Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur
Tutorial 02
How to build C/C++ Program?
Part 2: Build Pipeline

Welcome to programming in modern C++, we are going to discuss the second tutorial.

(Refer Slide Time: 00:34)

ﬁﬁ;} Tutorial Recap

o Understood the differences and relationships between source and header files

o Understood how CPP can be haressed to manage code during build

Programming in Moder C:++ Partha Pratim Das 022

Eé} Tutorial Objective

o What is the build pipelines? Especially with reference to GCC
o How to work with C/C++ dialects during build?
o Understanding C/C++ Standard Libraries

«
Programming in Moder C+-+ Partha Pratim Das T2




E@;} Tutorial Outline

L]
® o |
Q= &
a 1 -

F]

“
Progrananing i Modero Partha Pratim Das To2e

In the first one we have talked about what is the relationship between source and header files and
what are the differences and particularly we took a step by step look into how does C
preprocessor, CPP can be harnessed to manage code during build. So this tutorial is also
continuing on the project building process.

We are going to discuss about the build pipeline, specifically with reference to GCC which is the
compiler we have been using, how to work with C or C++ dialects during the build and
understanding little bit more on the C++ standard libraries. So this is the outline.

(Refer Slide Time: 01:37)

Build Pipeline

«
|
Programming in Modem 4+ Partha Pratim Das To2s




(gec)

ni A L
T luie [V v :

3 4 + >
Compiler Assembler Linker ] W
(ccl) (as) (Id)
afxs

.0 r

€

o
Programming in Modern C++ Partha Pratim Das To26 4

Source: GNU Compiler Collection, Wikiwand Accessed 13-Sep-21

So let us start with the build pipeline. Let us take a look this is where | have my source files, the
translation units we have talked about. In tutorial 1 we have discussed how CPP changes that
file, replaces the include, the #define, does conditional compilation and so on so forth. After that
it generates the corresponding C or C++ source files which does not include any preprocessor
directives.

It is a pure C or C++ program, there is all library, headers, everything is included in that one
single file that is typically has an extension .i. Then the compiler will actually do the compilation
process; will generate the assembly corresponding to this that is a huge translation process. We
do not need to understand how it is done but it is translated into the assembly of the processor on
which you are targeting.

And those files generated corresponding to every translation unit is typically designated by .s.
Then the assembler ticks in, automatically we do not have to do anything for that and that will
convert the assembly language program into a binary code, which is known as the object file.

It is a binary code, it is no more assembly is still has a textual representation, you can read the
assembly, you can write assembly but this binary code is just bit patterns, so it is not human
readable. These are object files, so these are shown by the extension .0. Then the linker kicks in.
What does the linker do is you have seen that we have say in a stdio.h we have printf function.

So stdio.h has just the header of that function, but the actual body of that function is in some
other translation unit, which is already compiled and available as .0. Now from the main if | am
giving a call to printf then naturally I need the body of that function in terms of the object file,
the printf function to be included in my executable.

So linker is that part of the compiler which actually finds out for every translation unit what are
the symbols, say functions and global variables, which it uses but does not define within it and
those which it defines and makes available for others. So it relates them across the different
translation units, so that finally | can put all the object codes of all translation units into one
single binary file which is the executable file.



While doing this the library codes that are already available in the system, they are already
compiled in the object file are also looked for, they are also linked, there are a variety of libraries
we will see, here is the particular one being shown is a .so library called the shared object library,
there are other kinds as well.

So when we just do GCC or g++ this whole thing happens taking this collection of all translation
units that are involved in the project and finally generating an executable. So this goes by stages,
so what we will do is we will see what happens in every stage and we will see options as to if |
want to look at the output of any stage in the build pipeline to understand better then what are the
options to do that.

(Refer Slide Time: 06:06)

o The C preprocessor (CPP) has the ability for the inclusion of header files, macro expansions,
conditional compilation, and line control. It works on .c, .cpp, and .h files and produces .i &
files e ==

o The Compiler translates the pre-processed C/C++ code into assembly language, which is a
machine level code in text that contains instructions that manipulate the memory and
processor directly. It works on .1 files and produces . s files

—

—_—

o The Assembler translates the assembly program to binary machine language or object code. It
works on .s files and produces .o files
Rpm——

o The Linker links our program with the pre-compiled libraries for using their functions and
generates the executable binary. It works on .o (static library), .so (shared library or
dynamically linked library), and .a (library archive) files and produces a.out file

peal e b b Y

File extensions mentioned here are for GCC running on Linux. These may vary on other 0Ss
and for other compilers. Check the respective documentation for details. The build pipeline,
however, would be the same.

4
Programming in Modern C++ Partha Pratim Das To27

@ Compilers
o
¢ The recommended compiler for the course is GCC, the GNU Compiler (Collection - GNU

Project. To install it (with gdb, the debugger) on your system, follow:

o Windows: How to install gdb in windows 10 on YoutTube
o Linux: Usually comes bundled in Linux distribution. Check manual

o You may also use online versions for quick tasks

o GNU Online Compiler v/ i / F
> From Language Drop-down, choose C (€99), C++ (C++11), C++14, or C++17
> To mark the language for gcc compilation, set -std=<compiler_tag>

— Tags for C are: ansi, 89, ¢90, c11, ¢17, c18, etc.
— Tags for C++ are: ansi, c++98, c++03, c++11, c++14, c++17, c++20, etc.
— Check Options Controlling C Dialect and Language Standards Supported by GCC (Accessed

13-Sep-21)
O\Ae‘B\ocks is a free, open source cross-platform IDE that supports multiple compilers
inciding GCC, Clang and Visual C++
o\Programiz Online Compiler supports C18 and C++14
0. OneCompiler supports C18 and C++17

o For a compiler, you must know the language version you are compiling for - check to confirm 4
Programming in Modern C++ Partha Pratim Das T028




So having said that let me now move on to the actual pipeline, so you have a C preprocessor
which takes source and header files, then the compiler and generates a .i file. Compiler comes in
compiles and generates the assembly language .s file, assembler translates the .s into .0 object
file, linker links all .o files with the existing libraries, these are called static libraries .0 or shared
library or dynamically linked library.

We will have a separate tutorial on this to discuss what does that mean, or library archive, we
will also talk about that and finally produces a single executable file, a.out. Now these extensions
that | have mentioned is for a GCC running on linux on a different OS, on a different system,
these extensions could be different.

So you will have to check the documentation of the compiler to see exactly what are there. |
mentioned this earlier also but here | would reiterate that you must have the GCC installed in
your local system. If you are using windows, then use MinGW, | have given the links and all that
earlier, if you are using linux, usually it is included in the linux distribution, check that manual.

So with this you will be able to every example that we are discussing in terms of the modules
you should be able to just make them into source and header files and compile them using the
GCC g++ to get going. Now if you want to do a quick check of a small code and so on, it is not
good for big projects but if you want to do a quick check then you can use online versions of
various compiler.

Online available compiler like GCC GNU compiler is what | will again highly recommend
which has a variety of different language dialects to choose from and you can use tags like in
here, we will talk more to select which particular version or which particular dialect you want to
compile with. Then you have from similar online compilers from CodeBlock, Programiz is one
compiler and so on, and while you are using the compiler you must know the version or the
dialect of the language you are using.

(Refer Slide Time: 08:50)

[ll} What is GCC?

o GCC stands for GNU Compiler Collections which is used to compile mainly C and
C++ language

o |t can also be used to compile Objective C, Objective C++, Fortran, Ada, Go, and D

o The most important option required while compiling a source code file is the name of
the source program, rest every argument is optional like a warning, debugging, linking
libraries, object file, etc.

o The different options of GCC command allow the user to stop the compilation process
at different stages.

¢ g++ command is a GNU C++ compiler invocation command, which is used for
preprocessing, compilation, assembly and linking of source code to generate an
executable file. The different “options” of g++ command allow us to stop this process
at the intermediate stage.

B
Programming in Modern C++ Partha Pratim Das To20 &4




Pl

[ ?
LLH What are the differences between gcc and g++7

| g+t [ gec |

| g++ is used to compile C++ program gec is used to compile C program
g++ can compile any .c or .cpp files but they | gcc can compile any .c or .cpp files but they will =
will be treated as C++ files only be treated as C and C+ respectively %
Command to compile C++ program by g++ is: |, Lommand to compile C program by gcc is: i

? g++ fileName.cpp -o binary /] gee fileName.c -o binary -ls:

Using g++ to link the object files, files automat- | gcc does not do this and we need to specify
ically links in the std C++ libraries. -1stdc++ in the command line

g++ compiling .c/.cpp files has a few extra | gcc compiling .c files has less predefined macros.
macros gec compiling .cpp files has a few extra macros

#define _GXX_WEAK_ 1

#define _cplusplus 1

#define _DEPRECATED 1

#define _GNUG_ 4

#define _EXCEPTIONS 1

#define _private_extern_ extern

3
Programming in Modern C+-+ Partha Pratim Das Te210

What is GCC; if you have a question then GCC is a GNU Compiler Collection. It is mainly
referred to for C and C++ plus but there is a huge range of languages for which the GCC
compilers exist, starting from Objective C, C++, Fortran, Ada, Go, new D language and so on so
forth. Now there are different options which will allow the GCC compiler to be controlled at
different stages and that is what we will now take a look at.

So you would have noticed that |1 am talking about compiling with GCC or compiling with g++,
so there are two compilation commands in the GNU compiler collection with reference to C/C++
bunch. So you use GCC to compile typically compile C program and use g++ to compile C++
program and the difference is what actually they are the same compiler but it is a different set of
rules that you are applying.

So this second point is most important that is g++ can compile any .c that is C source or .cpp that
is C++ source but whether it is a C source or a C++ source if you use g++ it will always treat it
as by the C++ rules only. So even the C program will be compiled with the C++ compiler, so if
there are compatibility issues you will have problems.

Whereas GCC makes a selective choice, GCC decides which rules to apply based on the
extension of the program. If there is it is a .c extension then it will be treated by C rules it will be
treated and compiled as a C program, if it has .cpp extension that will be compiled as C++
program respectively, so you can make your choice.

Now when you compile with g++ you are doing a C++ compilation, so it does automatically link
all your necessary standard libraries | should say, whereas when you do for GCC and you are
specifically want to build a C program then as a final executable then you will have to link the
standard library of C++ if you need to include that. So these are some of the things, let us go to
the command chain and you will see all of that happening.

(Refer Slide Time: 12:00)



W Build with GCC: Options
i

[1] Place the source (.c) and header (.h) files in current directory
11-09-2021 10:46 157 fact.c
11-09-2021 10:47 124 fact.h
11-09-2021 10:47 263 main.c
[2] Compile source files (.c) and generate object (.o) files using option “-c". Note additions of files to directory
$ gee ¢ fact.c
$ gee -¢ main.c L]

11-09-2021 11:02 670 fact.o
11-09-2021 11:02 1,004 main.o
[3] Link object (.o) files and generate executable (.exe) file of preferred name (fact) using option “-o”. Note added
file to directory

$ gee fact.o main.o -o fact

11-09-2021 11:03 42,729 fact.exe \/

[4] Execute
$ fact
Input n
5
fact(5) = 120

[5] We can combine steps [2] and [3] to generate executable directly by compiling and linking source files in one
command

$ gec fact.c main.c -o fact}

o
s
Programming in Modern C1+ Partha Pratim Das Tou &

So this is just by stages of the pipeline, so initially what you do to keep things simple just put all
your source and header files into the correct directory, you can distribute, have organization will
talk about all those later but just to see the compilation process put all your files in the current
directory and if you check the directory with Is or dir depending on the system you are on then
you will see something like this the output that 1 am showing here are from my windows 10
machine using the command prompt.

So here | have three files one is a factorial header fact.h, one is a factorial source which has a
function implementation fact.c, and then there is a main program which is using the factorial
function including fact.h. So you can see that there are three files there in, now we can compile
using, so you have to compile each and every translation unit each and every source files you
will have to compile, this you have to compile this.

So when | compile I am using an option -c, typically when you say minus on the command line
of the GCC or g++ it means an option which does behave in a certain way. So if you put -c what
it does it will generate the object file in this manner, so after you have compiled both with -c you
can again list the directory you will have the source and headers also | am just for brevity | have
not shown them but these two files get added that the object files have been created.

Now you can use those object files fact.o and main.o so you have come up to the object file
directly so all that you need to do is to take all translation units and try to link them together. The
reason you need this -c here is in this case none of these programs or none of this source files are
independently complete to be converted into the final binary executable.

So you want to tell the compiler that you compile up to the object level but do not try to link, if
you just do GCC main.c, the compiler will generate main.o and then start shouting that I cannot
find where the fact is. Similarly if you just compile fact.c it will complain that there is no main
function in this source ok so you need to stop it at the object level and then take all of these
objects to link together.



And you do not have to particularly call that linker like Id and so on you do gcc again and the
fact that you have given .o file that gcc knows that this is the object file which needs to be linked,
and if you do not give this remaining part then it will generate in a.out or a.exe depending on the
system you are on but if you want to give a specific name to the binary executable that you are
creating you can do that by using the -o option.

So I am calling it fact right so once | have done that my executable is ready and | can see that
added to my directory folder fact.exe because 1 am on windows, and then | execute fact and this
IS, so this is a basic, you know step to build. Now I can also combine these two and three
together by giving multiple source files translated in units to the command line at one go.

So gcc, fact.c, main.c will tell gcc to compile and generate object file and then try to link them
all together generate a binary so this can be done in a simpler way like this in one step also.

(Refer Slide Time: 16:26)

Build with GCC: Options

[6] We can only compile and generate assembly language (.s) file using option “-s"

$ gee -S fact.c main.c

11-09-2021 11:34 519 fact.s
11-09-2021 11:34 1,023 main.s
[7] To stop after prepossessing use option “-E". The output is generated in stdout (redirected here to cppout.c).
—
$ gee -E fact.c main.c >cppout.c
—

11-09-2021 11:32 21,155 cppout.c
Note that CPP: ~
® Produces a single file containing the source from all .c files
® Includes all required headey files (like fact.h, stdio.h) and strips off unnecessary codes present there
@ Strips off all comrnen!s/ +
® Textually replaces all manifest constants and expands all macros\/
[8] We can know the version of the compiler
$ gec --version
gee (MinGW.org GCC-6.3.0-1) 6.3.0
Copyright (C) 2016 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

«
Programming in Modern C+-+ Partha Pratim Das Ten &




W Build with GCC: Options
i

[6] We can only compile and generate assembly language (.s) file using option “-s"

$ gee -S fact.c main.c

11-09-2021 11:34 519 fact.s
11-09-2021 11:34 1,023 main.s

[7] To stop after prepossessing use option “-E". The output is generated in stdout (redirected here to cppout.c).

$ gee -E fact.c main.c >cppout.c

11-09-2021 11:32 21,1855 cppout.c
Note that CPP.
® Produces a single file containing the source from all .c files
@ Includes all required header files (like fact.h, stdio.h) and strips off unnecessary codes present there
@ Strips off all comments
® Textually replaces all manifest constants and expands all macros

{8] We can know the version of the compiler

$ gee --version
i /
gec (MinGW.org GCC-6.3.0-1) 6.3.0 /
Copyright (C) 2016 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

4
Programming in Modern C++ Partha Pratim Das T M

Now if you want to you know see what is happening at the intermediate stages then you can use
different options. For example, you can tell gcc that just do the compilation and stop at the
assembly do not kick in the assembler, use a -s option. If you use -s option then the compilation
does not go up to the object file, it stops after the translation only at the assembly level.

So with this different translation units that you have given you will see that you have two .s files,
you can use a text editor to open it, and you will see that the assembly language program
corresponding to your C program has been created in that. Of course, to understand that you will
have to know the assembly language for your system, for your processor.

If you want to stop even earlier that is after preprocessing, we just want to see that what does
CPP has done, it is a great learning that after replacing #include, #ifdef, #define and all that what
is that you get then you can use the -E option now this will generate the output into your stdout
that is your standard out on the on the console itself.

So if you want to, and it usually is huge, so if you want to keep it and see separately later then
you can redirect, this is the redirection greater than, redirect to a different file and | have
specifically called it by an extension .c, because after the replacement the it is a purely C
program. So it will also strip all comments.

It will textually replace macros, and all unnecessary codes which you had done #if zero or
something are all removed, it is a fun to see that please try it out I cannot show you on slides
because it is just too huge to show. Now, finally if you want to know what is the version of your
compiler not the language, language dialects will come separately but what is the version of the
compiler, compiler is regularly getting released.

What is the version that you are using then you can always do --, there are two minus required --
version and it will tell you the version where is it coming from and so on so forth.

(Refer Slide Time: 19:23)



W Build with GCC: Options
i

[9] When we intend to debug our code with gdb we need to use “-g" option to tell GCC to emit extra information fo|
use by a debugger /

$ gec -g fact.c main.c -o fact -
L]
[10] We should always compile kéeping it clean of all warnings. This can be done by “-Wall” flag. For example if we
comment out f = fact(g); and try to build we get warning, w/o “-Wall", it is silent "
$ gec -Wall main.c
—_—
main.c: In function ’main’:
main.c:14:5: varning: 'f’ is uset\i‘)minitialized in this function [-Wuninitialized)
printf("fact(ld) = %d\n", n,);
$ gee main.c
With “~Werror”, all warnings are treated as errors and no output will be produced
«
Programming in Modern C++ Partha Pratim Das T &

Build with GCC: Options

[11] We can trace the commands being used by the compiler using option “-v", that is, verbose mode
$ gee -v fact.c main.c -o fact -

Using built-in speés.
COLLECT_GCC=gcc ‘7( \/
CULLECT_LTD_HRAP?}J@::/mingw/bm/. ./1ibexec/gcc/mingw32/6.3.0/1to-wrapper. exe
Target: mingw32
¥ [truncated] /
Thread model: win32
gee version 6.3.0 (MinGW.org GCC-6.3.0-1) \/
d"'ftruncated]

«
3
Programming in Modern C++ Partha Pratim Das To214 Y

Now often we would like to do a debugging of the code that is not just run it but start running it,
stop in the middle and of execution, check what is the value of the variable, may be set a specific
value to a variable give a break point and so on | will talk separately on debugging in one of the
tutorials because that is a very important process and gcc has a corresponding debugger called
gdb which is gcc debugger.

Now if you want your code to be debugged then your normal compilation will not do so you will
need to give it -g option. So everything else remains same you give a -g option by that the final
binary that gets generated is empowered with annotations for the debugging and also it does not
do any optimization of your code, so that you can really go and keep on during the execution you
can keep on checking.

So, this is something which you will very frequently need. | have a recommendation for you that
besides the errors if the compiler has an error naturally after that stage you cannot proceed you



have to fix that error but compiler also gives a number of say warnings. So he says this is the
warning and so on.

For example if we comment out you will have to refer to the previous tutorial to see the code for
example if we comment out this and try to build then we will get “f is used uninitialized in this
function” that is I am trying to print f and | have not computed f. So f has not got any value yet,
so language wise it is not an error but programming wise certainly the compiler is wondering
why do you want to print a value that you have not even initialized.

So the compiler does not say it is an error because it is a correct program otherwise program
logic is programmers prerogative but the compiler wants to warn. It is good to build with -W all.
It looks like wall it is actually not that -W is to say that what kind of warning you want the
compiler to give or what kind of warning you do not want the compiler to give, all says that you
give me all kinds of compile warnings.

So -W all will give you all kinds of warnings and it is good to remove all warning with the
warning also you can proceed but it is best to remove all warnings because with the warnings, if
the warning is given there is something that is probably not correct.

So for example here you could proceed but you will certainly have a garbage value and you have
to come back and check and debug but if you take care of this warning at the compilation time
itself your logical error of having omitted the right value to f will get detected and fixed. You can
also tell the compiler that 1 do not ever want to work with warning by telling that giving an
option that -W error.

So then the compiler will do it will treat every warning as an error and it will not allow you to
proceed unless you fix that, so these are these are the additional things you can do. Finally if you
are really motivated to trace what the compiler is doing along this build pipeline from one to the
other then you can tell the compiler with an option -v, v here stands for verbose that the compiler
becomes talkative though usually compilers only give errors or warning messages, now it will
start giving all kinds of what it is doing.

So it is hundreds and hundreds of lines so I have just shown you few initial ones it says what is
that, what is the folder it is taking from, what is the target that it will generate, what is the kind of
thread it will use, what is the version of the compiler, but the very right truncated there are
hundreds and hundreds of lines of dump that comes in you can put -v and see for yourself. It is
good fun but on a regular basis you will not be doing this of course.

(Refer Slide Time: 24:36)



Eééj Build with GCC: Summary of Options and Extensions

P

“

) )
@ gcc options and file extensions. Note that .c is shown as a placeholder for user provided source files. A detailed 8
list of source file extensions are given in the next point

_ Vi 7
Option Behaviour Input V' Output/
Extension Extension =
c Compile or assemble the source files, but do not link e amakilie ]
S Stop after the stage of compilation proper; do not assemble ek .8 =
-E Stop after the preprocessing stage i To stdout
-0 file | Place the primary output in file file (a.out w/o -o) 6 .i | Default for 0S
v Print the commands executed to run the stages of compilation | .c, .s, .i | To stdout
® Squuce file (user provided) extensions
Extengon | File Type i Extension [ File Type |
. C source code that .pp, .cc, .cp, .cxx | C++ source code that
= must be preprocessed || TTPP, .c++, .C must be preprocessed
.h C / C++ header file .H, .hp, .hxx, .hpp | C++ header file
— HPP, .h#+, .tcc
.s Assembler code .8, .sx Assembler code that
must be preprocessed
ring its evolution due various adoption practices
i in red
trolling the Kind of Output Accessed 13-Sep-21
«
Programming in Modern C++ Partha Pratim Das T &

So just to summarize these are the different you can just keep this chart handy, these are you will
get them in gcc manual also but | have accepted only the common part which you in in gcc
manual this runs into maybe 10 pages. | just accepted that part which you will need 95 or maybe
99 percent of the time. So these are the options the behavior under that option, what is the input
extension and what is the output extension.

So if you have this maybe you can paste it in front of on the wall where you work so that you can
at any point of time just look up and do take that appropriate action. In terms of the source file |
have already talked about these are the three possible extension .c for source, .h for header and .s
for if you have generated assembly.

Now the corresponding file type as you will see that I had mentioned this in tutorial 1.2, that
there are variety of standards people have worked with variety of extensions, so in an existing
system when you see in a say in Github or somewhere or maybe in your company you will see a
whole lot of different extensions being used. So learn what extensions mean what but the most
common and standard extensions are which are highlighted in red and when you are writing it try
to always follow this convention and that is what we are going to do.

(Refer Slide Time: 26:19)



H C / C++ Dialects

s &

C / C++ Dialects

@

Programming in Modern C+-+ Parths Pratim Dis T0216

[‘H C Dialects

[crested by Dennis 150 Publshed 50 Published
tchie ineary 1570 lamengment mendraft
sgmenting xen
Mhompson's
IS0 Std. in 1990 "
[wrote the first C
tcnal
K &R published The | IBetter multi-byte & Istatic amay indices, limproved Unicode
lc programming. , jsupport
Language in 1978. it compound lterals, variable-
[worked as a detacto length arrays, flendle array
stancard fora I members,varadi macros,
|decae land restrict keyword
JANSI C was covered |digraphs added Compatibility with C++ bike  jAtomic operations.
in second edition in inline functions, single-line.
1988 comments, mixing
declarations and code,
luniversal character rames n
identifiers
of .
|operators, like ‘and’ forjfeatures like imphcit
function declarations and
C18 support
1SOIEC 5898/
197 -9999:1990 AMD1:1995
Latest Version as of Sep-21: C18: IS0/IEC 95992018, 2018 kd
Programming in Moder C++ Partha Pratim Das Toonr




Pl

u’“ C Dialects: Checking for a dialect

@ We check the language version (dialect) of C being used by GCC in compilation using the following code
/* File Check C Version.c */
#include <stdio.h>
int main() { B

if (__STDC_VERSION__ == 201710L) printf("C18\n"); ‘/' C11 with bug fixes #/ -
else if (__STDC_VERSION__ == 201112L) printf("Cll\n");/

else if (__STDC_VERSION__ == 199901L) printf("C99\n"); L}
else if (__STDC_VERSION__ == 199409L) printf("C89\n");

else printf("Unrecognized version of C\n");

return 0;
}
@ We can ask GCC to use a specific dialect by using -std flag and check with the above code for three cases

$ gec -std=c99 "Check C Version.c"
C99

$ gec "Check C Version.c"
oy ——————

—

$ gec -std=c}1 "Check C Version.c"

Default for this gcc is C11 <
Programming in Modern C-+ Partha Pratim Das To218 84

This was the basic stuff that | wanted to discuss with you in this tutorial; I will just quickly run
through few related issues here. One is | said in module 1 discussion that there are different
dialects as standards have happened, so these are the different dialects and we will keep on
switching between typically between C90 and C11 this is not C++ this is C11.

So the standard that you have this is, so when you use your C compiler say you are using gcc
with .c file extension you might want to know or you might want to decide even dictate that what
kind of which version should you use, because there are different support that changing from one
version to the other.

This is a small piece of code with some magic numbers which are defined in the CPPs macro for
every standard, which you can use to detect which particular version you are using. So if you
want to use say C99 version then you can write it as -std, -std is an compiler option which say
what standard and C99 is a code for the C99 standard.

So if you run, if you build the above code with -std = ¢99 and run you will get this output C99
output. If you just build this of course it may be different in your system because it depends on
the compiler version you have actually installed but if you do MinGW now six version plus then
the default is C11, so that is the reason | said that C11 is one.

So the default is C11, so you will get this. Also you can set that | want to build with C11 so say
to ensure that well I do not care about the default so -std = C11 will build the code in C11, so gcc
has whole lot of different options for standards and so on I have just taken the few which are
important.

(Refer Slide Time: 29:04)



C++ Standards

C+408 | Ce+11 | CHI4 | CH17 | C+420

Templates Move Semantics IReader-Writer Locks 1Fold Expressions Coroutines -
STL with Containers | Unified Initialization |Generic Lambda constexpr if Modules s
and Algorithms Functions -
Strings auto and decltype Structured Binding | Concepts
1/0 Streams Lambda Functions std::string_view!Ranges Library
constexpr Parallel Algortihms of
the STL
Multi-threading and File System Library
Memory Model
Regular Expressions std::any,
std::optional,
and std: :variant
Smart Pointers
Hash Tables
std::array
ISO/IEC 14882:1998 | ISO/IEC 14882:2011 | ISO/IEC 14882:2014 | ISO/IEC 14882:2017 | ISO/IEC 14882:2020
Fixes on C++98: C++03; 150/1EC 14852:2003, 2003
Latest Version as of Sep-21: C++20: 150,/IEC 148322020, 2020 «
Programming in Modern C++ Partha Pratim Das S |

C++ Dialects: Checking for a dialect

[
.+ o . . P . ‘l' /
@ We check the language version (dialect) of C++ being used by GCC in compilation using the following code
// File Check C++ Version.cpp
#include <iostream>
int main() {
if (__cplusplus == 201703L) std::cout << "C++17\n";
else if (__cplusplus == 201402L) std::cout << "C++14\n";
else if (__cplusplus == 201103L) std::cout << "C++11\n";
else if (__cplusplus == 199711L) std::cout << "C++98\n";
else std::cout << "Unrecognized version of C+#\n";
return 0;
}
® We can ask GCC to use a specific dialect by using -std flag and check with the above code for four cases
$ g++ -std=gnu++98 "Check C++ Version.cpp"
C++98

$ g++ -std=c++11 "Check C++ Version.cpp"
C++11

$ g++ -std=c++14 "Check C++ Version.cpp"
C++14

$ g++ "Check C++ Version.cpp"
C++14
Default for this g++ is C++14 &
ramming in Modern C+% Partha Pratim Das TR0 o

Similarly for C++ you have different dialects as from the first standard at C++98 which is what
we are doing now and | mean over weeks one to about eight or nine we will talk about this
standard only before we jump into the C++11. Now when we talk about C++11 we will actually
talk also about some 14, 17 features may be some 20, C++20 features also but our primary
choice will be C++98 and C++11.

C++98 for the first nine weeks, now also note that there is a C++03 version and you may have
noticed that | keep on using these terms interchangeably | say C++03, | say C++98. Actually
C++03 is the same standard as C++98 except that C++98 had some bugs which have been fixed
in the C++03 dialects. So like in C here is an equivalent for ++, you can check the version you
can set the version and the details you can really work out.

(Refer Slide Time: 30:30)



H’H Standard Library

& &

Standard Library

Standard Library

o

.
Progranning i Modern Parth Pratim Das Ten &

P

' ibrary?
H What is Standard Library?

L

o A standard library in programming is the library made available across implementations of a
language

o These libraries are usually described in language specifications (C/C++); however, they may |
also be determined (in part or whole) by informal practices of a language's community (Python

o A language's standard library is often treated as part of the language by its users, although thd
designers may have treated it as a separate entity

o Many language specifications define a core set that must be made available in all
implementations, in addition to other portions which may be optionally implemented

o The line between a language and its libraries therefore differs from language to language
o Bjarne Stroustrup, designer of C++, writes:
st ooty s i dard C4+ library?

y is r supply so

o This suggests a relatively small standard library, containing only the constructs that “every
programmer” might reasonably require when building a large collection of software
o This is the philosophy that is used in the C and C++ standard libraries

Source: Standard library, Wiki Accessed 13-Sep-21

%a

Programming in Modern C++ Partha Pratim Das T2




| Component | Data Types, Manifest Constants, Macros, Functions, ... 0

stdio.h Formatted and un-formatted file input and output including functions
o printf, scanf, fprintf, fscanf, sprintf, sscanf, feof, etc. -
stdlib.h Memory allocation, process control, conversions, pseudo-random numbers, search-j
ing, sorting

o malloc, free, exit, abort, atoi, strtold, rand, bsearch, gsort, etc.
string.h Manipulation of C strings and arrays

e strcat, strepy, stremp, strlen, strtok, memcpy, memmove, etc.

math.h Common mathematical operations and transformations
o cos, sin, tan, acos, asin, atan, exp, log, pow, sqrt, etc.
errno.h Macros for reporting and retrieving error conditions through error codes stored in

a static memory location called errno

o EDOM (parameter outside a function's domain - sqrt (-1)),

o ERANGE (result outside a function’s range), or

o EILSEQ (an illegal byte sequence), etc.

A header file typically contains manifest constants, macros, necessary struct / union types,
typedef's, function prototype, etc.

«
To223 |

Programming in Modern C++ Partha Pratim Das

Obviously there are standard libraries as you all know and which is along with the language the
standard library extends the overall capability of programming, it makes it easier. So as you learn
the language it is very very important to learn the standard library, because that will make your
programming really easier because lot of things like a lot of C programmers are writing a short
routine without probably knowing that Qsort is available in the library, so that kind of | discuss
that.

Now the question is how much is in the language and how much is in the library it depends on
the languages choice. For example in C there is no string type it is a string library which provides
a C++ as made string also in the library but as a more complete type. Even stronger example is
dynamic memory management, in C it is a part of standard library.

You have all these malloc free and so on; in C++ you have language operators, new delete you
must have heard me on the specific modules on that. So it is a language and standard library
design is a very careful thing which has to be small enough, so that people can learn and
remember. At the same time it must be reasonably powerful so that a large collection of software
can benefit from that.

These are some of the standard | will not go through these you can just refer to the slide. These
are some of the very common and useful in you must have seen that most of the examples are
using this stdio, stdlib, string, math these are the four that you more often use when you handle
error you will also use

(Refer Slide Time: 32:30)



C Standard Library: math.h

/* math.h
*+ This file has no copyright assigned and is placed in the Public Domain. o
* This file is a part of the mingw-runtime package.
* Mathematical functions.
*/
#ifndef _MATH_H_
#define MATH H_
#ifndef __STRICT_ANSI__
/...
#define M_PI 3.14150265358979323846 // manifest constant for pi
...
struct _complex { struct of _complex type
double x; /* Real part */
double Vi /* Imaginary part */

_CRTIMP double __cdecl _cabs (struct _complex); abs(.) function header
Hi oo

#endif /* __STRICT_ANSI__ #/

/...

_CRTIMP double __cdecl sqrt (double); sqrt
Ui

#define isfinite(x) ((fpclassify(x) & FP_NAN) == 0) macr
s

#endif /+ MATH H_ */

Source: C math h libeary functions Accessed 13-Sep-21 l
Programming in Modern C++ Partha Pratim Das To22¢ 8

| Component I Data Types, Manifest Constants, Macros, Functions, Classes, ...

iostream Stream input and output for standard /0
e cout, cin, endl, ..., etc.

string Manipulation of string objects
o Relational operators, 10 operators, Iterators, etc.
memory High-level memory management

o Pointers: unique_ptr, shared_ptr, weak_ptr, auto_ptr, & allocator etc.
exception | Generic Error Handling e exception, bad_exception, unexpected handler,
terminate_handler, etc.
stdexcept | Standard Error Handling e logic.error, invalid argument, domain_error,
length error, out_of range, runtime_error, range_error, overflow_error,
underflov_error, etc.

Adopted from C Standard Library

cmath Common mathematical operations and transformations
o cos, sin, tan, acos, asin, atan, exp, log, pov, sqrt, etc.
cstdlib Memory alloc., process control, conversions, pseudo-rand nos., searching, sorting

o malloc, free, exit, abort, atoi, strtold, rand, bsearch, gsort, etc.

4
Programming in Modern C++ Partha Pratim Das To22s MY




[@E namespace std for C++ Standard Library

C Standard Library C++ Standard Library o
o All names are global o All names are within std namespace -
o stdout, stdin, printf, scanf o std::cout, std::cin
o Use using namespace std; .
w
to get rid of writing std:: for every standard
library name
W/o using W/ using
#include <iostream> #include <iostream>
using namespace std;
int main() { int main() {
std::cout << "Hello World in C#+" cout << "Hello World in C++"
<< std::endl; << endl;
return 0; return 0;
} }
Programming in Modern C++ Partha Pratim Das T0226 ’{

Pl

L" Standard Library: C/C++ Header Conventions

C Header [ C++ Header
C Program Use .h. Example: #include <stdio.h> Not applicable
Names in global namespace

C++ Program | Prefix ¢, no .h. Example: #include <cstdio> | No .h. Example:
Names in std namespace #include <iostream>

® A Cstd. library header is used in C++ with prefix 'c’ and without the .h. These are in std namespace!

#include <cmath> // In C it is <math.h>
std::sqrt(5.0); // Use with std::
It is possible that a C++ program include a C header as in C. Like:

#include <math.h> // Not in std namespace

sqrt(5.0); // Use without std::

This, however, is not preferred

Using .h with C++ header files, like iostrean.h, is disastrous. These are deprecated. It is
dangerous, yet true, that some compilers do not error out on such use. Exercise caution.

%a

Programming in Modern C+-+ Partha Pratim Das T0227




[ﬁéj Tutorial Summary

o Understood the overall build process for a C/C++ project with specific reference to th o
build pipeline of GCC i

o Understood the management of C/C++ dialects and C/C++ Standard Libraries ]
L)

o
Programming in Modern C++ Partha Pratim Das Tz M

So some snhippets of what is inside the header, similarly C++ libraries there are many again and |
will slowly introduce them as we go through the modules but iostream, string, memory, cmath,
from C, cstdlib or cstring vector these are some of the important ones. | will not discuss this in
the tutorial because we have already discussed this in the module in terms of what is the
difference between the std namespace and other and what are the header conventions these we
have already discussed in the module.

So just remember to follow them. So | hope you have got a good sense of how to do this build
process | will also make a small video later on to actually do this steps while I use my gcc so that
even after this discussion if you have difficulties you can just follow those steps in the video. |
will also provide that at a later point of time. Thank you very much for your attention and see
you in the next tutorial on the same project building process. Thank you.



