
Programming in Modern C++ 

Professor Partha Pratim Das 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kharagpur 

Lecture – 14 

Copy Constructor and Copy 

 Assignment Constructor 

Welcome to programming in modern C++, we are in week three. And we will be discussing 

module 14.  

(Refer Slide Time: 00:32) 

 

In the last module, we have taken a look into the constructor and destructor that the basic 

process of creating an object and releasing it with taking care of all dynamic data and so on, 

to have a very well defined lifecycle. And we have shown examples of the lifetime of 

variables that are objects, that are automatic, that are static and that are dynamic.  



(Refer Slide Time: 01:04) 

 

In the, in this module, we will take a couple of more examples of object lifetime, which you 

should practice. And we will primarily deal with the issue of copy, how do you make copies 

of objects? And what does that mean, in C++ and why is it important.  

(Refer Slide Time: 01:24) 

 

As you will see, in several slides in this presentation, the title is prefixed with practice in 

blue. And those slides are not what I will discuss in the presentation, but those are included 

so that you can study them in depth and possibly try them out to have a better understanding 

of the respective issues.  



(Refer Slide Time: 01:49) 

 

Here is the module outline as every time.  

(Refer Slide Time: 01:51) 

 

So, in terms of object lifetime, we want to answer a very specific question in this slide as to 

what is the order in which the different data members of a class is constructed, when the 

object of that class is constructed? So, you have an object and you have different data 

members. So, to construct the object, you need to construct each and every data member. 

Those may also be a user defined types, so they will have data members.  

So, the process goes recursively in that manner. But with a simple example, we try to 

illustrate what is the order in which they are constructed, is it by the ordering which you write 



them in the initializer list, or is it by the order in which you list them in the class definition. 

So, to start with, we have a sample class containing two integer data members.  

And to be able to understand as to which 1 is actually getting constructed, we have created 

two insertable dummy functions. So, instead of directly copying the value, we will pass the 

value that we want to initialize into this into data member to the init function, corresponding 

init function. So, that I can print the message and know in which order they are happening.  

So, these are the two data members and I have that in the initialization list, I put the 

initialization of m1 first. And I initialize it with the value returned by this function that is, that 

is, this is just an instrument to tell us that we get to see in in which order they are happening, 

because the print messages will happen in that way. So, I do that and when I see I see that init 

m1 has happened first and init m2 is happening second.  

Now, the question is, is it because is init m1 initialization of m1 construction of m1 is 

happening first is it because m1 is earlier than m2 in the list of data members in the class? Or 

is it because in the initialization list, it has been initialized first? So, to test that, let us change 

the let us change the order of data member list in the class.  

I now list m2 first and m1 next and I do not change the order they are ordered in the 

initialization list. Now as I do this, I find that in the invocations are in the same way using the 

functions. Now I find that init m2 is happening first. So, this clearly tells us the init of m2 is 

actually listed later in the initializer, but it is happening first because it is the first data 

member it occurs before m1.  

So, this is this simple program tells us that the data members will always be constructed in 

the order in which they are listed in the class and not in the order in which they are given in 

the initializer list, which could be anything. And this is very important to understand because 

a particular class may have multiple different constructors as we have seen.  

So, they may list the data members, they may need to put the data members in any order 

whatsoever they want to. So, if that were detected, that were directing the initialization order, 

then there would be ambiguity. So, when it is in terms of the order in which they are listed in 

the class, obviously, there is no ambiguity because there is only one list, irrespective of how 

many constructors you may have for the class. So, let us see the consequence of this.  



(Refer Slide Time: 05:53) 

 

And for that we pick up a simple string class having a char* pointer for the containing the 

string and another variable len to keep the length of the string. And this is the order in which 

they are given. And there is a print here. So, I first in, in the C style I first do a copy of the 

given string, put the length of that string.  

And finally, I free up the space created by strdup. In the C++, actually, I put them in this 

same order. And I initialize str first and then len, in terms of the initializer list. And what I get 

to see is, well, it is it is working fine. I can see the call to the constructor and the call to the 

destructor. But that is not dependent on the order.  

(Refer Slide Time: 06:52) 

 



Now, let us question that what happens if I change the order of these data members? If I swap 

the order of the data member, I first put len, and then put the char* str. If I just change these 

two, and as you will know that the order of construction will be in the order the data members 

are listed. And you will see that this will cause a disaster. Because even though here, this is 

given first, that is you should copy the str, copy the string s into str.  

And then you are saying that from the str you will construct, you will compute the length to, 

this is the order given, but the order in which they will execute is first the len. So, this will be 

first to execute and this will be second to execute. Now obviously, when you are executing 

this first, you are passing on str, the second data member, which is still not been constructed 

is still not been initialized.  

So, it is, it is, it is a garbage pointer, basically. So, you are passing a garbage pointer to strlen, 

so you do not know what it is going to do. So, if you if you run this program, then there are 

several possibilities. One is what I found on the minGW compiler that I am using on my 

Windows machine is that it does not crash it constructs, destructs but it arbitrarily takes some 

values 20.  

Well, the actual length of the string, partha is 6. And when I run it on my visual studio, 

windows, visuals Microsoft Visual Studio, then the program simply crashes saying that there 

is an unhandled exception, because you have passed the garbage to strlen. And so you will 

have to be very careful in terms of the order in which you if there is dependency between the 

values of one initialized data member to the other.  

You have to put them in the right order in the listing of the data members. So, that is what so 

it says that the lifetime of I mean the reason I am discussing it here is it says that the lifetime 

of str has to start before the lifetime of len is expected to start, because len depends on the str. 



(Refer Slide Time: 09:06) 

 

So, now, I have put a number of examples for you to actually trace the constructor destruction 

and the use of object lifetime. And as you can see here, the title is prefixed with practice. So, 

we will not get into the details. We will possibly come back using them in, in different 

contexts later on. But I I insist that you try out these programs, read every line of it and 

understand it well.  

(Refer Slide Time: 09:36) 

 

So, there is a, this is the design of a date class. This is our good old friend, point and rec class 

and I have shown the expected output everywhere so you can check and get convinced that 

things are happening in the right way.  



(Refer Slide Time: 09:48) 

 

Then there is a name, class and address class.  

(Refer Slide Time: 09:52) 

 

These are all for your practice including the credit card class which uses all of these.  



(Refer Slide Time: 09:58) 

 

And if you if you do that, if you run that, then this is the kind of the, the magenta is the kind 

of output that you expect from this, while you have on the right top the design of different 

classes. So please practice them out to get more confidence.  

(Refer Slide Time: 10:15) 

 

Now, let me move on to the copy issues.  



(Refer Slide Time: 10:19) 

 

The first is a copy constructor. So, what we do is, this is a normal construction, we all have 

seen this. So, when we do this, we can we can do it by this or we can actually write it as 4.2 

5.9 like this also. So, it constructs it expects a constructor which double double and construct 

by that. Now, what if you construct, invoke it like this. That c1 is already constructed as a 

complex object, and you are trying to construct c2, putting c1 in the parameter of this.  

Or putting c1 in the initialization value. This, this is the point where copy construction is 

taking place. Why? Because you already have an object of the complex type here or here. 

And you want to create another object of the complex type as a copy of this object. So, the 

copy constructor takes place. So, in the copy constructor, naturally, what you are passing as a 

parameter is an object of the same type.  

So, naturally, it is it has to take a parameter which is complex. We will avoid using the I 

mean, we would avoid using the call by value as you know, so we will put it as call by 

reference. And we do not want the source object to be changed by this copy constructor. So, 

we will put a const. So, that is the that is a basic copy constructor design, that we will have.  



(Refer Slide Time: 11:50) 

 

So, here is an example of this, where this is the copy constructor. So, what we do is, I am 

passing a object c of complex type to this constructor. And I take the real component of c 

copy to the real component of the object to be constructed similarly for. So, basically, item by 

item, I am data member by data member I copy. And if those data members are user defined 

types, then their respective copy constructor in turn will again get invoked.  

It is, it is the same process as as the construction where construction in general can take 

parameters of any type, or may not have a parameter for default. In copy constructor 

specifically, you take an object of the same type. So, when you write this, you are invoking a 

constructor, and when you are writing like this or this you are invoking the copy constructor. 

And I have put messages here specifically.  

So, that in the output trace, you can find out which constructor is being called and in which 

order destructors of course, will happen in the reverse order as we have seen. So, this is a, this 

is the basic story of copy construction. So, it is like copying variables we have.  



(Refer Slide Time: 13:11) 

 

Now, we have given ourselves a mechanism to copy any object that we have created for our 

user defined types. Now, the question is, when do you need to do this copy construction? The 

primary reason you need copy construction is to support call by value. As you know, if you 

do call by reference or return by reference, then only the reference is being passed, no object 

copies as we have seen already.  

But if you do a call by value, then naturally you need to copy the given actual parameter 

object to the expected formal parameter object. So, you need a copy and that copy is what is 

done by the copy constructor. Similarly, if you are returning something by value, then you 

will need the copy constructor. So, copy constructor is needed for initializing the data 

members of a UDT from an existing value.  



(Refer Slide Time: 14:06) 

 

 

So, this is the reason without the copy constructor, you will not be able to call functions by 

value. So, here I give an example, this is a copy constructor. And I am trying to write a global 

function, which is displayed which takes a complex parameter by value. I am not putting the 

&. So, as I take it by value, and I call it so my actual parameters c needs to be copied to the 

formal parameters c_param.  

And when I do that, this copy process will invoke the copy constructor because it has to copy 

the fields of c into the fields of c_param. So, as you can see here is really that initially when 

you do, initially when you are doing this, you have a constructor call. And then when you you 

have not made any explicit copy constructor call here, but when you call display try to call 

display, you have a copy constructor called copying c_param as a copy of c in display.  



And then the display is actually called it does the display process. And when you are done, 

when you are done, you are here you have constructed a an object here. So, the lifetime of 

that object has started, that formal parameter object has started with the call of display. So, 

when you get to the end of display, your control is going back, you are out of that scope.  

And by that same rule, the destructor will be called for c_param. So, the destructor is called 

and with the same set of values. And then finally the destructor of c is called at the end of 

main. So, this is how the call by value is supported.  

(Refer Slide Time: 15:56) 

 

 

You can see the same thing if you do return by value as well. So, what is what should be the 

signature for the constructor function. So, this is the most common signature that you pass the 



parameter to the copy constructor by reference by reference, and you make that a constant so 

that the source cannot be changed. It is also possible that you write a copy constructor where 

you have not used constant.  

In it, you might wonder that while I am copying, why do I need to change the source? See 

there is a subtle difference between what we say is a copy and what you say is a move. If I 

want to realize move, which does not exist in C++ 03, then what I want is not only make a 

copy but actually invalidate the source if required. So, that there is only 1 because if you are 

just to copy there are two copies of the variable.  

If I just want one, that the source has moved to the destination, then I will need to use this I 

will talk about this in more details when I talk about smart pointers and how they use this. 

And we will come back to that in C++ 11 when we talk about the move semantics, which is 

specifically supported. So, this is the most common 99.9 percent of copy constructors are like 

this, some are like this and very rarely you may use other qualifiers like volatile and all that.  

So, it it may also be noted that if you pass a, if you pass a pointer, like if you try to do a call 

by address for the copy constructor, you can, you will still be able to make a copy. But that is 

not a copy constructor, that is if you provide this, the compiler will not use it in the context of 

call by value or call by reference. So, do not consider that these are functions. These are 

obviously some overloaded constructors, but they are not copy constructor.  

Now the final question is why do I need to pass the parameter to the copy constructor as 

reference? What if I pass it as a value? Now what will happen? If I pass it as a value, then to 

be able to call the copy constructor needs to copy this value, which in turn needs the copy 

constructor itself. So, I am passing it called by value, so call by value needs, the value must 

be copied that needs the copy constructor must be invoked.  

And if I do that for the copy constructor, then the copy constructor itself will have to be 

invoked. So, it will have to be called. And to call that I need to copy the actual parameter 

again. So, the copy constructor will be called again. So, I end up having an infinite recursion. 

So, this is not if you write this, then you will basically have an infinite recursion you will 

never be able to end. So, the only way to write copy constructed is by reference and 

preferably by constant reference.  



(Refer Slide Time: 19:04) 

 

So, these are again, our point and rect class the different instances. For example, if you see 

that in the initializer list, you are constructing tl the top left object point by x and y the integer 

value, so this will invoke the normal constructor. But if you are doing this, that is where your 

ptl is already a point object and you are trying to create the tl member of the rec class by 

copying it then you will have the copy constructor invoked.  

So, you can study it well. The notes are all given explaining what every stage is doing and 

understand. Where does the default constructor come in? Where does the copy constructor 

come in? And what does the other overloaded constructors come in?  

(Refer Slide Time: 19:57) 

 



So, if you run that program and you will see that actually, this is the kind of output that you 

get. And it will be a good exercise that you do not look into this, right hand side column first, 

keep it blank on your copy, guess take output, and then try to put the lifetime information as 

to when things are getting created, when things are getting copied, when things are getting 

destroyed, when things are getting used and so on, that will give you a good practice. So, this 

is a, this is yet another practice slide that I have put for you.  

(Refer Slide Time: 20:29) 

 

 

Now, like the constructor, if you do not provide a copy constructor, then the compiler will 

give you a copy constructor. Now, the copy constructor, the compiler provides, because if I 

mean, if you have not given a copy constructor, and you are using that object of that class, by 



in call by value or call by reference, I mean call by value or return by value, then certainly the 

compiler needs a copy constructor.  

So, it will provide you a free one. Now, it does not know what to do, what so what it does, it 

just copies a bit pattern, whatever the object had it copies a bit pattern. So, this is called the 

bitwise copy field wise copy, field for field copy, field copy, field copy and so on. So, if you 

have data members, which are just, built in types, whose actually they do not have any 

specific thing to construct, their values will come properly.  

But if you have some reference variable, some pointer variable, which has allocated a 

location, then what will happen this is your original object. Now, you have if you have copied 

that pointer value, then in your copied object, the pointer value will be the same. So, you 

have two copied objects having the pointed values, which are same, so they are basically 

referring to the same object.  

So, this is a very ambiguous copy. And this might lead to unexpected results because, for 

example, after cloning, if I clone is another process used for referring to the copied object. 

So, after cloning, if I use that pointer to change this reference object, then the same value will 

be reflected in the original object. So, this type of copy is called shallow copy, where you are 

just copying the pointers, because you are doing a bit copy.  

That is what the compiler has given you. The other which is which is basically the preferred 

or the correct way of doing this is to have a deep copy. So, what you do in a deep copy in a 

deep copy, you for the, every built in type, you copy the value. For every other data members, 

you call the copy constructor of the corresponding class and for pointers, you actually make a 

fresh allocation and copy the pointed value as well.  

It is not enough to just copy the pointer that is not semantically correct. So, you have to 

explicitly define the copy constructor assign dynamic memory as required. And put the so we 

have in terms of a deep clone or deep copy your original object is giving you the clone object. 

You have a reference object, you are not copying this pointer, you are not copying this 

pointer rather, you are doing a fresh allocation and copying this object by that object's copy 

constructor. So, that is a, that is a big pitfall of having a free copy constructor from the 

compiler or the pitfalls of shallow copy.  



(Refer Slide Time: 23:43) 

 

So, to just to illustrate, I have shown here a class with one integer value and one pointer two 

integer. So, naturally in the constructor, a value is in a dynamic allocation is made and that 

will be deleted later on. Now, I have not provided any copy constructor. So, what the 

compiler will do? It will provide a free one which will copy everything. So, what happens I 

have two objects, one is originally created, the other is a copy of that which has been created 

by bit copy, shallow copy.  

So, when I print the addresses of these two objects, I find that different objects. But when I 

go deep and print the pointers, this particular p_ pointer that has also got copied. So, they 

have same values and both of them will try to point to the same location. Now what is 

happening, what when I do this, then at this point, you can see that my destructor is actually 

making the print.  

So, when I come to the end of main, this object will be the first to get destroyed. The last 

created first destroyed. So, this object, when this object is destroyed, this p_ pointer is 

deleted. So, now it becomes a dangling pointer. So, when you go to destroying a1, which is a 

first object created the second to be destroyed, then you are again trying to do a delete p_ or 

you are trying to print the value of pointed to by this.  

But p_ has already been deleted, because it was pointed to by a2 and a2 has done the 

destruction. And it is deleted that pointer is a dangling pointer, so, you get a garbage value 

you might get crash also. So, this is a problem with the shallow copy.  



(Refer Slide Time: 25:41) 

 

 

So, do not do that always do deep copy. So, as in the copy constructor, now, you can see that 

you copy the integer variable because it is not a pointer. For a pointer, you do an allocation 

and initialize it with the value it was pointing to. Once you do that, and you write the same 

same code, now, what you have is in the copy it is not a bitwise copy, it is no more that you 

have these two pointers same.  

So, in the two different objects that you have got the two pointers are of different value. And 

therefore, when a2 is destroyed, and that pointer is released, the pointer in the a1 does not get 

affected, and both of them have the same value because that is how you have created. So, this 

is what is deep copy. There are alternate terms also which is used, some use lazy copy, some 

use copy on right.  



There, they are not exactly same, there are semantic differences and at an appropriate point I 

will explain that. But the whole idea of deep copy is copy the pointed variable values 

separately with allocation.  

(Refer Slide Time: 26:54) 

 

So, again, practice examples given here with a free copy constructor to carry out through 

them. There is a user defined copy constructor for a string object class, please try that with 

the free copy constructor.  

(Refer Slide Time: 27:02) 

 

And in the, in the notes, I would always suggest that do not read the notes, first understand 

the program. If you cannot figure it out, or after you have figured out what has happened and 



try it build and try to run it. Once you have seen what is happening, then you go to the notes 

and confirm that your understanding is correct.  

(Refer Slide Time: 27:32) 

 

So, this is how the practice ones must be done. Now, let me talk about the copy assignment.  

(Refer Slide Time: 27:39) 

 

So, other than the construction, which was we were doing, the other that we do regularly is 

copy 1 value into another. So, when I write it, when I write something like complex c2 then I 

made a copy construction, because this is an initialization.  



But if I simply write a statement c1 c2 both are available, and if we simply write a statement 

c1 is copied to c2, then I need a copy to be done which means that I would like to erase the 

values in c2 and overwrite them with the values in c1. So, this is an assignment. So, this is 

called copy assignment or assignment.  

Now, we know operators can be overloaded. So, this operator of assignment is Operator 

Assignment. Naturally it takes the object of this complex type, the source type, which will 

come as a, as a constant reference. And what does it return? It has to return an object of the 

same time because you have copied. So, it also returns by reference the same type of object.  

(Refer Slide Time: 29:03) 

 

So, here is a copy assignment here, the copy assignment for this. And it returns, returns this, 

it is not only enough to copy and make changes. Like you are copying and making changes 

here, which is fine. But it is also important that it returns the object, of the same type. Why do 

we need that because we may want to change the assignment. For example, here we have 

changed the assignment.  

So, c3 so this operator is called first because this is right associative. So, c3 is copied to c2 

and whatever is copied that object is returned. And that then is copied to c1. If you did not 

return that object that you have copied into. Then the second one you will not be able to 

write. So, to support this continuity of semantics of assignment being chainable, you need to 

return the same object.  



(Refer Slide Time: 30:13) 

 

So, this is what is the copy assignment, you can see the copy assignment in string. So, if in 

the, in the string, you have a pointer and the length, so the string is pointing to an allocated 

memory where you have doped. So, what you will have to do is when you are copying, you 

cannot simply copy that pointer from your source to the destination object in the copy 

assignment.  

Because if you do that, then whatever the your destination object was pointing to will leak, 

because that memory gets lost. So, you have to free that up, then do a fresh strdup, to do a 

deep copy, as you have understood by now, copy the length and return the same object. So, 

that is a that is a simple way of doing this. This works pretty fine and if you do this with s1 

being assigned to s2, you will have a very nice working.  

Now, what if you are doing a self-copy? Instead of this, what if you are now you might ask 

why should I do a self-copy, but it is always possible because, you do not in the whole set of 

programming, you do not want to create an operator. Because in a built in type of int x, if you 

assign x to x, then it has it it works perfectly, but here it should also work perfectly, but does 

it?  

Suppose you have done this, this is the only change that I have made. Now, what will 

happen? You have released the memory once you have released the memory here, here you 

actually wanted to release the memory here in the destination object but is same as the source 



object. So, it has got released in that as well. So, when you are doing this strdup for 

performing grip copy, it is a garbage value.  

So it will create a either a garbage value or a program crash. So, self-copy is a problem in this 

strategy. And so it has to be detected and somehow taken care of. So it is very easy to do that. 

Because if you are doing a self-copy, then all that you need to detect is the object that you are 

getting as a source and the current object on which the copy assignment operator has been 

invoked.  

That is that this pointer, these are the same object. So, what is identity the address, so this is 

the destination object. And &s is a source object. If they are identical, then they are the same 

object and therefore, there is nothing to be done for this copy. So, if this is equal to &s, you 

just return this, that is all. Otherwise, you do this, where you know you are, they are different 

and it is it is going to be always correct.  

(Refer Slide Time: 33:15) 

 

And this is the self-copy needs to be taken care of. And otherwise, so, this is what turns out to 

be what is the basic signature of the copy assignment operator, where you check for self-

copy, do whatever is required for the deep copy, and then you return this.  

You can copy assignment operator could also be of this type, like the copy constructor that is 

in the first 1 which is common, if the source is not changed. In the second one, the source will 

get changed. So, I might want to move this, there could be several other signatures, but they 

are rarely used. So, do not try to use them.  



(Refer Slide Time: 33:54) 

 

Copy assignment operator could also be, will also be provided free by the compiler and 

therefore it will come with all the issues of shallow copy that we have talked off.  

(Refer Slide Time: 34:06) 

 

Now, before I conclude the just to compare what is the difference both our copying 

constructor and assignment operators. Now constructer is overloaded, the operator is also 

overloaded. The basic differences is when you do copy construction, the object does not 

exist. So, that object has to be created as a copy.  



Whereas when you are doing copy assignment, there you already have two objects and you 

are changing the destination object according to the source object. So, that is a fundamental 

difference, rest of it is whatever we have discussed in the slides so far.  

(Refer Slide Time: 34:50) 

 

And finally, you have the class as a, as a type. So, this we had seen earlier. Now with this and 

this coming in, we have the copy construction which is also common, also available for the 

built in type. So, you can see that your assignments and like in assignments here you can see 

that we are actually extending the class and making it more like a perfect type.  

(Refer Slide Time: 35:22) 

 



So, with so with this I conclude on the on the module with different semantics of copy 

construction assignment, and deep and shallow copy. Do practice this very, very thoroughly 

because this will be critically important in all kinds of things, programs that we write in 

future. Thank you very much for your attention and we will meet in the next module.     

 


