
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 13

Constructors, Destructors & Object Lifetime

Welcome to programming in modern C++, we are in week 3, and going to discuss module 13.

(Refer Slide Time: 0:36)

In the last module, we have primarily covered the information hiding feature of object

oriented programming, how to implement that in C++ classes, by making the implementation,

the data members private, and exposing the interface, the member functions that people need

to use making them public. And we have talked about get set idiom.

(Refer Slide Time: 1:12)

We will now get into the very depth of how do we start the whole process of object creation?

And how do we end that life of an object. So, we will talk about the constructor and

destructor, which I have already mentioned couple of times in my earlier modules.

(Refer Slide Time: 1:32)

But now you will actually learn what it does. So, starting with the constructor, so, this is what

we had seen that this is what we should not be doing. And the exposed initialization, the risk,

we have seen all of that. So, we are in this style of information, hidden design, where the data

members are in private, and only the member functions which the interface needs are in

public.

Now, there is a now in this a there is a border, the border is that when I say stack s,

obviously, I will have an array of data, I will have the top. But what about the value of top

that needs an initialization, which I was doing here, directly. So, instead of doing that, which

exposes the initialization, I will add another function, I may add another function to the

interface called init. And so using that function, the user can initialize a struct.

So, I do a s.init(). Now that this obviously is cleaner than what you had here better. But it still

has a couple of very critical problems one is, this has to be called before the first of any of

these operations in the stack can be done. User has to remember doing that. Second, it should

never be called after that, because the moment to call this is like flushing the whole stack out.

So, that again, I mean this with the information hiding.

This does give us a programming way to handle the situation of initialization, but it is not a

very preferred way because it can still cause a lot of possible errors and pick things unsafe.

So, if we compare this so this is the init we had set and this is what has to be called what you

just saw. Now, the C++ allows that you can write a constructor, a constructor is a special

function, which has the same name as the class.

So, why do we have that there is not a simple. I can I need to initialize and I need to initialize

every object of every class that I create. Now, if I let users give name to the initialization

function, then somebody will call it init, somebody will call it start. Somebody will call it

initialization. There will be all confusion and how will the compiler know.

So, give it the name which is same as the name of the class because the name of the class is

unique. And the important part is, when this is declared, the control is passing this point then

this constructor is automatically called, what is automatically called? The compiler knows at

that point that unless that s has been declared, s dot push cannot be done, because this is no

more, I am not even an object.

But once this has been declared, from the next point onwards, it can be used. So, at the

declaration point it puts, which I we do not get to see puts a call to that constructed. So, if you

put all your initialization within the constructor, then it will automatically get constructed,

you do not have to do anything, there is no question of forgetting it, there is no question of

doing it multiple times.

There is no question of doing it at a wrong point, any of this everything gets sorted. So, that is

the basic idea of the constructor, minute in the constructor we have we are using here this was

an assignment, we are assigning this. Here what we say we are doing an initialization this

actually is a constructor body which has nothing it can have something but in this case, it has

nothing.

So, what do you say we put the name of the data member, and we put the value within

parenthesis that we want to initialize it with. That way, it gets a lot of advantages, we will see

those advantages slowly, more and more, but the biggest advantage is that it is very clearly

available at one point and very clearly I cannot actually get into the executing the body of the

constructor, because till all data members that need to be initialized or properly initialized, I

do not have a proper state of the object.

So, that is the purpose of initializer list. So, we will come to discuss that more in depth later.

(Refer Slide Time: 7:08)

So, for example, examples of stack constructor here I have given the constructor outside of

the class it is qualified by the class name, I initialize top because this is an automatic array

whereas here it is a dynamic array. So, in the constructor, I initialized top, but I also need to

dynamically create an array and put that pointer put that pointer to data.

So, whatever internal structure I may have, whether I have a static array, automatic airy, or

they have a dynamic array, or I have a linked list, whatever I do, I do not need that to be

exposed. All that the compiler knows is a stack s. So, the constructor will have to get hold,

that is it and it will do the job makes it a very, very clean solution.

(Refer Slide Time: 8:17)

So, if you just to see what is the difference between a constructor and a member function,

because constructor is also a member of the class, because it is specific to that class has that

specific name. The first thing to remember is and we will talk about this more later is it is a

static member function. In the sense that see, the problem with the constructor in comparison

to other member functions is.

All other member functions are invoked after the object has been constructed, all

initialization is done. When you are calling the constructor, the object is not constructed,

because you are that is the purpose for which you are calling it, the object there is no

initialization.

So, but the constructor needs to know the address where the object will recite because

without that address, it cannot put values to data members like it is saying top_ is will be

initialized with minus 1 how will it put it in which memory so, it has to know that memory

when the object will come.

But that memory pointer has still not become at this point. It becomes at this point and only

when the object is been born has been created by the constructor. So, the constructor is

implicitly independently called and that is what is the important thing and data members do

not have that. So, this we have already said these are the same name as the class member

functions must have different names. Constructors do not return anything.

Not only that, they do not have a return type even it is not even void because there is it is

construction is a process which establishes the object and then the control has to come back.

There is nothing else, we cannot come back with anything or there is nothing required to say

that there is there is a void return nothing, nothing is returned.

So, there is no return therefore, there is no return statement either the controller returns

implicitly whereas, in case of member functions the return may be there it may not may be

implicit, it may be explicit whatever. So, initializer list is there and this is specific to the

constructor such lists are not available to other functions not member functions, it is implicit

by instantiation whereas member functions have to be explicitly called.

Constructor may also be private. And we will I mean that that is another paradigm of

information hiding that we will talk of that it might wander you as to what will happen if

constructor is private? What am I trying to say? I am trying to say that I do not allow you to

construct an object where if I if you do not allow the user to construct an object, then well,

then how will the user at all use the service?

Well, there are answers to that question. But that is a that is another very strong paradigm of

programming that we will get into. So, typically, in the initial part 2 will always have

constructors which are in public, but it can be private also member functions can be public or

private, both can have any number of parameters and both can be overloaded. We will see

these things slowly.

(Refer Slide Time: 11:46)

So, this is the basic I just wanted to outline the differences between a common member

function and the. So, you can have parameters to the constructor like any other than the

initializer list and not having a return type and having a fixed name other than that, it every

rule of the function applies there, you can have parameters.

So I can pass the specific values when I write c 4.2, 5.3, then this goes as the first parameter,

this goes as a second parameter. In stack I did not need that. So, there was no parameter

because in stack the initialization is by known values always whereas I here I need them. So,

I can put this parameters.

(Refer Slide Time: 12:37)

And the moment I can put parameters and all related stories will come stories of function will

come with that data, if I can put parameters and parameters can be defaulted. If parameters

can be defaulted, then a constructor can be invoked in multiple ways, this is just like

following the rules of function, default parameters in functions.

So, if I have defaulted both the parameters, so I can just instantiate it, instantiate it with only

1 which will be the re or instantiate with both which will be re and im. So, this there is there

is nothing new in this over what we have already seen in the functions.

(Refer Slide Time: 13:21)

Now, here is a stack with a default parameter, which is the initial size of the stack that I

provide and accordingly in the constructor, the allocation is done for that size. So, these are

different ways you can use it the parameters also.

(Refer Slide Time: 13:46)

Now, once you have the default parameters, you can understand that like in functions, you

can have overloading. So, it is not necessary that a constructor will have only will be unique

constructor, there could be multiple constructors for example, here I have shown 3

constructors, one which takes 2 parameters, one, one and one, two, it does not take any

accordingly we have 3 possible invocations or instantiations of the objects. So, all

overloading rules all that as we had seen earlier will apply.

(Refer Slide Time: 14:23)

So, these are overloaded constructors for rectangles. So, here what we are seeing, we are

passing 2 points. This becomes a rectangle. Here what I am saying? I am passing a point and

a height and a width. So, this will also become a rectangle, a very different way of passing

rectangle. Here, I am just passing height and width, height and weight, not the left up. So, I

have to assume a default. So, I am assuming that leftovers.

So, there are different ways I can construct a rectangle and there are different constructors for

that, I have to make sure that they are distinguishable by the number and types of parameters

that same issue of overload resolution will come in here. And here I have different

invocations of these constructors for building the rectangle objects.

(Refer Slide Time: 15:37)

So, that is about the constructors. Now, let us move on to the destructors. Destructor does the

other thing, constructors constructed the object. So, if you think in terms of in a C style, then

you will say okay, I had constructed, so, this allocation was done. So, I need to release that.

So, I have a deinitializer, which should release that memory and that should be called at the

end. Again, the issues are these are the user will forget.

And if they issue if the user forgets the data leaks or if the user calls it twice, then you may

have different kinds of pointer referencing issues and so on. So, what the C++ provides? It

provides a destructor which also is the class name preceded by the tilde symbol, that is a

peculiar way of naming which you do not use anywhere else, and that will get called at an

appropriate time. So, you have declared the stack here.

So, here the constructor has got called. Now, the compiler knows the scope up to which the s

can be accessed. Before this s does not exist. So, there is no object either. After this point,

after the control passes this point, you go out of the scope, you go out of this function, so

naturally there is no s. So, it is only up to that point.

At this point, it will invoke the destructor automatically, absolutely clean solution, you have

to do nothing. You have to do nothing other than just declaring that you are using a stack s

and then go and use it the compiler automatically constructed, compiler will automatically

destruct, beautiful solutions.

(Refer Slide Time: 17:40)

So, if you just want to compare with the main common member functions, then both

destructor has a this pointer because the object is existing. The name is as I said, till day

followed by the class name for member functions, you do not have that. Like constructor

destructor also does not have a return type neither not even void, because it is because you

will destroy after you have destroyed, the object is gone.

So, what will you return and there is no concept of a data whereas all those are standard for

member functions. And it is implicitly called at the end of the scope or by operator delete

rules. So, we will see that kind of scenario soon. And so, you can make a note that since the

destructor will have to actually tell which object it is destroying.

Constructor did not have to do that. This constructor did not have an object he just needed a

memory which compiler makes a mechanism to pass that memory pointer to the constructor

but when you are destroying or destroying the object say s. So, you have to pass that this

pointer of s which by the implicit mechanism the compiler will pass exactly like it passes

through the member functions.

Again destructors could be public or private, it does not allow parameters for the simple

reason that what will a parameter mean? Parameter mean that you are trying to say something

to be done. But when this is being called even nobody is calling this no user code is calling

this it is being called implicitly and at the end.

So, in the implicit call, how do you pass a parameter? Like in the constructor it was possible

because it is it is automatically called but it is explicit. You know when it will be called. In

case of distracted it will be called, but there is no call site that you can see, it is not visible,

end of scope compiler has put this in it may have put in hundreds of such destructors.

So, there is no sense neither a mechanism neither possible syntax to pass parameters to it. So,

the destructors will never allow parameters. So, and obviously, it cannot be overloaded, you

cannot have 2 different destructors because again how will the compiler know which one to

call. If you overload you need parameters. So, you cannot have parameters it cannot overload.

(Refer Slide Time: 20:42)

So, these are some of the basics about destructors. There is a special type of constructor; a

constructor without any parameter is called a default constructor. Now, so, actually, if you

define a constructor and default all its parameter values, then also you are actually having a

default constructor because it is possible to call it without any parameter. But you can choose

not to have a default constructor.

Now, what happens is when you do not, if you write a class and you do not give a

constructor? Now, there could have been 2 choices one is this could have been made not

allowed at all. So, that the code will not compile unless you give a constructor but that has

not been done because there are several small situations where the constructor is so trivial

that you will not like to take the pain of writing it.

So, what does the system do is, if you do not provide any constructor, the compiler will

supply a default constructor, a constructor without any parameters, without any code, without

any initialization, but it will provide that placeholder function. And once you write a

constructor, which is either I should say default or is non default that it has parameters only,

once you write that the compiler will not provide it.

Similarly, for the destructor. If you write one, then the destructor will not be provided by the

compiler. But if you do not, then the compiler will provide it instructed, it is very common

that we do not write destructor because if there is no dynamic allocation, usually, then there is

no need to specifically do anything when the object is going out of scope. The automatic

scoping will take care of it.

So, but so the compiler will in those in every such case, compiler will provide default

destructor. So, you can whether or not you write a constructor whether or not to write a

destructor. This guarantees that every class when it is after its compilation, has a destructor,

has a constructor, at least 1 and has a unique destructor. So, that is a.

(Refer Slide Time: 23:25)

Now, so this is the example of a default constructor by the user. I have explicitly written that.

So, the construction is done here by default values. Now, let us see if I do not provide it. Here

I have not no constructor have given. Since I have not given a constructor, what will happen

at this point? The compiler will give a default constructor.

Now that default constructor does not know what to put here. As I said, there is no initializer

list there is nothing in the function, it is just a blank function with no parameters. So, after the

object has been constructed, just for experiment, if you try to print to see what kind of things

it has, if you do that print, you will find something like this, garbage values, of course.

So, then you will have to then use your member function to set it to proper values. Doing this

set on re and im and then do the print you will get the proper one. So, remember this that the

free constructor that you get, may not always often satisfy what you what your actual needs

are?

(Refer Slide Time: 24:57)

Now with this, let me get into that basic lifetime issues that is it is clear that an object does

not exist in the system all the time. The object exists between object creation and object

destruction. Now, naturally this is this notion is not specific to C++, it has in several

languages this concept is there it is called object lifetime or life cycle, but the meaning of that

may vary from time to time.

For example, in C++ the object lifetime primarily denotes I mean primarily relates to

coincides with that variable lifetime, the variable is in the scope, the object is there. When the

variable is no more accessible object is not accessible. But, that may not be true again if you

have dynamically created objects, because the variable which created that object held that

pointer to that object may go out of scope, but you may have passed that pointer to someone

else. So, you continue to have that object.

So, the lifetime will be as the lifetime is from object creation to object destruction. Similarly,

other languages like Java, Python have garbage collectors. So, the object goes out of scope, it

is notionally not there, but it actually exists till the garbage collected removes it.

(Refer Slide Time: 26:40)

So, based on that there are so, in the C++ it typically is certainly you have allocation, the

construction, allocation of the stack frame, the construction, the use and destruction. So, it

will I have marked by E1 to through E9 in this code as to exactly how the object is taking part

in the flow. So, I would request you to carefully study each one of these from this chart and

make a clear understanding of what the objects are going through.

(Refer Slide Time: 27:15)

So, at the top level, first the memory has to get allocated and bound for this object. Then the

constructor has to get called and constructor will execute. Then the object is ready object will

be used then the destructor will be called and executed. So, destruction part is done then it

has to be de binding and de allocation for the whole thing.

So, the basic construction object lifetime considers is the it starts with the execution of the

constructor body following the memory allocation but constructed body mind. The initializer

when as long as the control is in the initializer list, it is not considered that the object lifetime

has started for the simple reason that if you have that lifetime there you still do not have a

valid state. So, say your error has been allocated, but in for a stack but top has not been

initialized. So, the object is actually not there.

So, after the initialization list, so, you have this after the initialization list, when you are at the

beginning of the constructor body is when your object construction is started. And your

object destruction will be considered to have happened when as soon as the control leaves the

destructor body. So, this is the simple notion of the lifetime.

(Refer Slide Time: 28:59)

In the following slides I have provided the examples for what happens in case of automatic

variables like in here these are automatic. So, you are this you have already seen. Naturally it

is constructed here and destructed and you remember the destruction will always happen in

the reverse order. If there are 2, it is constructed as cd and it is destructed as dc.

So, you can think of it as a as it as a stack. So, it is last constructed first destructed is always

the mechanism. That is all through C++.

(Refer Slide Time: 29:42)

So, it could be automatic like this. It could be an array of objects. If you have an array of 3

objects and there are 3 construction calls. And one point to note is if you want to construct an

array of objects, you must provide a default constructor, so 3 bad constructors called c 0, c 1,

c 2. So, it will destruction will be c 2, c 1, c 0.

(Refer Slide Time: 30:10)

If it is static, then it will be constructed before pain starts this is something which is possibly

new to you. But remember that static all static variables have to get initialized before main

start so, now there is a construction so the static object will get constructed. So, I have given

the programs in a way and the output will clearly tell you where the lifetime is going. And

finally, if you have dynamic created objects, then it is up to your control as to when you after,

when you construct by new and when you distract by delete.

(Refer Slide Time: 30:48)

So, please trace this codes carefully to understand the more about the object lifetime. We

have talked about the constructor and destructor, the 2 basic most important functions in a

class. So, I hope you have understood this and you will need to revise on this very frequently.

Thank you very much for your attention and we will meet in the next module.

