Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Lecture 13
Constructors, Destructors & Object Lifetime

Welcome to programming in modern C++, we are in week 3, and going to discuss module 13.

(Refer Slide Time: 0:36)

Y e
: + Module Recap
=

o Access Specifiers help to control visibility of data members and methods of 2 class

o The prvate access specifier can be used to hide information about the implementatica
details of the data members and methods
o Get, Set methods are defined 1o provide an interface 1o use and access the data

members

In the last module, we have primarily covered the information hiding feature of object
oriented programming, how to implement that in C++ classes, by making the implementation,

the data members private, and exposing the interface, the member functions that people need

to use making them public. And we have talked about get set idiom.

(Refer Slide Time: 1:12)

Fa
th¥: Module Objer
x

o Understand Object Construction (Intialization)

o Understand Obpect Destruction {De-Initialization)

o Understand Object Ldetime

;‘
Prgrammng @ Shedoes Pote A Do NI

We will now get into the very depth of how do we start the whole process of object creation?

And how do we end that life of an object. So, we will talk about the constructor and

destructor, which I have already mentioned couple of times in my earlier modules.

(Refer Slide Time: 1:32)

Fal
¥ Constructor
{1

Constructor

D
Prapamng @ Modes Pete At De "

Using in|)

flacicte <isstream? flacisde <loatn
usiag camers uslag saperpace

cimee $acs clans Jack | w “I
L
P |
\ L
| LRl
vedd papl) | ==top;)
() | retzrn data_[ve3.]))
} }
it sain() { char serfi0] « "A33E"; 1o mainl) { char ser(i0] » “W238"
Seack u; e.lzitf) Stack »
fee (lat & » 0; § < By ++i) s.peshisne(s]); for (lat § & 0; § € B; +i) s.pesbisnz(i]);
while(fs anpry()) | coer << a.tep()) a.pep(l; | wilefte. enpry()) | ceer << w.vepll; o.pepl()
) |
||
o inttd) serves na visible parpese - spplication may forget o Can initiakzation be made 3 part of ieslartiotion?
te cal
o I appheation mivees % cal S2dn (). we hove 5 comupt stack || o Yes Comtroctor b implicitly caled 3t imtamtistion as st |
[| by the comher

But now you will actually learn what it does. So, starting with the constructor, so, this is what
we had seen that this is what we should not be doing. And the exposed initialization, the risk,
we have seen all of that. So, we are in this style of information, hidden design, where the data
members are in private, and only the member functions which the interface needs are in

public.

Now, there is a now in this a there is a border, the border is that when | say stack s,
obviously, I will have an array of data, | will have the top. But what about the value of top
that needs an initialization, which | was doing here, directly. So, instead of doing that, which
exposes the initialization, I will add another function, | may add another function to the

interface called init. And so using that function, the user can initialize a struct.

So, 1 do a s.init(). Now that this obviously is cleaner than what you had here better. But it still
has a couple of very critical problems one is, this has to be called before the first of any of
these operations in the stack can be done. User has to remember doing that. Second, it should
never be called after that, because the moment to call this is like flushing the whole stack out.

So, that again, | mean this with the information hiding.

This does give us a programming way to handle the situation of initialization, but it is not a
very preferred way because it can still cause a lot of possible errors and pick things unsafe.
So, if we compare this so this is the init we had set and this is what has to be called what you
just saw. Now, the C++ allows that you can write a constructor, a constructor is a special

function, which has the same name as the class.

So, why do we have that there is not a simple. I can | need to initialize and | need to initialize
every object of every class that | create. Now, if | let users give name to the initialization
function, then somebody will call it init, somebody will call it start. Somebody will call it

initialization. There will be all confusion and how will the compiler know.

So, give it the name which is same as the name of the class because the name of the class is
unique. And the important part is, when this is declared, the control is passing this point then
this constructor is automatically called, what is automatically called? The compiler knows at
that point that unless that s has been declared, s dot push cannot be done, because this is no

more, | am not even an object.

But once this has been declared, from the next point onwards, it can be used. So, at the
declaration point it puts, which I we do not get to see puts a call to that constructed. So, if you
put all your initialization within the constructor, then it will automatically get constructed,
you do not have to do anything, there is no question of forgetting it, there is no question of

doing it multiple times.

There is no question of doing it at a wrong point, any of this everything gets sorted. So, that is
the basic idea of the constructor, minute in the constructor we have we are using here this was
an assignment, we are assigning this. Here what we say we are doing an initialization this
actually is a constructor body which has nothing it can have something but in this case, it has

nothing.

So, what do you say we put the name of the data member, and we put the value within

parenthesis that we want to initialize it with. That way, it gets a lot of advantages, we will see

those advantages slowly, more and more, but the biggest advantage is that it is very clearly
available at one point and very clearly | cannot actually get into the executing the body of the
constructor, because till all data members that need to be initialized or properly initialized, I

do not have a proper state of the object.
So, that is the purpose of initializer list. So, we will come to discuss that more in depth later.

(Refer Slide Time: 7:08)

Astomatic Aray

flacicte (lsstream
uslag camespace 3td

clase Jacs | 1r{)'o
shar date [1V); dst top,

So, for example, examples of stack constructor here | have given the constructor outside of
the class it is qualified by the class name, | initialize top because this is an automatic array
whereas here it is a dynamic array. So, in the constructor, | initialized top, but I also need to

dynamically create an array and put that pointer put that pointer to data.

So, whatever internal structure I may have, whether | have a static array, automatic airy, or
they have a dynamic array, or | have a linked list, whatever | do, | do not need that to be
exposed. All that the compiler knows is a stack s. So, the constructor will have to get hold,

that is it and it will do the job makes it a very, very clean solution.

(Refer Slide Time: 8:17)

Coestructor Messher Function

® & astanc menber fanction withoet thie poiatur « but gees ® Has mplich this):-mv\/
1he poieter 10 the merrory whive the chiact & coniracted

© Naree & ware 36 1he ramre of the daw ©® Ary riere dfigreret Biom rarre of class
shaes Stack { public: Stack();) / tiuss 521{,;““ s sty b
® Has 53 retien bype - not even vead / ® Nust have 2 retum type - maw be vasd
Stack::Suadi() it izt Brazi:espty()

@ Dows not et srtting. His 1o retesn statemant © Mist howe at last ose retern statement
i

[
Stack::Stack(): tep, (<1 - mptyl) | retem (tep, == ~3); }|

® Intiakoer fist to intialize '.7;(; mertbens
Stack!:3tack!
data_(xev caar{10])
t0p, (1)
{)
@ impiat cal by lastantiotion | cper x'v!':/'l
Stack a Stack: lemptyils
® May be plic o primate / / ® May be public of private Q/
© Nay havw any numder of pacaonetin ® Ny bawe any rumder ofperamets
.

Can be overlsades ® Can be overioates

& Dxplict call by the oyt
1 ey

ack: Brack() b

.

Pogrommng » Shedws

So, if you just to see what is the difference between a constructor and a member function,
because constructor is also a member of the class, because it is specific to that class has that
specific name. The first thing to remember is and we will talk about this more later is it is a
static member function. In the sense that see, the problem with the constructor in comparison

to other member functions is.

All other member functions are invoked after the object has been constructed, all
initialization is done. When you are calling the constructor, the object is not constructed,
because you are that is the purpose for which you are calling it, the object there is no

initialization.

So, but the constructor needs to know the address where the object will recite because
without that address, it cannot put values to data members like it is saying top_ is will be
initialized with minus 1 how will it put it in which memory so, it has to know that memory

when the object will come.

But that memory pointer has still not become at this point. It becomes at this point and only
when the object is been born has been created by the constructor. So, the constructor is
implicitly independently called and that is what is the important thing and data members do
not have that. So, this we have already said these are the same name as the class member

functions must have different names. Constructors do not return anything.

Not only that, they do not have a return type even it is not even void because there is it is

construction is a process which establishes the object and then the control has to come back.

There is nothing else, we cannot come back with anything or there is nothing required to say

that there is there is a void return nothing, nothing is returned.

So, there is no return therefore, there is no return statement either the controller returns
implicitly whereas, in case of member functions the return may be there it may not may be
implicit, it may be explicit whatever. So, initializer list is there and this is specific to the
constructor such lists are not available to other functions not member functions, it is implicit

by instantiation whereas member functions have to be explicitly called.

Constructor may also be private. And we will I mean that that is another paradigm of
information hiding that we will talk of that it might wander you as to what will happen if
constructor is private? What am | trying to say? | am trying to say that | do not allow you to
construct an object where if | if you do not allow the user to construct an object, then well,

then how will the user at all use the service?

Well, there are answers to that question. But that is a that is another very strong paradigm of
programming that we will get into. So, typically, in the initial part 2 will always have
constructors which are in public, but it can be private also member functions can be public or
private, both can have any number of parameters and both can be overloaded. We will see

these things slowly.

(Refer Slide Time: 11:46)

Fa)
iﬁi Program 13.06: Complex: Parametenzed Constructor

So, this is the basic I just wanted to outline the differences between a common member

function and the. So, you can have parameters to the constructor like any other than the

initializer list and not having a return type and having a fixed name other than that, it every

rule of the function applies there, you can have parameters.

So I can pass the specific values when | write ¢ 4.2, 5.3, then this goes as the first parameter,
this goes as a second parameter. In stack | did not need that. So, there was no parameter
because in stack the initialization is by known values always whereas | here | need them. So,

| can put this parameters.

(Refer Slide Time: 12:37)

oelede Clostn

nd;

wiag ranerpace

class Compler | private: dechle re,, in,; pebiic
Conplex(dochly 1o = 0.0, fotdhile 23 = 0.40)

o ¥ <Cprul) ¢ wdl;)

.

And the moment I can put parameters and all related stories will come stories of function will
come with that data, if | can put parameters and parameters can be defaulted. If parameters
can be defaulted, then a constructor can be invoked in multiple ways, this is just like

following the rules of function, default parameters in functions.

So, if | have defaulted both the parameters, so | can just instantiate it, instantiate it with only
1 which will be the re or instantiate with both which will be re and im. So, this there is there

IS nothing new in this over what we have already seen in the functions.

(Refer Slide Time: 13:21)

ﬁ Program 13.08: Stack: Constructor with default paran

Haclade Ciastrens
Flazisde Contticg

talag saswapace wid

class BRack { privste: Shar «

[#
bay
| -
8|

-L_.ahA{a)

Srach::Brack(size t 4) | dats_{owv char| top.(-3) s data_

l::-.'u‘.,_(:u.ej Lmlz '<<1<<m..|

1ot sainl) (char ser[] » "ABCDE®; 1ot lex » striesistr
Stack aflse);

(at 2 » 0; & <'les; *+1) s peshistrii])
(mp()) | ceen << s top(is 5.pogll;

S2ack created with sax size = §
i

|
o
Prgramng @ Modirs et Mg L i

Now, here is a stack with a default parameter, which is the initial size of the stack that I

provide and accordingly in the constructor, the allocation is done for that size. So, these are

different ways you can use it the parameters also.

(Refer Slide Time: 13:46)

uslag tameizece g,

lass Cospley | 3ei -ﬂy/-l ,1: pebilie
.4u1LL P, OGouidle da): re_(re), 2n_(i2) {) =

(43 , 18.00.0) ¢

A
' 1
dechle sarni) (retura sqrilre_sre_ « fn eiz); |
vedd printi) | cous <€ " €< pu_ << "ot <C j3 << V) ¥ < pormi) << e0dl; |
1ot mainil) |

Coaplex ¢344.2, 5.3) Le)
|
:{

Now, once you have the default parameters, you can understand that like in functions, you
can have overloading. So, it is not necessary that a constructor will have only will be unique
constructor, there could be multiple constructors for example, here | have shown 3
constructors, one which takes 2 parameters, one, one and one, two, it does not take any
accordingly we have 3 possible invocations or instantiations of the objects. So, all

overloading rules all that as we had seen earlier will apply.

(Refer Slide Time: 14:23)

Fa ———
iﬁi Program 13.10: Rect: Overloaded Constructors

$lazlsde Clsetrwasd
Llag rasenyace and

LY_{FRL0, 00), M Oeiv, 83) {) ' [v arigin
set ereal) { receem (38 .x -1T_.x) » (BB .7.-LT_.1.0:)

| :3»'\ W
1ot sain() (Pt pi(2, 61, pais, i3)) |
Sect 1l pat, | Com 1 Pactocbect(?t, P1) A |
12 5 8.Y s 1 Rect::zfect(Pt, int, ixt |
r3s, o)). RectoiRact(iat, int l
coet <C "lrea of £l = * << rl.areed] << andlg
cret ¢ “Area of rZ = * <« r2.areal] < exdl;
¢oet <€ “lres of r3 = * << rd.areal) << wrdly »
! =\
|| L
|
e i

So, these are overloaded constructors for rectangles. So, here what we are seeing, we are
passing 2 points. This becomes a rectangle. Here what | am saying? | am passing a point and
a height and a width. So, this will also become a rectangle, a very different way of passing
rectangle. Here, | am just passing height and width, height and weight, not the left up. So, I

have to assume a default. So, | am assuming that leftovers.

So, there are different ways | can construct a rectangle and there are different constructors for
that, 1 have to make sure that they are distinguishable by the number and types of parameters
that same issue of overload resolution will come in here. And here | have different

invocations of these constructors for building the rectangle objects.

(Refer Slide Time: 15:37)

Fa
Bl Destructor
{1

Destructor

Fal

eBe: Program 13.11/12: Stack: Destructor

==

Resource Refease by User

1 2l
03 EDCBA
| “Stack() calle:
» dara. Yook unbons redosmed within the wope of 3 | » Can de-mitiakzation be 2 part of scope ndes? (
. cafl Geamis ()7 User meay forget to cil ‘ o Yes Destructor s implziy caled 2t end of wope o
Pigmahg ke iy AN |

So, that is about the constructors. Now, let us move on to the destructors. Destructor does the
other thing, constructors constructed the object. So, if you think in terms of in a C style, then
you will say okay, | had constructed, so, this allocation was done. So, | need to release that.
So, | have a deinitializer, which should release that memory and that should be called at the

end. Again, the issues are these are the user will forget.

And if they issue if the user forgets the data leaks or if the user calls it twice, then you may
have different kinds of pointer referencing issues and so on. So, what the C++ provides? It
provides a destructor which also is the class name preceded by the tilde symbol, that is a
peculiar way of naming which you do not use anywhere else, and that will get called at an

appropriate time. So, you have declared the stack here.

So, here the constructor has got called. Now, the compiler knows the scope up to which the s
can be accessed. Before this s does not exist. So, there is no object either. After this point,
after the control passes this point, you go out of the scope, you go out of this function, so
naturally there is no s. So, it is only up to that point.

At this point, it will invoke the destructor automatically, absolutely clean solution, you have
to do nothing. You have to do nothing other than just declaring that you are using a stack s
and then go and use it the compiler automatically constructed, compiler will automatically

destruct, beautiful solutions.

(Refer Slide Time: 17:40)

Destractor Memsbesr Function

® Has implick this poimn ® Has ineplich this pointm
® Name b " followed by the name of the chm ® Ary rome dfierert baer rame of clm
alass Stack | peblic class Stack | peblic

Srackl); int empey(

© Has 22 rerumn type - nat ean veid ® Must hove 3 retues type - may be wagd
E st Brack cempty()

wrrert ® Wint huve at laast o%e ratsan staterrent
Lot Sacki tespryl)

{ meturz (139, o= <L});)

@ dmpicitly called at end of scepe or by operates dalete ® Expicit call by the olject
Nay be called eeplctly by the object (rane)

® My be pslicor g ® May be pit

® Ko parameter 3 #howed « srigee for the dass & Nay bave miser of porameten

® Casrct 2¢ ownrioaded H ® Can be overloades .‘
lmdas i i’ i

So, if you just want to compare with the main common member functions, then both
destructor has a this pointer because the object is existing. The name is as | said, till day
followed by the class name for member functions, you do not have that. Like constructor
destructor also does not have a return type neither not even void, because it is because you

will destroy after you have destroyed, the object is gone.

So, what will you return and there is no concept of a data whereas all those are standard for
member functions. And it is implicitly called at the end of the scope or by operator delete
rules. So, we will see that kind of scenario soon. And so, you can make a note that since the

destructor will have to actually tell which object it is destroying.

Constructor did not have to do that. This constructor did not have an object he just needed a
memory which compiler makes a mechanism to pass that memory pointer to the constructor
but when you are destroying or destroying the object say s. So, you have to pass that this
pointer of s which by the implicit mechanism the compiler will pass exactly like it passes

through the member functions.

Again destructors could be public or private, it does not allow parameters for the simple
reason that what will a parameter mean? Parameter mean that you are trying to say something
to be done. But when this is being called even nobody is calling this no user code is calling
this it is being called implicitly and at the end.

So, in the implicit call, how do you pass a parameter? Like in the constructor it was possible

because it is it is automatically called but it is explicit. You know when it will be called. In

case of distracted it will be called, but there is no call site that you can see, it is not visible,

end of scope compiler has put this in it may have put in hundreds of such destructors.

So, there is no sense neither a mechanism neither possible syntax to pass parameters to it. So,
the destructors will never allow parameters. So, and obviously, it cannot be overloaded, you
cannot have 2 different destructors because again how will the compiler know which one to

call. If you overload you need parameters. So, you cannot have parameters it cannot overload.

(Refer Slide Time: 20:42)

Default Constructor

Default Constructor

|
o
Prgrammy » Modves Fe®s Pryam b (" 1)

Default Constructor / Destructor

» Constructor 0
o A constructor with no parameter is called a Default Constructor
o If mo constructor is provided by the user, the compiler supplies 2 free default
constructor
o Compiler-provided (free defaut) constructor, understandably, canrot mitialize the
object to proper values. It has no code in its bedy
o Default comstructors (free or user-provided) are required to define arrays of objects
¢ Destructor
o If ma destructor s provided by the user, the compiler supplies 3 free default
destructor
o Compiler-provided (free defawlt] destructor has no code in its body

.

vt r— @ e Fa®i Mg L

So, these are some of the basics about destructors. There is a special type of constructor; a
constructor without any parameter is called a default constructor. Now, so, actually, if you

define a constructor and default all its parameter values, then also you are actually having a

default constructor because it is possible to call it without any parameter. But you can choose

not to have a default constructor.

Now, what happens is when you do not, if you write a class and you do not give a
constructor? Now, there could have been 2 choices one is this could have been made not
allowed at all. So, that the code will not compile unless you give a constructor but that has
not been done because there are several small situations where the constructor is so trivial

that you will not like to take the pain of writing it.

So, what does the system do is, if you do not provide any constructor, the compiler will
supply a default constructor, a constructor without any parameters, without any code, without
any initialization, but it will provide that placeholder function. And once you write a
constructor, which is either | should say default or is non default that it has parameters only,

once you write that the compiler will not provide it.

Similarly, for the destructor. If you write one, then the destructor will not be provided by the
compiler. But if you do not, then the compiler will provide it instructed, it is very common
that we do not write destructor because if there is no dynamic allocation, usually, then there is
no need to specifically do anything when the object is going out of scope. The automatic

scoping will take care of it.

So, but so the compiler will in those in every such case, compiler will provide default
destructor. So, you can whether or not you write a constructor whether or not to write a
destructor. This guarantees that every class when it is after its compilation, has a destructor,

has a constructor, at least 1 and has a unique destructor. So, that is a.

(Refer Slide Time: 23:25)

Fa : _ ,
‘tﬁi Program 13.13: Complex: Default Constructor: User Defined

¢

flacieds Clastresn
Flacicle <oaathy
uelag masespece ad

class Cosplax | sriveta
Complex(): re_(d
ot << 'C
"Coaplax() { con
dechls asenl) |
vedd prixed) [© X |
void set{dochle re, doubtle 1n) { ya_vwre; fa_» ix |

i << ") ¢l |

tot saanll { Compiex ¢}

1§.2+46.31 = 6,764

Dar: 162, 1.3

o Lsor has proviced & defult construcns :-l

Prgrammng @ Medors Fati Py b

LB
Flacicle <mathy
uslag pasespace and;

CLastread I

clase Comples | private: dech] -
public i
4 ssenl] { returs sqrt(ce ¥E_ + 1a eln); |
[cout <¢ *|* € r_ €€ "oy < dn_ <€ Y| & * << pomul) &« et | A
hle re, doadle In) { Ye_ e 29 18 e 12 |
I
iot maiol} mpler o)
-
—
¢ peiar()
—y t.eetli 2, 6.2
S pria ()
} \/
19, 20056005614 <9, 2005as0t1 | = 1 J0800aeed
14.3418.31 = ¢, 764
sesphur.pr ¢ Ag = COMpOnENts Suee gurtage vakus [
. B
(L —— TN Y T——— e

Now, so this is the example of a default constructor by the user. | have explicitly written that.
So, the construction is done here by default values. Now, let us see if I do not provide it. Here

I have not no constructor have given. Since | have not given a constructor, what will happen

at this point? The compiler will give a default constructor.

Now that default constructor does not know what to put here. As | said, there is no initializer
list there is nothing in the function, it is just a blank function with no parameters. So, after the
object has been constructed, just for experiment, if you try to print to see what kind of things

it has, if you do that print, you will find something like this, garbage values, of course.

So, then you will have to then use your member function to set it to proper values. Doing this
set on re and im and then do the print you will get the proper one. So, remember this that the

free constructor that you get, may not always often satisfy what you what your actual needs

are?

(Refer Slide Time: 24:57)

Fal
Bd: Object Lifetime
i

Object Lifetime

|
|
Prgrammng @ Medirs Pt Mg L ™

« Object Lifetime

o In COP, the object lifetime (cr life cyde) of 2n object & the time between an object’ 0:
creation and its destruction '
o Rules for obgect lifetime vary significantly
0 Betwoen Lnguages u
© im some cases betwesn implementations of a given Linguage, and s
o Bfetime of 2 particolar object may vary fram one run of the program to another
o Context C++. Object Lifatime coincides with Variable Lifetime (the extent of a
vanable when in 2 program's execution the vanable has a meaningful value) of a
vaniable with that object as value (both for static variables and automatic variables)
However, in general, cbject lifetime may not be tied to the ifetime of 2ny one vanable
o Context Java [Python: In OO languages that use garbage coflection (GC), objects
are allocated on the heap
© object lifetime is not determised by the Sfetime of 3 given vanable
o the value of 2 variable helding an object actually comesponds to a referance to the abject
ot the object itself. and
o gestraction of the variable just destroys the reference, not the underlying object

|
o
Pragpammng @ Medirs Fa®i Py L win

Now with this, let me get into that basic lifetime issues that is it is clear that an object does

not exist in the system all the time. The object exists between object creation and object
destruction. Now, naturally this is this notion is not specific to C++, it has in several
languages this concept is there it is called object lifetime or life cycle, but the meaning of that

may vary from time to time.

For example, in C++ the object lifetime primarily denotes | mean primarily relates to
coincides with that variable lifetime, the variable is in the scope, the object is there. When the

variable is no more accessible object is not accessible. But, that may not be true again if you

have dynamically created objects, because the variable which created that object held that
pointer to that object may go out of scope, but you may have passed that pointer to someone

else. So, you continue to have that object.

So, the lifetime will be as the lifetime is from object creation to object destruction. Similarly,
other languages like Java, Python have garbage collectors. So, the object goes out of scope, it

is notionally not there, but it actually exists till the garbage collected removes it.

(Refer Slide Time: 26:40)

’é‘ Object Lifetime: When is an Object ready?
P2y How long can it be used?

tiect Lidesime STARTS
cott €¢ "Olar:* << endl

£.poeml

datble Camplea::nsral) DOTE €2

= _'\

retoum,;

} ¢) Wfwct Lifetine DS

Cetel “Ce
Capplex: : "Cu

Evert Soqeence and Object Lifetime
Myfuac caled Stackirame slacated < w2 port of Stackirame
Lontrsl %0 poss to 2::£1¢1 £ Chor ::lﬁlu Laxthe) calied wth the acdeess of ¢ on the ame
%: Coaplasl). Dota menios Wiivioed Joonetrucoad}
etrol reaches toe siart ol The DOGy OF LONSITACIor. LONSUUCI Q0LRes

Conglen:ipomni) eseanes
Comral 32 pass returs b ByFune. Desturcror Ceeplex: - “Cospl

Dhtrctor ececetes, Conersl maschws the ard of The body ol

gaciies. StackiTame DIEE ¢ Jealocas

| et

Vogramg @ Meders

So, based on that there are so, in the C++ it typically is certainly you have allocation, the
construction, allocation of the stack frame, the construction, the use and destruction. So, it
will I have marked by E1 to through E9 in this code as to exactly how the object is taking part
in the flow. So, | would request you to carefully study each one of these from this chart and

make a clear understanding of what the objects are going through.

(Refer Slide Time: 27:15)

rﬁ“ hb L . i
eWy: Ubject Litetime
=

» Execution Stages

o Memuory Allocation and Biading

o Comstructor Call and Execution

o Dbject Use \ {
o Destructee Call and Execution 4 & / /
L]

Memory De-Afocation and De-Binding

o Object Lifetime
o Starts with ececution of Constructee Body

> Must foflow Memory Allocation
» As soon a5 Initiaization ends and control enters Constructor Body
o Ends with execution of Destructor Body
» As soon 3 cootrol leaves Destructer Body
» Must preceds Memary De-allocaton
o For Objects of Buit-iw / Pre-Defimed Types
» No Expicit Constructor | Destroctor ‘
» Lifetime spans from object definition to end of scope

So, at the top level, first the memory has to get allocated and bound for this object. Then the
constructor has to get called and constructor will execute. Then the object is ready object will
be used then the destructor will be called and executed. So, destruction part is done then it

has to be de binding and de allocation for the whole thing.

So, the basic construction object lifetime considers is the it starts with the execution of the
constructor body following the memory allocation but constructed body mind. The initializer
when as long as the control is in the initializer list, it is not considered that the object lifetime
has started for the simple reason that if you have that lifetime there you still do not have a
valid state. So, say your error has been allocated, but in for a stack but top has not been

initialized. So, the object is actually not there.

So, after the initialization list, so, you have this after the initialization list, when you are at the
beginning of the constructor body is when your object construction is started. And your
object destruction will be considered to have happened when as soon as the control leaves the

destructor body. So, this is the simple notion of the lifetime.

(Refer Slide Time: 28:59)
Fea e

tB@: Program 13.15: Complex: Object Lifetime: Automatic ‘

o B £ud\

Flaciade CGastress>

wate: dechle o, In,; peblic
« 0,0, dcehle 53 = 0.9): e _(re), 12 (38
.)* << wdl;)
fecda <«)" ccandl;)

dechle asta(] (seturs agrilre_esw_ « 2 0l2));
Te_ €¢ o)t < qm_<<*

vedd pristl) [cout ¢¢ *|* <« * " e gorul) << endl; |

ot sainl)

In the following slides | have provided the examples for what happens in case of automatic
variables like in here these are automatic. So, you are this you have already seen. Naturally it
is constructed here and destructed and you remember the destruction will always happen in

the reverse order. If there are 2, it is constructed as cd and it is destructed as dc.

So, you can think of it as a as it as a stack. So, it is last constructed first destructed is always

the mechanism. That is all through C++.

(Refer Slide Time: 29:42)

Automatic: Array of Objects

,’é‘, Program 13.16: Complex: Object Lifetime

13z mapesjace sud;
class Comples | sravaze: dechle re_, im, peblic
Complexideebile re = 0.0, focble 33 = 0.8) ! re_(re), ta {1zl
Ctar: [* p, V)" < wpdl; b
. ¢ g, €T ondl; |
1) | re, i &, |
sgrilre.ore, « tn0tn); |
< pw, €€ "of* < ix €< '] = * < pogn() << eodl |

! oo

et Complenl) ci0d, 1), el

So, it could be automatic like this. It could be an array of objects. If you have an array of 3

objects and there are 3 construction calls. And one point to note is if you want to construct an

array of objects, you must provide a default constructor, so 3 bad constructors called ¢ 0, ¢ 1,

¢ 2. So, it will destruction willbec2,c 1, cO.

(Refer Slide Time: 30:10)

flacisde Coathy
usiag taperpace #td

class Cosplax | privete: decble ro_, ix . pebliz

Ceeplez(dechle o = 0.0, dochle 38 = 0.2): ro_(re), in_(ia)
{ et << "Ctee: ("< e <<%, T <t <) ndd;)
Cosplaz | coet <€ "PRog: (® o€ pa_ € %, " 4¢ ln o Y)Y <Capdl;)

dechle ssrnl) | rerurs sqrilre sz« 13 ela); |

vedd peist]) [coun << V% << g <€ "ofT << dn_ <€ Y| & T o< porn() << il |
}
!
Complex c(4.2, 5.3

tad bedore saln starts. Destructed after mals ends
it sadnl) |
ceat €¢ “salnl() Starns® << endl
Cosplax 4(2.4 1 4

|
D
Prgrammng @ Medies Fa®i Mg L iy

If it is static, then it will be constructed before pain starts this is something which is possibly

new to you. But remember that static all static variables have to get initialized before main
start so, now there is a construction so the static object will get constructed. So, | have given
the programs in a way and the output will clearly tell you where the lifetime is going. And
finally, if you have dynamic created objects, then it is up to your control as to when you after,

when you construct by new and when you distract by delete.

(Refer Slide Time: 30:48)

%‘. Module S
’ + Voduie Summary
=X

o Objects are initialized by Constructors that can be Parameterized and | or Overloaded

o Default Constructor does not take any parameter ~ necessary for arrays of objects
o Objects are cleaned-up by Destructors. Destructor for a class = unique
o Compler peovides frae Default Constructor and Destructer, if not provides by the |
program
o Objects have a well-defmed lifetime spanning from execution of the beginning of the
body of a constructor to the execution till the end of the body of the destructor

o Memory for an object must be available before its construction and can be refeased
ondy after its destruction

|
o
Prgrommng @ Medves et Prpem L wiw

So, please trace this codes carefully to understand the more about the object lifetime. We
have talked about the constructor and destructor, the 2 basic most important functions in a
class. So, I hope you have understood this and you will need to revise on this very frequently.

Thank you very much for your attention and we will meet in the next module.

