)) { }
Alconst Ak a) : 1_(a.i.), // Copy Constructor

p.(nev int(sa.p.) { } // Allocation done and value copied - Deep Copy
“AQ) { cout™XTEITTuct * << this << *: *; ect
cout << Mi_m T i << M"p wt<Cp <CMapetCap << endl;
delete p.;

h
o The output now is correct, as al.p. # a2.p. points to the different int locations with the

values *afp. = 'aZ.gZﬁ)p Ty copied:

ka1 = OOMBFOEO ka2 = OYB8FODO

Destruct 00BSF9DO: {_ = 2 p_ = 00C9548)

Destruct 00BBFOEO: 1_ = 2 p_ = 009G

‘v‘a2 a2‘p,‘ is different from al.p.
fal

o This is known as Deep Copy where everynfember is copied properly. Note that:

o In every class, provide copy constructor to adopt to deep copy which is always safe

o Naturally, shallow copy is cheaper than deep copy. So some languages support variants as

Lazy Copy or Copy-on-Write for efficiency

Programming In Modern C+4-+ Partha Pratim Das M

&
o

So, do not do that always do deep copy. So, as in the copy constructor, now, you can see that

you copy the integer variable because it is not a pointer. For a pointer, you do an allocation

and initialize it with the value it was pointing to. Once you do that, and you write the same

same code, now, what you have is in the copy it is not a bitwise copy, it is no more that you

have these two pointers same.

So, in the two different objects that you have got the two pointers are of different value. And

therefore, when a2 is destroyed, and that pointer is released, the pointer in the al does not get

affected, and both of them have the same value because that is how you have created. So, this

is what is deep copy. There are alternate terms also which is used, some use lazy copy, some

use copy on right.

There, they are not exactly same, there are semantic differences and at an appropriate point |
will explain that. But the whole idea of deep copy is copy the pointed variable values

separately with allocation.

(Refer Slide Time: 26:54)

-
=

'
Al

i B

#include <iostrean> X

#include <cmath> 0
using namespace std;
class Complex { double re_, im_; public:

Complex(double re, dodble) : re. (u) in, (m) { cout << "ctor: *; print(); }

[ﬁé} : Program 14.12: Complex: Free Copy Constrt

Complex(const Complexk ¢) : re { cou r t Froo
“Complex() { cout << “dtor: *; print(); } t
double norm() { return uqrt(re ere_ ¢ im_oin); } N
void print() { cout << *|" << re_ << "+§* << dm_ << *| = * <« porm() << Gna; }
|5
void Display(Complex c_param) { cout << *Display: *; c_param.print(); }
int main() { Complex c(4.2, 5.3); t Complex(double, double)
Display(c); r f truct 4 ¢ to c_paras
User-defined CCtor Free CCtor
ctor: [4.2¢§5.3] = 6.7624 ctor: 14.2¢45.3| = 6.7624
copy ctor: [4.2416.3| = 6.7624 No message from free CCtor
Display: 14.2¢4§6.3| = 6.7624 Display: 14.2+4§6.3| = 6,7624
dtor: 14,2+446.3| = 6.7624 dtor: 14.2+16.3| = 6,7624
dtor: 14.2¢45.3| = 6.7624 dtor: |4,2446.3| = 6.7624
. ot no copy constructor
o f J h« copy constructor
. J f t per(o!ms blr wise (opv
0 Cou« in rbvs case y L 2
Programming In Modern C+ Partha Pratim Das w9

So, again, practice examples given here with a free copy constructor to carry out through
them. There is a user defined copy constructor for a string object class, please try that with

the free copy constructor.

(Refer Slide Time: 27:02)

{%}3 : Program 14.14: String: Free Copy Construct

#include <iostrean>
#include <cstring>
#include <cstdlib>
using namespace std;
class String { public: char sstr.; size t len;
String(char #s) : str_(strdup(s)), len_(strlen(str.)) { } r
String(const Stringk s) : str_(strdup(s.str.)), ler € { } tor: Free only
“String() { free(str); } tor
void print() { cout <¢ "(* << str, << ": " << lem, << ")* << end); }

mxd strToUpper (String a) { t t
for (fnt & = 0; 4 < a.len_; ++f) { a.str_ [] - zouppet(a str_[1]); } cout<<®strToUpper: *; a.print();

} // a.String() i releasing a.str, ting s.ety_ = a.etr,
int main() { String s = "Partha"; s.print(); ntrToUppcr(u) s.print(); }
User-defined CCtor Free CCtor
(Partha: 6) (Partha: 6)
strToUpper: (PARTHA: 6) strToUpper: (PARTHA: 6)
(Partha: 6) NMNINIINNINNNNNINIINT: 6)
ol oV no copy constructor piler provides free copy constructor

o Free copy constructor performs bit-copy - hence no allocation is done for str. when actual parameter s is copied to
formal parameter a. e.str. is merely copled to a.str. and both continue to point to the same memory. On exit from
strToUpper, a Is destructed and a.str. s deallocated. Hence in matn access to s.str. is dangling. Program prints
garbage and / or crashes

o Shallow Copy. With bit-cc t nter t the pointed ok This is risky

Programming in Modern C+-+ Partha Pratim Das ez 9

And in the, in the notes, | would always suggest that do not read the notes, first understand

the program. If you cannot figure it out, or after you have figured out what has happened and

try it build and try to run it. Once you have seen what is happening, then you go to the notes

and confirm that your understanding is correct.

(Refer Slide Time: 27:32)

Eﬁ} Copy Assignment Operator

Copy Assignment Operator

5
Prografmieg In Modem C4++ Partha Pratien Dsg Mz S

So, this is how the practice ones must be done. Now, let me talk about the copy assignment.

(Refer Slide Time: 27:39)

o We can copy an existing object to another existing object as) Ql/
Complex c1 = (4.2, 5.9), c2(5.1, 6.3); ¢

// c1 becomes { 4.2, 5.9 }

This is like normal assignment of built-in types and overwrites the old value with the
new value

o It is the Copy Assignment that takes an object of the same type and overwrites into
an existing one, and re Object:

Complex: :Complext operator= (const Complex ¥);

Programming In Modern C+-+ Partha Pratim Das Mux

So, other than the construction, which was we were doing, the other that we do regularly is
copy 1 value into another. So, when | write it, when | write something like complex c2 then |

made a copy construction, because this is an initialization.

But if I simply write a statement c1 c2 both are available, and if we simply write a statement
cl is copied to c2, then | need a copy to be done which means that | would like to erase the
values in c2 and overwrite them with the values in cl. So, this is an assignment. So, this is

called copy assignment or assignment.

Now, we know operators can be overloaded. So, this operator of assignment is Operator
Assignment. Naturally it takes the object of this complex type, the source type, which will
come as a, as a constant reference. And what does it return? It has to return an object of the
same time because you have copied. So, it also returns by reference the same type of object.

(Refer Slide Time: 29:03)

@ Program 14.15: Complex: Copy Assignment

#include <iostrean>

#include <cmath>

using namespace std;

class Complex { double re_, im_; public:
Complex(double re, double im) : re_(re), im_(im) { cout << "ctor: *; print(); }
Complex(const Complexk ¢) : re_(c.re.), im_(c.in.) { cout << “cctor: *; print(); }

7 &) { cout << "dtor: *; print(); } t
pera!or-(com: Complexk ¢) Asaige
v—c.ro.; {B, * c.dm; cout << "copy: "; print(); oturn sthis f
douBTTWGTRT) { return sqrt(re.sre. + im_*im.); }
void print() { cout << *|* << re_ << "+j* << im_ << *| = * << norm() << endl; } }; Complex

int main() { Complex c1(4.2, 5.3), ¢2(7.9, 8.5); Complex ¢3(c2); // ¢3 rom €2
priat(); c2.print(); e3.print();

€2 <~ ¢3
¢l 7]
cl
€2
c3
c3
3 €2
€2 dror: |7.9+§8.5| = 11,6043 ¢l

cl
€2
c3
cl
[}

ol T f | return the object to make chain assignments possible
Programming in Modern C+-+ Partha Pratim Day Miex

L

So, here is a copy assignment here, the copy assignment for this. And it returns, returns this,
it is not only enough to copy and make changes. Like you are copying and making changes
here, which is fine. But it is also important that it returns the object, of the same type. Why do
we need that because we may want to change the assignment. For example, here we have

changed the assignment.

So, ¢3 so this operator is called first because this is right associative. So, ¢3 is copied to c2
and whatever is copied that object is returned. And that then is copied to cl1. If you did not
return that object that you have copied into. Then the second one you will not be able to
write. So, to support this continuity of semantics of assignment being chainable, you need to

return the same object.

(Refer Slide Time: 30:13)

#include <iostream>
#include <cstring>
#include <cstdlib>
using namespace std;
class String (public:_char sstr_; size t len_;
String(char #s) :mcn(un)) {}
String(const Stringk s) : str_(strdup(s.str.)), len_(s.len.) { }
“String() { free(str)); }
Stringk operator=(const Stringk s) {
froe(sty L. ‘ ting
&tr, = strdup(s str.); forn deep copy
en_ =] A enbe
return sthis; tur

void print() { cout << *(" << str_ << " * << len_ << *)" << endl; }

int main() { String s1 = "Football", s2 = "Cricket"; si,print(); s2.print(); s2 = s1; s2.print(); }
e
--- p—

itor, 8tr. = 8,8tr.

! str. will leak

Shallow copy 1
t ! ysl = sl

: 4
Programming In Modern C+4-+ —t Partha Pratim Das My M

So, this is what is the copy assignment, you can see the copy assignment in string. So, if in
the, in the string, you have a pointer and the length, so the string is pointing to an allocated
memory where you have doped. So, what you will have to do is when you are copying, you
cannot simply copy that pointer from your source to the destination object in the copy

assignment.

Because if you do that, then whatever the your destination object was pointing to will leak,
because that memory gets lost. So, you have to free that up, then do a fresh strdup, to do a
deep copy, as you have understood by now, copy the length and return the same object. So,
that is a that is a simple way of doing this. This works pretty fine and if you do this with s1

being assigned to s2, you will have a very nice working.

Now, what if you are doing a self-copy? Instead of this, what if you are now you might ask
why should I do a self-copy, but it is always possible because, you do not in the whole set of
programming, you do not want to create an operator. Because in a built in type of int x, if you
assign x to x, then it has it it works perfectly, but here it should also work perfectly, but does

it?

Suppose you have done this, this is the only change that | have made. Now, what will
happen? You have released the memory once you have released the memory here, here you

actually wanted to release the memory here in the destination object but is same as the source

object. So, it has got released in that as well. So, when you are doing this strdup for

performing grip copy, it is a garbage value.

So it will create a either a garbage value or a program crash. So, self-copy is a problem in this
strategy. And so it has to be detected and somehow taken care of. So it is very easy to do that.
Because if you are doing a self-copy, then all that you need to detect is the object that you are
getting as a source and the current object on which the copy assignment operator has been

invoked.

That is that this pointer, these are the same object. So, what is identity the address, so this is
the destination object. And &s is a source object. If they are identical, then they are the same
object and therefore, there is nothing to be done for this copy. So, if this is equal to &s, you
just return this, that is all. Otherwise, you do this, where you know you are, they are different
and it is it is going to be always correct.

(Refer Slide Time: 33:15)

o For class MyClass, typical copy assignment operator will be:

MyClassk operator=(const MyClassk &) {
if (this ! &s) { 1t

K P ora of 8 to me sthis
}
return sthis; eture t for chal {gnment

} ——

o Signature of a Copy Assignment Operator can be one of:

MyClassk operatore(const MyClassk rhs);
MyClassk operator=(MyClassk rhs);

o The following Copy Assignment Operators are occasionally used:

MyClassk operator=(NyClass rhs);

const MyClassk operatore(const MyClassk rhs);

const MyClassk operator=(MyClassk rhs);

const MyClassk operator=(MyClass rhs);

MyClass operator=(const MyClassk rhs);

HyClass operatore(MyClassk rhs);

MyClass operatore(MyClass rhs); ¥
Programming In Modem 4+ Partha Pratim Das w9

And this is the self-copy needs to be taken care of. And otherwise, so, this is what turns out to
be what is the basic signature of the copy assignment operator, where you check for self-

copy, do whatever is required for the deep copy, and then you return this.

You can copy assignment operator could also be of this type, like the copy constructor that is
in the first 1 which is common, if the source is not changed. In the second one, the source will
get changed. So, I might want to move this, there could be several other signatures, but they

are rarely used. So, do not try to use them.

(Refer Slide Time: 33:54)

[‘éj Free Assignment Operator

o If no copy assignment operator is provided / overloaded by the user, the compiler
supplies a free one

o Free copy assignment operator cannot copy the object with proper values, It performs |
Shallow Copy "

o In every class, provide copy assignment operator to adopt to deep copy which is always
safe

o

Programming In Modern C+4-+ Partha Pratim Das ML

Copy assignment operator could also be, will also be provided free by the compiler and

therefore it will come with all the issues of shallow copy that we have talked off.

(Refer Slide Time: 34:06)

[ﬁé} Comparison of Copy Constructor and Copy Assignment

L)

Copy Constructor Copy Assignment Operator

o An overloaded constructor o An operator overloading :
o Initializes a new object with an existing | e Assigns the value of one existing object
object to another existing object 3
o Used when a new object is created with | e Used when we want to assign existing
some existing object object to another object
o Needed to support call-by-value and
return-by-value
o Newly created object use new memory | @ Memory location of destination object
location is reused with pointer variables being re-

leased and reallocated

o Care is needed for self-copy
o If not defined in the class, the compiler | o If not overloaded, the compiler provides
provides one with bitwise copy one with bitwise copy

Programming In Modern C4-+ Partha Pratim Das My :t

Now, before | conclude the just to compare what is the difference both our copying
constructor and assignment operators. Now constructer is overloaded, the operator is also
overloaded. The basic differences is when you do copy construction, the object does not

exist. So, that object has to be created as a copy.

Whereas when you are doing copy assignment, there you already have two objects and you
are changing the destination object according to the source object. So, that is a fundamental

difference, rest of it is whatever we have discussed in the slides so far.

(Refer Slide Time: 34:50)

[ﬁé} Class as a Data-type

o We add the copy construction and assignment to a class being a composite data type in C++

re it f int type | re ¢ t { Complex type
t1; Complex ¢;

i

:m : X i' Complex ¢ = (4, 5); r
— - Complex ¢l = ¢; t
int k(); Complex c2(cl); v t
cout << 1; cout << c.re << c.im;
c.print(); // Method Complex::print() def
cout << ¢; operator<<() od ¢
vo int i tvo Complex
int {65, §6; Complex c1 = (4, 6), c2 = (4, 6);
i+4; ¢1.add(c2); athod Complex::add() def
cl+c2; operator+() rloaded t
v fito}) ! Complex
int 1 =5, j; Complex cl1 = (4, 5), c2 = (4, 6);
Jeo i €2 % cl; // c2.re <~ cl.xe €2.4m < cl.in b
P -
Programming In Modern C+-+ Partha Pratim Das wey o

And finally, you have the class as a, as a type. So, this we had seen earlier. Now with this and
this coming in, we have the copy construction which is also common, also available for the
built in type. So, you can see that your assignments and like in assignments here you can see

that we are actually extending the class and making it more like a perfect type.

(Refer Slide Time: 35:22)

{%’E Module Summary

o Copy Constructors

o A new object is created
o The new object is initialized with the value of data members of another object

o Copy Assignment Operator
o An object is already existing (and initialized)
o The members of the existing object are replaced by values of data members of
another object
o Care is needed for self-copy

¢ Deep and Shallow Copy for Pointer Members

o Deep copy allocates new space for the contents and copies the pointed data
o Shallow copy merely copies the pointer value - hence, the new copy and the original
pointer continue to point to the same data

.
Programming in Modern C++ Partha Pratim D Mt “l

So, with so with this | conclude on the on the module with different semantics of copy
construction assignment, and deep and shallow copy. Do practice this very, very thoroughly
because this will be critically important in all kinds of things, programs that we write in

future. Thank you very much for your attention and we will meet in the next module.

