
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 12

Access Specifiers

Welcome to Programming in Modern C++, we are in week 3, and we will now discuss

module 12.

(Refer Slide Time: 00:35)

In the last module, we have introduced all important concepts of class and objects, the

foundation of object-oriented programming in C++, we talked about classes, data members,

member functions, objects, how to access data members and member functions, we

introduced the notion of this pointer and importance of it and we talked about the state of

object.

(Refer Slide Time: 01:07)

Now, going forward from this module and subsequent to we will go deep into some of these

aspects and discuss them specifically. So, in the current module, we will talk about the

visibility of members or access specifiers, public and private access specifiers. And learn how

these can be used judiciously in designing good classes, which provide the right kind of

information hiding.

(Refer Slide Time: 01:37)

So, this is the outline, will get to see it on left always.

(Refer Slide Time: 01:42)

So, access specifiers. So, we have two kinds of access specifiers private and public. So, far

you have seen only the public access specifier. So, if you specify a data member or a member

function with public then you can access it from anywhere, you can access it from the member

functions of the same class, you can access it from member functions of different classes,

you can access it from any global function as well.

Whereas, if you specify a data member or a member function as private, then as the name

suggests, you can only access it within the definition of the class or to put it differently you

can access it only from the member functions of the same class and no one else, it is like our

bedroom and or our house and the road, road is public, but our houses private, there is access

restrictions only the members of the house can enter others cannot.

So, this is something which will be used to enforce data hiding to separate implementation

from interface, we will see what does that mean, public and private both are key words and

to be used before the name of the data member or member function.

(Refer Slide Time: 03:12)

So, the example will clarify things very clearly. So, on the left, we are again we will continue

with the Complex example often, Complex, Rectangle and Stack kind of examples. So, here

I say that it is public. So, data members can be accessed anywhere. I say that this member

function norm() is public, the member function print() is public as well. And I can do the

operations.

And just to show you I have shown that print a some other any arbitrary complex number, I

am sorry actually print I have put here as a global function you can please I stand corrected

that this is the scope of the class. So, norm is a member function whereas, print is a global

function. So, print has to take the object t and it can print the members directly because they

are public.

So, from outside you can use it. From main I can call print() and get the print. I can also

directly call c.norm, c.norm because norm is a member function, but this member function

also is public. So, I can, main can directly, main is a global function outside of the class, main

can also directly call this. So, this is what is summarized here.

(Refer Slide Time: 05:05)

Now, let us change that style with proper access specification. So, what I do is I make the data

private, and to say that I will like to protect my data, I do not want to expose my data to any

change, because if somebody changes my data member, then that state of the object will

change without me knowing it. So, I want to create a situation where every change of state

must be known to the object.

And that is possible only if I make the data members private, so that only the member

functions of the class can change it and no one else can. I still keep the norm public because

people need to use this object and get the norm. So, I do the define the norm() function here.

Now, like in this case, I am also I am again trying to define the global function the same code

as I do this.

Now, if I tried to compile, I will not be able to compile, it will say that t.re and t.im which are

data members complex::re and complex::im, they cannot be accessed, because they are

private members in the class. So, while this will work, because this is public, this will not.

So, this is kind of the protection I am getting by using the private that I have now restricted

that, no, nobody cannot just walk in and access my members, though it was not changing the

value, it was just trying to read the value, but I have not allowed it by making it private. So,

that is the difference between the private and the public. The summary of points are given

here.

(Refer Slide Time: 07:11)

So, let us see how does this help in information hiding. Information hiding is a key concept

of object orientation that you do not want to expose the state of an object, you just want to

expose the interface that is the set of, a set of methods by which the object can be used or you

also say that these are the services that the object provide to the external world.

So, when I say private members of a class, then whether they are data members or member

function, they are necessarily how I have implemented it. And I have a right to change it

anytime, as long as I do not change the interface. And what is the interface that is a public

part, the public attributes if I choose to keep some data members as public and public member

function constitute the interface which is known available to anyone outside this class and can

be used to get the service from the class.

It is customary, not mandatory, but it is customary that all attributes are in private. So, that

the state is always protected and member functions are in public. But often you will have

some member functions which are also private, because I want to have some utilities that my

other member functions use and I do not want to give those utilities as a service to the external

world.

Maybe because I just want to have it as an IP or maybe because I might want to change them

in future, I might want to change their names and so on. So, I do not want those to be accessed.

So, member functions can be public or private in the design. The public part is the interface

and the private part are part of the implementation.

And attributes data members preferably should all be private, I mean, there are very, very rare

situations where you need a data member really to be public. So, the state of an object can

only be changed through one of its member functions. So, when that member function is called

it is called on the object.

So, if it can be changed only by member functions then every time a change is done, the object

will get to know because member function on the object has been invoked. So, that is the

basic advantage. And the behaviour, behaviour is a service that you are giving to others, like

the stack is giving the service to push, pop, check for emptiness and get the top marker and

so on. So, that behaviour is accessible to others through the member functions, the public

member functions.

And this mechanism of separating out implementation, which is here from the interface, these

are the different member function interfaces, is the basic notion of information hiding. I mean

I am not going into the deeper theoretical aspects of object oriented concepts on hiding and

all that, but I am trying to keep it closest to the language so that we can learn the features and

learn to use it in a proper way so that we can hide the information separate out the

implementation from the interface as we need.

(Refer Slide Time: 11:20)

So, for the sake of efficiency in design, we at times put attributes in public or member

functions in private and or I have already mentioned this. So, when you put an attribute in

public, you have to make sure that in your design, that value of that member function does

not decide the state of the object, because you have otherwise your information hiding

properties lost.

But you could have, we will subsequently see examples, we could have some data members,

which you want to have maybe give it as a convenience to use. For example, a simple thing

many libraries provide in their class design is they provide a public data member where the

user can keep users own data, user can create a packet of data and put a pointer to that.

So that whenever the user is using that object, user will also get its related data. Now, you

have nothing to do with that related data, you never considered that pointer to be a part of

your object state, but it helps the user to carry on its computation or carry on its information

from one point of access to the object to the next point have access to the object.

Because it does not need to programmatically remember that in this object, I have this

associated data, in that other object I have that associated data because you are having that

pointer within the object itself. So, that kind of situations we will need it, but remember, that

it should never form a part of the state.

And in the same manner, naturally, it is a compiler restriction by itself. Private member

functions can never be part of the behaviour because they cannot be accessed from outside.

They are just for your own convenience.

(Refer Slide Time: 13:24)

So, let us look at Stack at length in terms of information hiding. So, usually, I mean initially

let us say that everything is public. So, this is public, the data members, two types of

implementations using a dynamic array or the vector we have seen this before, when we are

comparing with the C style and all members member functions are also public. So, when you

do that, then you have an exposed allocation to the stack.

So, the user is doing that allocation user is initializing it. Similarly, in terms of vector, you

have an exposed sizing of the vector and expose the initialization of the top. Then you do your

basic program requirement, which is here we have assumed it is reversing a string. And then

when you are done, you are releasing the memory here because you are dynamically allocated

it.

In case of vector there is nothing like that will exist because it is an automatic object it will

destroy itself. It will release the memory itself. So, we will talk about those things later. So,

the public data now reveals the internals of the stack all the time. So, it is a deep risk, because

the programmer who is using this stack class could intentionally or inadvertently change any

value in the array, it can change top and I mean the whole concept of stack could disappear

altogether.

(Refer Slide Time: 15:26)

So, here is the risk. So, you can note that I have put in red that this is risky to do. So, do not

do this role. So, this is all that we had, this allocation is the risk exposed in the initialization

is a risk and the same thing here. Now, what the user has done possibly inadvertently, possibly

because he did not know or intentionally, he has put 2 to stack top.

After pushing everything, after pushing ABCD, so after pushing ABCD what will happen,

this goes to 0, 1, 2, 3, 4. So, the value of top should be 5. And now, it says it is 2, which means

that it has now what reduced to just the string AB. So, you get an output which is very, very

I mean it is true. So, it gets up to ABC and you get this similar thing has been done here. Now,

this kind of risk is of paramount importance.

In this case it is a small example might look pathological but in when your program starts

getting bigger, if this kind of change of state can be done by the user directly without the

knowledge of the stack. So, here what has happened is state has changed, when you have

changed, when you change it through push or through pop the object knows.

And therefore, it adjusts top accordingly, when you do that is you are changing the state one

by putting an element or considering that an element is not there, but what it is also doing is

it is adjusting the top accordingly. Here by exposing it, you have let the user change the state

and the user does not know the entire logic and therefore, the user has changed it to an

inconsistent state. So, that is a big, big risk, we can never allow this to happen.

(Refer Slide Time: 17:48)

And mind you in C this is always possible, because everything is global. So, that is the risk

that we are trying to get out of and come to a safe scenario of design. So, what we are doing

here is I have defined answer, I have defined two special functions, we will talk about this

functions, but just to give you the idea, this first function is called a constructor which

initializes the data members because you are starting down.

So, at the very beginning when you say Stack s this constructor gets called, and it does the

initialization job, you can see that it is initializing with allocation and it is initializing the top.

The other function is called the destructor. So, when this particular object is no more available

at this point, the scope is ending here.

So, after this point, s is no more available at this point, this deinitializing destructor function

will be called to do the necessary release, it will happen in an automatic manner. You can see

that in the case of vector it will do in the constructor, it will set tops and it will resize to the

value that you actually want, in the destructor there is nothing to do. So, this is encapsulating

the initialization and deinitializing.

But the most important thing here to note is the data members have been made private. So, it

is no more possible that in main somebody will write s.top, not possible. This is now a

compilation error. So, what does that mean, these two together mean?

(Refer Slide Time: 20:12)

One is, since data members are private, and only the member functions are public, you can

use the stack exactly the way you want you need. But you cannot intentionally or inadvertently

change the state of the stack to make it inconsistent without the knowledge of these member

functions. So that is the safe way to actually do the design. And this is just to recap this part

private.

This part is what we will say is the implementation and this part is my interface.

Implementation is private, interface is public. Anybody can use the interface, make use of the

stack, solve problems, but they will not be allowed to touch my data members and change

anything to make things go wrong. This is a huge safety through this notion of information

hiding that C++ provides over C programming.

(Refer Slide Time: 21:42)

You could not have done this in C. So, to formally specify this is my interface. So, I am

showing little jumping to show you another style, where in the class, which I will put in a

header file, I put the data members, put them as private. And for the member functions, I have

just put the prototype, just a signature, not the actual implementation, as I was actual code of

the body, as I was doing.

Then I will have another file, which I call the source file or the implementation file, where I

include this, so this gets to know the class, it knows that stack is a class. And then I actually

write the code for each one of them. I told already, that class gives you a namespace. So, if I

am calling a function empty() in the class stack, then outside that class, globally, its name is

stack::empty. So, now, I have already defined the class, and I am writing this code outside of

it, I am not writing in C to within the class.

So, I need to refer to every member as by the class name, so that it is fully qualified. Note that

I do not need to do that here inside the body. Because, as I say, Stack::push, the compiler

knows that this is the push() function of the Stack class. And it knows the Stack class. So,

within push, when I write, top, it knows it is the top member of the class Stack. So, but I need

to identify the function that I am writing the code for.

(Refer Slide Time: 23:54)

Now, so if I do that, then I will say that this is my interface. Because anybody who uses the

stack needs to use this. And this is my implementation, because nobody needs to know how I

am doing it, whether I am using a dynamically created array or I am using a vector or

whatever I may be doing is my choice, I can change that any time also without changing the

behaviour of the stack at all. So, this is the implementation which gives the state and this is

the interface, which is the behaviour.

So, you can see that the application finally, which is in yet another file, I have the use that

simply a Stack s, knowing the Stack s will be able to call the constructor, do the which we

will actually call here, the construction process will get done, the object will get ready with

the array dynamically created and the top initialized to -1, then as I do push, it will again

knows the interface.

So, it is calling as if here, which actually calls this function which makes changes to the state

to push the element to the Stack s keeps on doing that, similar things can be said about they,

all these. And when it comes at the end of the scope, the compiler knows that s cannot be

used anymore, it again calls the destructor which calls this cleans up because I know how to

clean up.

For example, the risk of giving it to the user is I may have created it by new or by malloc. So,

I have to accordingly release it. So, all those are taken care of in my implementation, which

the user does not need to know. So, actually, I do not need to provide the source code for

Stack.cpp to the user. I can just give the object file, Stack.o or Stack.obj.

I need to give this header which is interface and the user will be able to write the application.

My implementation remains with me interface is with the application programmer who uses

it and gets all the service, information is perfectly hidden. So, that is the basic design scenario

which we will always have to keep in mind.

(Refer Slide Time: 26:51)

Now, the question is, which now data members in this case, case of stack, I never actually

required to know the value of the data member, because all that I need is a data structure, but

in many times like I keep the information about employees, students, their name, their date

of birth, employee ID, salary all of that.

So, I would need to give access to the interface because everything is private, if everything is

private, then nobody can read the data. So, I have to provide specific interface public member

function to let the application program read or write or make changes to the data members at

needed.

So, there can obviously be different situations, some data members is both read write, like the

case of Complex you saw, you want to, you will need to change that whenever you are making

an assignment to the complex you are adding to complex numbers putting that. Usually, this

kind of data members you need them to be read only, like Date of Birth does not keep on

changing or employee ID, roll number does not keep on changing, they are kind of they should

not need a change.

Some are write only, sounds a little funny, but it is true, for example, password you can only

write you cannot read your password because it is, when we give the password is encrypted

and written somewhere and you cannot, you are just to write that this is the original password

they had, you ever not expected to take it out in any way.

Then some may be invisible, that is you do not want the user to even know that these exists,

like the top, the data in stack, you will want the user to use the stack button. So, there are, so

both read write, only read, only write, none of them are the possibilities. And using what is

known as the get set idiom is a very easy and in a common way to control them what you do

is very simple.

If you want to read you give a method to read which returns that value, if you want to write

give it a set method. So is there a get method and a set method. So, here you return the value

here you set the value. Now it is your choice, any data member which you want to make read

only, you do not give a set method or if we wanted to write only do not give a get on that.

Something which you do not want to be accessed like in top and data you do not provide any

methods on the data members to be accessed.

(Refer Slide Time: 29:53)

So, with access specification these kinds of design considerations can be put in so that you

can very easily control exactly how much of the state should be known to the user and how

much the user should be able to directly change and how much you will keep in control. So,

these are obviously the different get set choices that you have.

(Refer Slide Time: 30:19)

So, here is for an Employee class, you can go through that and understand that on the name

we have given read and write both address we said okay, once the address is registered, it

cannot be changed, salary can be read only to know but there is a variable component in the

salary possibly bonus which you do not even want to tell that it exists. So, it is, there is no get

set method and that accordingly this design has been done, I would suggest that you go

through this executed and get to know better.

(Refer Slide Time: 30:56)

So, this all together, the class has first provided an encapsulation which is an aggregation

simply putting things together and with access specifiers and information hiding, you get

proper encapsulation, you have encapsulated the data and maybe some methods within the

private specifiers and you are exposed the interface which is to the public specifiers.

(Refer Slide Time: 31:31)

So, you get to achieve the basic objectives of data modeling through object-oriented design.

So, with that, before I close, I will just try to point out and I will keep on enhancing this is

how is with this, the class is becoming closer to being user define type. For example, these

are some of the things you can do on a built-in type you can declare and you can do the same

thing here.

You can initialize, you can do the same thing here. You can print, you can do that by

component wise printing. Of course, that means that your data will have to be exposed. Or if

you do not want to expose, then you can define a print method which does it, which is in the

interface, but actual data members are not known.

Or as we will see that, we will be able to overload the output streaming operator to write a

cout instruction, exactly the same way you write it for the built-in data types, we will learn

that as well. So, it is the same. For example, we can add two integers.

Similarly, I can overload I can provide a add method or even better, I can overload the

operator+ to do the add in the same way. So, we can see that in parallel, I mean, if we just

replace int by complex everything still holds, we can make the data type in that way. So, that

is the reason we often say that class is actually data type.

(Refer Slide Time: 33:16)

So, on top of the classes and objects and basic data member functions we had learned earlier.

Now, we have learned the whole game of how to play around with that with the proper

information hiding and encapsulation. Thank you very much for your attention. We would

meet in the next module.

