Programming in Modern C++
Professor Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur
Lecture 8
Default Parameters & Function Overloading

Welcome to programming in modern C++. We are in week 2, and we are going to discuss

module 8.

(Refer Slide Time: 0:34)

Programming in Modern C++

Module M08: Default Parameters & Function Overloading

Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

All url's in this module have been accessed in September, 2021 and found to be functional

2
Programming in Moder C+-+ Partha Pratim Das Mog.1 “‘

[l‘é} Module Recap

o Introduced reference in C++
o Studied the difference between call-by-value and call-by-reference -
o Studied the difference between return-by-value and return-by-reference

o Discussed the difference between References and Pointers

«
Programming in Modern C++ Partha Pratim Das M2 "5‘

In the last module, we have introduced the concept of reference with discussion on the
parameter passing mechanisms of functions in C++, call-by-value, and call-by-reference. And

also, the value return mechanism that is returned-by-value and return-by-reference studied



them and saw the advantages of call-by-reference in certain contexts. And finally, we have

made a comparative study of pointers as well as references.

(Refer Slide Time: 1:15)

[géj Module Objectives

o Understand Default Parameters

o Understand Function Overloading and Resolution

«
Programming in Moder C++ Partha Pratim Das Mog.3 “‘

In this module, we will talk about default parameters, what they are, and what is function
overloading, and how that overloading is resolved. It is a new concept, again, being

introduced.

(Refer Slide Time: 1:30)

{é}j Module Outline

0',;1‘;.’_“‘,.7!; o
o Examples P
° HM'\ gnts -
Soclsiny o Restrictions or

o Examples
@ Restrictions
o Rul
e d Res
o Exact M
o Promotion & Cor
o Examples
o Ambiguit

o'{‘ to overload Default Par
Vodule Summary
o ; MDN;‘]

Programming in Modem C++ Partha Pratim Das




[{;} Default Parameters

Default Parameters

.
Programming in Moder C+4+ Partha Pratim Das moss 84

Declaration of CreateWindow Calling CreateWindow

HWND WINAPI CreateWindow( hWnd = CreateWindow(

_In_opt_ LPCTSTR  1pClassName, ClsName,

_In_opt_ LPCTSTR  lpWindowName, WndName,

In_ DWORD dwStyle, WS_OVERLAPPEDWINDOW,

In_ int X, CW_USEDEFAULT,

In. int v, CW_USEDEFAULT,\/

=T int nWidth, CW_USEDEFAULT,

In_ int nHeight, CW_USEDEFAULT, v

_In_opt_ HWND hWndParent," NULL,

_In_opt_ HMENU hMenu, NULL,

_In_opt_ HINSTANCE hlnstance, hInstance, \/

_In_opt_ LPVOID 1pParam NULL \/ A5
)i )i

® There are 11 parameters in CreateWindow()
¢ Of these 11, 8 parameters (4 are CWUSEDEFAULT, 3 are NULL, and 1 is hInstance) usually get same
values in most calls
® |nstead of using these 8 fixed valued Parameters at call, we may assign the values in formal parameter
® C++ allows us to do so through the mechanism called Default parameters @
Programming in Moder C+-+ Partha Pratim Das Moss 84

So, this is the outline, which you will find on the left. So, let us talk about default parameters.
Now to, for you to realize what is default parameter and why is it important? Let us look at
this function header. This is from Microsoft Visual Studio Visual C++, Windows
programming. So, this is on left is the declaration of the CreateWindow function. And on the

right is a typical call that will be made to the CreateWindow function.

Now, if you look at this, you will find, if you observe carefully, you will find that there are 11
parameters in total. In the CreateWindow, it is a large function, lot of things to be specified.
But out of these, if you see 1, 2, 3, 4 are given default values, most cases it will be given
default value, as to where you want to create the window, what should be the width, what
should be the hight, there is a preferred default, most of the time most programmers would be
using. Many a times, these three are set to null.



That is whether it has a parent, whether it is hanging a menu, or whether you are passing
some parameters to the window. And the hinstance, the current instance, of the windows on
which you are doing this is typically hinstance, called everywhere. So given this, as you can
see, out of the 11 parameters, 8 parameters, most of the time, we will take the same value for

most of the calls. Only primarily, these three are often what the user would like to set.

So, the question is, do | really need to make the user copy-paste all these 11 parameters, 8 of
them is a big list, which hardly differs from one call of the CreateWindow to the other. Or,
can | let these default values somehow be represented in the system, so that if the user does
not have to change that default value, or does not need to call the function with the value
other than the defaulted value, the user does not need to provide these parameters in the call.

That is the whole idea.

(Refer Slide Time: 4:15)

#include <iostream>
using namespace std;
il
int IdentityFunction(int a = 10) { ofault Jo for parameter a
return (a);

}

int main() { +
intx=5,vy;
y= IdentityFunction(x);/ sual function call. Actual parameter taken as x = §
cout << "y = " <<y << ondl;
y = IdentityFunction(); es default parameter. Actual parameter taken as 10

cout << "y = " <<y << ondl;

.
ogramming in Modern -+« Partha Prati Day Mooy Y




E%?] Program 08.01: Function with a default parameter

#include <iostream»
using namespace std;

int IdentityFunction(int a = 10} { // Defaul
raturn (a); =

}

int main() {
intx=5, y;
y = IdentityFunction(x); // Usual function call. Actual parameter taken as x = §
cout << "y = ¥ << y << endl;
y = IdentityFunction(); Uses default parameter. Actual parameter taken as 10
cout y = " €<y <« andl; M=
}
y=5
y=10
Programmileg Iy Modem C4++ Parths Prathe D Monz

So, let us see a simple example with one parameter which is default. So, this is how you write
it. In the header of the function, after you have written the type, and name of the parameter

with the initialisation symbol, you write a value.

The idea for this is clear when you call the function. Now, if you call the function with X,
which is initialised to 5, if you call it with x, it is a is taken to be x, which is 5 normal call, but
there is something different that you can do, you can call this function without actually

passing any parameter, but it needs a parameter.

So, what it does when you do not pass a parameter, actual parameter, the function takes the
default value 10 as given to be the value of a and goes ahead and does the computation. So, it
is taken as 10, that is a basic concept of default parameter, very simple concept and makes

life easier in different places.



(Refer Slide Time: 5:38)

[ﬁ?} Program 08.02: Function with 2 default parameters

#include<iostrean>
using namespace std;

—_—
int Add(int a = 10, int b = 20) {
+b);

int main() {/int x = 5, y = 6, z;

z = Add(fk, y); // Usual function call -a=x=5&b=y=6
cout << ['Sum = " << z << endl;

z = Add(x); // One defaulted —a=x=5&b=20
e e A ——

cout << "8um = " << z << endl;

z= Addf); er defaulted --a=10&b =20

/ Both paramete
cout << "Sum = " << z << endl;

‘
Programming in Moder C4-+ Partha Pratim Das mogs 4

Now, let us little bit go forward, let us take function with two default parameters. a defaulted
for 10, b defaulted for 20, and I can call it with x y, 5 and 6. It will take as x 5a 5, b 6. | can
call it with just x, one parameter If I call it with one parameter whether it isa or itis b. That is
decided from the left-hand side, if | pass one parameter, it is the when | pass parameters, it is

always taken from the left.

So, x is copied to a. So, that is that becomes 5, but b is not given. So, which default value is
taken which is 20. And, in the third case, if | do not pass any parameter, both A and B takes
their default values. So, it always goes from the left, and as many parameters as provided will
take the values of the actual parameters remaining must be default, and they will get their

default values. That is the whole idea of the default parameter.



(Refer Slide Time: 7:00)

[ﬁ%} Default Parameter: Highlighted Points

o C++ allows programmer to assign default values to the function parameters

EmlUEGECILACL
o Default values are specified while prototyping the function =

o Default parameters are required while calling functions with fewer arguments or withoulld
e —
any argument =— "

o Better to use default value for less used parameters

o Default arguments may be expressions also
—~————t

‘
Programming in Modern C++ Partha Pratim Das Mg 84

So, it allows programmers to assign default values to the function parameters, that is the basic
idea. It is recommended that you provide the default value while you prototype the function,
normally what is we write a prototype, and later on we put the function body so, we are

actually writing the function header twice, once during prototype, and once during definition.

So, what is recommended is put the default values while you prototype, not during the
definition, because the prototype is likely to be included in many other files as well. And
therefore, it will be clear as to what the default values are. Default parameters are required
while calling function with fewer arguments, or without any argument at all, you have

already seen that.

As a design, you should arrange your parameters in a way so that the default values are used
for less used parameter. If you use a default value for a frequently used parameter whose
value can be different than every time, we will have to provide that anyway. And default

arguments can be expressions as well. So, these are some of the basic stuff.



(Refer Slide Time: 8:22)

ameters to the right of a parameter with default argument must have default
s (function £ violates)

guments cannot be re-defined (second signature of function g violates)

d parameters needed in a call (first call of g() violates)

#include <iostream> w

void f(int, double = 0.0,(char #)
Error (2548: f: missind\defaul\ parameter for parameter 3

void g(int, double = 0, char * = NULL);
void g(int, double = 1 * = NULL);
Error C2572: g: red n of def
Error C2572: g: red

r : parameter 3
ter : parameter 2

int main() {
int i = 5; double d = 1.2; char ¢ = ’b’;

g(); // Error C2660: g: function does not take 0 arguments
g(i, d, &c);

}

«
Programming in Modern C+-+ Partha Pratim Das M0g.10 “"‘

Now, there are some restrictions on the default. The restriction is since we are considering in
the call, we are considering the parameters from left. As soon as you default one parameter,
all parameters to it right must always be defaulted. So, you have non default parameters, then

a parameter which is default and onwards everything has to be default parameters.

So, the entire sequence of parameters from left to right will be sequence of non-default
parameters, followed by sequence of default parameters. That will always have to be the
pattern, that is because otherwise, there is no way to resolve to know which parameter is

what, because in C++, we always associate parameters by their position not by their name.

So, if we look at that, you can see here, | have defaulted this, but I have not defaulted this,
this is not allowed. Because if | call it with 2 parameters, because | at-least need 2 parameters
int and the char, char* to call this because only one is defaulted. But if | give 2 parameters,
the compiler will also, always take them to be these 2 parameters because it is going from

left. So that is a basic protocol we have to follow.



(Refer Slide Time: 9:52)

[l‘éj Restrictions on default parameters

ameters to the right of a parameter with default argument must have default
s (function £ violates)
ents cannot be re-defined (second signature of function g violates)
Jlted parameters needed in a call (first call of g() violates)

#include <iostream>

void f(int, double = 0.0, char #);
Error C2548: f: missing default paramete

void g(ly, double = 0, char * = NULL);

void g({at, Jouble = 1, ’m& ;
Error C2572: g7 rede n of d
Error C2572: g: red n of d

er : parameter 3
ter : parameter 2

int main() {
int i = 5; double d = 1.2; char ¢ = ’b’;

g(); // Error C2660: g: function does not take 0 arguments
g(i);

g, d);

g(i, d, &c);

}

«
Programming in Moder C:++ Partha Pratim Das M0g.10 ""

The second is, when you provide default values, you cannot multiply provide default values
in two different signatures, two different places, or in two different signatures, even if the
values are same. So, you can see here that | have two functions, header of g, int double char
start, int is non-default, that is fine. In this | have made double defaulted as zero in this, |

have double defaulted as 1, this is not allowed, in fact, this also is not allowed.

It will say that you have already provided a default value, you cannot redefine that. So, that
will not be accepted in the compilation, because you do not know which of these headers will
be used in compiling which invocation of the function in what file. And therefore, there may

be confusion.



(Refer Slide Time: 10:55)

ameters to the right of a parameter with default argument must have default

(function £ violates)

guments cannot be re-defined (second signature of function g violates)
Ited parameters needed in a call (first call of g() violates)

#include <iostream>

void £ double = 0.0, char *);
Errg 48: f: missing default parameter for parameter 3

void g double = 0, char * = NULL); A}V

void g double = 1, char * = NULL);
Erro 72: g: red tion of def
Error T25672: g: redefinition of default parameter

11t parameter : parameter 3
parameter 2

int main() {
int i = 5; double d = 1.2; char ¢ = ’b’;

gQ); ‘/Errcr C2660: g: function does not take 0 arguments

Eg?,'a);‘/ /

g(i, d, &c);

} g
Programming in Modern C++ Partha Pratim Das M0g.10 ”l

And naturally, while you call all non-default parameters must be provided. And only the
default parameters can be skipped. So, in this context, if I call function g without a parameter,
it is an error, because g always has error first parameter. | mean, | am talking in reference to
this particular signature of g which is a valid one. But I can call it with one parameter, which
will be int, two parameters int and double, three parameters int, double, and char start. So,

this is these are basic rule of default parameters.

(Refer Slide Time: 11:36)

o Default parameters to be supplied only in a header file and not in the definition of a
function

/loid g(int, double, char = ’a’); Defaults ch
Joid glint 1, double f = 0.0, char ch); // A ne
\/void g(int i = 0, double £, char ch);
\/ void g(mt i =0, double f = 0.0, char ch = ’a’);

#include <iostream>

using namespace std;

#include "myFunc.h" / taken from header

void g(int §,|double df\char c)\I cout << i << 77 <Cd <! ¢« endl; }
icarivh File Y

#include <iostream>

#include "myFunc.h"

int main() { int i = 5; double d = 1.2; char ¢ = ’b’;
g0; Prints: 00 a \

g(i); Prints: 50 a

g(i, d); Prints: 5 1.2 a
g(i, d, ¢); Prints: 5§ 1.2 b
Programming in Moder C++ Partha Pratim Das Mo8.11 “‘

Another, which is kind of, | should say a programming practice is, this is not a language

specification strictly but the programming practices, you always provide the default



parameters in a header file. So, here | have three overloaded functions, we will see what
overloads mean. Or | can have this signature of g with all three parameters defaulted, have

them in the header file, and then I include this header file to define the function.

And, in this definition, | am not providing the default values. Having it in the header helps
because any function, any file which includes the header for calling the function will get to
know what the default values are. Because if we were given it here, then this source file may
not be available to a user who is wanting to use the function, because this is a different file.
Now, since there are three parameters, all of which are defaulted, there are four ways to call

this function, which is you must have understood by now very easy, clearly.

(Refer Slide Time: 13:02)

E&% Function Overloading

Function Overloading

7
Programming in Modem C++ Partha Pratim Das we2 8

@ Function overloads: Matrix Multiplication in C
o

o Similar functions with different data types and algorithms,
typedef struct { int data[10][10]; } Mat; D Matri
typedef struct { int data[1][10); } VecRow; // Row Vector
typedef struct { int data[10][1]; } sqluzn Vector

Multiply MM (n1, m2, &mm);
Multiply M_VC (m1, cv, &rev);
Multiply VR M (rv, m2, &rrv);
Multiply_VC_VR(cv, rv, &rm);
Multiply_VR_VC(rv, cv, &r);
return 0;
}
® 5 multiplication functions share similar functionality but different argument types
® C treats them by 5 different function names. Makes it difficult for the user to remember and use
® C++ has an elegant solution

-
Programming in Modern C++ Partha Pratim Das Mz 8




| loosely talked about, you know, | said these functions are overloaded, Let us understand
what the function overloading is. Again, the context, the context is suppose there is different
situations where, conceptually 1 am trying to do the same thing or very similar thing. But my
data types are different, my algorithms are different, and therefore they have to be different

functions. If I want to do this in C, it says function will have to get a unique name.

So let us say, I am talking about matrix multiplication, and | have three data types. One is a
square matrix, one is a row vector, and one is a column vector. So, if | have these three data
types, then there are 5 possible ways | might multiply, 1 can multiply a matrix with a matrix,
matrix with a column vector, a row vector with a matrix, a column vector with a row vector,
which will give me a matrix, or a row vector with the column vector, which is basically dot

product, will give me a value.

So, these are you can check the types of parameters being passed, everything is here, these
are passed by value, this is by address, because you want the output to come in the typical C
style of stuff. But all of them are multiplying kind of using the same matrix multiplication

rule, but because their data types are different, you have to give them different names.

So, as a programmer who is trying to use this, the programmer will have to remember, okay,
multiplying matrix by a vector column is multiply underscore M underscore VC, very
cumbersome. And we will see similar, lot of other problems also arise because of this.

(Refer Slide Time: 15:05)

!%31 Function overloads: Matrix Multiplication in C++
LY

o Functions having the same name, similar functionality but different algorithms, and identified

by different interfaces data types
typedef struct { int data[10][10]; } Mat; 2D Matri

typedef struct { int data[1](10]; } VecRow;
typedef struct { jnt-data[10] [1],-}—Teeool;

voiHultipl onst Matk a, const Magk b,
void Multiplyfconst MatZ a, const VecColt Y
void Multipl " onst VecRowk a\|const Matk b,
void Multiply(konst VecColk a,)const VecRowk H

X
Mat m1, m2, rm; VecRow rv, rrv; VecCol cv, rcv; int r;
Multiply(mi, m2, rm); 1*m

Multiply(mi, cv, rev);

Multiply(zrv, m2, rrv);

Multiply(cv, rv, m);

Multiply(rv, cv, 1);

return 0;

® These 5 functions having different argument types are represented as one function name (Multiply) in C++
® This is called Function Overloading or Static Polymorphi “
Mog.14 “‘

Programming in Moder C++ Partha Pratim Das




So, what | would prefer is | have the same situation, the different data types, different
algorithms, but I would like to call all of them by the same name, this is overloading. One
name multiple meaning. So, you are overloading, if you consider the meaning to be a load on
the name then you are overloading it giving multiple of them, which C does not allow.

C++ allows that and since we are in C++ now, you are, your inputs are all in terms of const
reference. Whereas, your output is an in terms of non-const reference, because suddenly you

do not want to copy matrices, and do not want the input matrices to change because of that.

(Refer Slide Time: 16:05)

E@} Function overloads: Matrix Multiplication in C++

he same name, similar functionality but different algorithms, and identified
s data types

typedef struct { int data[10][10]; } Mat; 2D Matri
typedef struct { int data[1][10]; } VecRow; // Row Vector
typedef struct { int data[10][1];,} VecCol; // Column Vector
void Multiply(const Matk a, const Mat& b, Matk 4(5;

void Multiply(const Matk a, const VecColk b, VecColk c); L
void Multiply(const VecRowk a, const Mat& b, VecRowk c); =a#%t

void Multiply(const VecCol% a, const VecRowk b, Matk c); b
void Multiply(const VecRowk a, const VecColk b, intk c); =a#st

o Functions havi

by different interf:

int main() {
Mat m1, m2, rm; VecRow rv, rrv; VecCol cv, rcv; int r;
Multiply(mi, m2, rm); <--ml *m
Multiply(mi, cv, rcv);
Multiply(rv, m2, rrv);
Multiply(cv, rv, m);
Multiply(rv, cv, 1);

return 0;
® These 5 functions having different argument types are represented as one function name (Multiply) in C++
® This is called Function Overloading or Static Pol hi i
Programming in Modem C++ Partha Pratim Das Mog.14 “‘

And then now, the question that you will have is, naturally 5 functions will have 5 different
codes. How will from in C we always knew that the function name is unique globally. So,
from the name the system knows which function, what is the body that should be used. Here,
how do you know that all of them the same types, all of them have the same name. So, that is

where the parameter types become important.



(Refer Slide Time: 16:36)

@ Function overloads: Matrix Multiplication in C++
P

o Functions having the same name, similar functionality but different algorithms, and identified

by different interfaces data types

typedef struct { int data[10][10]; } Mat; )
typedef struct { int data[1][10]; } VecRow; // Row Ve
typedef struct { int data[10][1]; } VecCol;

void Multiply(const Matk a,
void Multiply(const Matk a,
void Multiply(const VecRowk a, conmst Mat& b,

const Matk b, Matk ;?
const VecColf b, VecCoMk c);
VecRowk c);

“

void Multiply(const VecColk a,
void Multiply(const VecRowk a,

int pagn() {
%ml, z2, mm; VecRow rv,
Multiply(ml, m2, rm);

—PHultiply(nt, _c(_l, rev);
Multiply(rv, m2, TIv);
Multiply(cv, v, m);
Multiply(rv, cv, r);
return 0;

}

® These 5 functions having different argument types are represented as one function name (Multiply) in C++

® This is called Function O

rrv cv, rcv; int r;
m NG n2

const VecRowk b, Matk c); 3+ b
const VecColk b, intk c); c=att

Programming in Moder C:++

loading or Static Pol,

i
Mog.14

Partha Pratim Das

So, if you let us say, if you look at say this second function multiply m1, cv, rcv, m1 is of
type Mat, cv is of type column vector VecCol. rcv is also of type column vector. So, | will

look for out of the 5 | look for that particular overloaded function, which matches this type.

The first one is Mat, which means it could be any of these two.

Second one is VecCol, which means it has to be this, | already have got a unique function.
And the third one has to match this. Otherwise, it is it is an error. And you can see that
between any two functions. If you consider the types of parameters from left to right, they are

distinct, there is something which is distinct. For example, just for better understanding.

(Refer Slide Time: 17:49)

réi! Function overloads: Matrix Multiplication in C++
Lt

void Multiply(const Matk a,
void Multiply(const Matk a,
void Multiply(const VecRowk a,
void Multiply(const VecColt a,
void Multiply(const VecRowk a,

int pagn() {
@ml, m2, rm; VecRow rv,
Multiply(mi, 2, rm); I

—PMultiply(nl, e@, rev);
Multiply(xv, m2, TIv);
Multiply(cv, rv, m);
Multiply(rv, cv, 1);
return 0;

}

® These 5 functions having different argument types are represented as one function name (Multiply) in C++

® This is called Function Overloadi

o Functions having the same name, similar functionality but different algorithms, and identified
by different interfaces data types
typedef struct { int data[10](10]; } Mat;
typedef struct { int data[1][10]; } VecRow; // I
typedef struct { int data[10][1]; } VecCol; // Colu

£

const Matk b;}/ Matk ;?
const VecCol® b, VecCoM c);
const Matk b, VecRowk c);
const VecRow& b, Matk c);

const VecColk b, intk c); =a#+t

v @ cv, rev; int r;
TN m2

or Static Pol,

Programming in Moden C++

«
Partha Pratim Das Mog.14 “‘




)
L

Function overloads: Matrix Multiplication in C++ i

/\
£
o Functions having the same name, similar functionality but different algorithms, and identifi
by different interfaces data types
typedef struct { int data[10][10]; } Mat;

typedef struct { int data[1][10]; } VecRow;
typedef struct { int data[10][1]; } VecCol;

void Multiply(const Matk a, const Matk b, Matk c); = b
VecColk c); c=asth

void Multiply(const Mat& a,  const VecColk b,

void Multiply(const VecRowk a, const Matk b, VecRowk c); c=a*h
void Multiply(const VecColk a, const VecRowk b, Matk c); =

void Multiply(const VecRowk a, const VecColZ b, intk c); c=ath

int main() {
Mat m1, m2, rm; VecRow rv, rrv; @ v, Icv; int r;
Multiply(mi, m2, rm); m <N m2

Multiply(mi, cv, rcv);

Multiply(rv, m2, rrv);
~ Multiply(cv, rv, mm);
Multiply(rv, ov, T;

return 0;
® These 5 functions having different argument types are represented as one function name (Multiply) in C++
® This is called Function Overloading or Static Polymorphi @
Programming in Modern C++ Partha Pratim Das Mog.14 ”‘

o Functions having the same name, similar funct
by different interfaces data types
typedef struct { int data[10][10]; } Mat;

typedef struct { int data[1][10]; } VecRow;
typedef struct { int data[10][1]; } VecCol;

void Multiply(const Matk a, const Matk b, Matk c); b
VecColk c); c=ast

void Multiply(const Matk a, const VecColZ b,
joid Multiply(const VecRowk a, const Matk b7~ VecRowk c); c=a*bh
void Multiply(const VecColt a, ‘Const VecRouk b, Matk c); =a#*bh
bid Multiply(const VecRowk a, ccns{ﬁecCol& b, intgs); c=a#*bh

int main() {
Mat m1, m2, mrv, rrv;@cv. rev; int r;
Multiply(ml, m2, Y)Y m <--nt¥ n? -
Multiply(mi, cv, rcv); // rcv <-- ml # c
Multiply(rv, m2, rrv);
Multiply(cv, rv, m);
= Multiply(rv, cv, 1);

=
return 0;® ®
® These 5 functions having different argument types are represented as one function name (Multiply) in C++
® This is called Function Overloading or Static Polymorphi 4
Programming in Moder C++ Partha Pratim Das M0g.14 "J

Let us say, let us take so the fourth one, cv, rv, rm, cv is VecCol. So, this does not help,
because this immediately gets you here, there is only one function which has first parameters
as VecCol. So let us look at something which can be more confusing. So let us look at five.
The first is rv, rv is VecRow, if it is VecRow, then it can be either this function, or this

function whose first parameter is VecRow.

Then the second parameter is cv, which is VecCol. So, in this the second parameter is Mat,
which cannot be, so it has to be this, and the third parameter is r, which is int, and it matches,
so is the fifth function. So, what you are doing now is in C, globally by their name you were
deciding the function, we said this is binding with the name and the actual body of the

function we said this is a binding.



The binding was happening just by the name, now the binding is happening by the name as
well as the types of parameters, this is known as static polymorphism, or function
overloading. Why static polymorphism, polymorphism means poly means many, morph
means change, forms. So, polymorphism refers to the fact that when you have something

which is in multiple forms, but common, so this is these are polymorphic.

And why is it static? Because the compiler itself can find out what is the right function to

bind to. So that is, that is the basic point you make here.

(Refer Slide Time: 19:51)

Eéj Program 08.03/04: Function Overloading

o Define multiple functions having the same name
o Binding happens at compile time

Same # of P: Different # of Parameters

#include <iostream> #include <iostream>
using nasw using namespace std;
int Add(int a, int b) { return (a + b); )\/ int Area(int a, int b)\/return (a*b);
double Add(double c, double d) { return (c + d); }|| int Area(int c) { return (c * c); }
int main() ('f_l\’— Tnt main() |
intx =5, y=6, z; \/ int x =10, y =32, z2=5, t;
z = Add(x, y); // int Add(int, int) t = Area(x, y, int Area(int, int)
cout X "int sum = " << z; cout << "Area of Rectangle = " << t;
double s = 3.5, t = 4.25, u; intz=5, u;
u = Add(s, t); double Add(double, dcuble)\/ u = Area(z); int Area(int)
caumle sum = " << u << endl; cout << " Area of Square = " << u << endl;
} }
int sum = 11 double sum = 7.75 Area of Rectangle = 12 Area of Square = 25
© Same Add function to add two ints or two doubles o Same Area function for rectangles and for squares
© Same # of parameters but different types o Different number of parameters

«
Programming in Moder C++ Partha Pratim Das Mog.15 “‘

So, here quickly we will have examples. So, | have two functions both of which are double
both of which has 2 parameters, but one has two ints, and one has two doubles. So, when |
call it with add x y, which are both int, this function will be called the first one, when | do

both with double, the second function will be called by the type it will be able to dissolve.

Here | have an example of Area function where one has 2 parameters, and one has 1
parameter. So, naturally if 1 one is basically computing for rectangle other is for square. So,
once | do x v, it will call the first function, if I do this, it will bind to the second function, that

is the whole idea of the polymorphic static polymorphism or function overloading.



(Refer Slide Time: 20:46)

[ﬁéj Program 08.05: Restrictions in Function Overloading

o Two functions having the same signature but different return types cannot be overloaded

#include <iostream>
using namespace std;

4 @ 0 -

int  Area(int a, int b) { return (a # b); }
double Area(int a, int b) { return (a *# b); }
Error C2556: double Area(int,int)
from int Area(int,int)
Error C2371: Area: redefinition; different basic types

int main() {
int x =10, y=12, 2= 5, t;
double f;

Area(x, y); \)y

Error C2568: =: unable to resolve function ove
Error C3861: Area: identifier not found

t << "Multiplication = " << t << endl;
Area(y, 2); Errors C2568 and C3861 as above

[t << "Multiplication = " << f << endl;

}

.
Programming in Modem C+-+ Partha Pratim Das Mog16 4

But, however, it the resolution must be possible by the parameters only, you cannot resolve
based on the return type. Two functions which are indistinguishable, two functions having the
same name of course, which are indistinguishable by their parameter types cannot be decided

by their return type.

Very simply, because when you call the function, you only pass the parameters, there is no
way to tell what kind of return value you are expecting, it is whatever you get. So, that is not
possible. So, here in this example, we have just illustrated that, that between these two Area

functions, the resolution is not possible.

So, if I call it like this, or I call it like this, whether | am taking the value in int or | am taking
the value in double is not something. So, this part is not something which the system knows.
Because, | may not just copy the value, I can just call the function also that is valid. So, but

there the parameter types are identical. So, this is not permitted.



(Refer Slide Time: 22:01)

different types of formal parameters s

o Function selection is based on the number and the types of the actual parameters at |
the places of invocation

o Function selection (Overload Resolution) is performed by the compiler

o Two functions having the same signature but different return types will result in a
compilation error due to attempt to re-declare

o Overloading allows Static Polymorphism

«
Programming in Modern C++ Partha Pratim Das M0g.17 ""

So, the summary of the rules same function name, several definitions, different number of
formal parameters are the same number of formal parameters with different types, and the
selection is based on the number of the actual parameters, and if there are multiple such, like
| just showed in case of matrix multiplication, there are 5, and how we are able to choose the
right one for binding from the 5. So, that process is the process of resolving, how you decide

on the resolution of the actual function that needs to be bound.

(Refer Slide Time: 22:39)

[ﬁ;] Overload Resolution

Overload Resolution

4
Progranaing i Modern Partha Pratim Das mos1s &




[ﬁ} Overload Resolution

o To resolve overloaded functions with one parameter
o Identify the set of Candidate Functions -
o From the set of candidate functions identify the set of Viable Functions -
o Select the Best viable function through (Order is important) v
> Exact Match
> Promotion
> Standard type conversion
> User defined type conversion
Programming in Modern C++ Partha Pratim Das Mog.19 3

So, this is known as overload resolution. Now, overload resolution goes through certain
phases, first is you identify a set of Candidate Functions, then you identify the set of Viable
Functions from the Candidate Functions, and finally, you choose the Best viable function,
according to this set of steps, what is best by exact match? If not by promotion, if not by

standard type conversion, if not by user defined type conversion. Let us go through that.

(Refer Slide Time: 23:15)

W Overload Resolution: Exact Match
12X

o lvalue-to-rvalue conversion: Read the value from an object 5
o Most common -
o Array-to-pointer conversion b
Definitions;  int ar[10]; "
void f(int *a);
Call: f(ar)
Definitions:  typedef int (*fp) (int);
void f(int, fp);
o Function-to-pointer conversion ) ( » 19);
; int g(int);
Call: (5, g)
o Qualification conversion
o Converting pointer (only) to const pointer
Programming in Moder C++ Partha Pratim Das M08.20 ;‘

So, what is exact match, when 2 parameters exactly match. Now, they will exactly match if
they are exactly identical type of course, but certain things are considered loosely as exact
match. Like, Ivalue-to- rvalue conversion is the exact match, if you take say variable a, then
in the context of the left-hand side, it is an Ivalue address, and the context of the right hand

side is an rvalue, value. So, any variable can be used by taking its value, that is a match.



Arrays and pointers conversion are an exact match. So, | can define an array, | can have a
function which takes a pointer of type integer and pass an integer array to that, | can have a
function pointer and pass a function to that without making it a pointer, | can convert pointers

only to constant pointer, this is these are all exact match conversions that you can be done.

(Refer Slide Time: 24:23)

W Overload Resolution: Promotion & Conversion
{1t

¢ Promotion

called integral promotion
o C++ promotions are value-preserving, as the value after the promotion is
guaranteed to be the same as the value before the promotion
o Examples

> char to int; float to double
> enum to int / short / unsigned int /..
> bool to int

.
Programming in Moder C+-+ Partha Pratim Das Mog.21 ’4

Now, the second that | can do is promotion, Promotion is when | have a value of a smaller
type smaller in in terms of size, and it is typically apply, promotion typically applies to
integral types only, then I can always represent it with a bigger type. So, | have a char, I can
represent it by short int, or | have a int, | can represent it by long, | have a float, I can

represent it by double, and so on. Which is quite obvious.



(Refer Slide Time: 24:58)

W Overload Resolution: Promotion & Conversion
12X

o Standard Conversions

o Integral conversions between integral types - char, short, int, and long with or without§ig
qualifiers signed or unslgned

0 Flo: point Conversions from less precise floating type to a more precise floating type
like float to double or double to long double. Conver5|on can happen to a /ess precisegm
type, if it is in a range representable by that type

o Conversions between integral and floating point types: Certain expressions can cause
objects of floating type to be converted to integral types, or vice versa. May be dangerous!

> When an object of integral type is converted to a floating type, and the original value is
not representable exactly, the result is either the next higher or the next lower
representable value
> When an object of floati e is converted to an int type, the fractional part is
truncated, or rounded toward zero. A number like 13 is converted tol, and-13is
converted to -1
o Pointer Conversions: Pointers can be converted during assignment, initialization,
comparison, and other expressions
o Bool Conversion: int to bool or vice versa based on the context

Programming in Moder C:++ Partha Pratim Das M08 22 54

Then there are certain conversions which are possible, for example, | can convert between
integral types with or without the qualifier of signed, I can convert between floating point

types, float being converted to double, double being converted to long double, and so on.

So, when | do that, | can be from less precise like float to more precise like double, that will
have no issue. But, if | want to do the reverse, then not always it may be possible, because the
more precise will have a bigger chunk of possible numbers, I can convert pointers, | can do

conversion of bool integer.

(Refer Slide Time: 25:45)

o In the context of a list of function prototypes:

igt g(double); F1
j id £0;7F F2
,\/);id f(int); F3
double h(void); F4
int g(char, int); / F5
Joid £(double, double = 3.4); // F6
void h(int, double); F7
Joid f(char, char ');‘f\ F8
The call site to resolve is:
£(5.6);
.——/"‘l
o Resolution:
0

15 (by name): F2, F3, F6, F8
[by # of parameters): F3, F6 \/‘L
n (by type double - Exact Match): F6

o o

«
Programming in Moder C++ Partha Pratim Das Mo8.23 "4




So, an example to illustrate how the resolution will happen. Let us say | have a function
called f(5.6). So, it takes one parameter, 5.6 is a literal of double type, so it expects a double
type. And these are the functions available to you. So, first what you do you create the set of
candidate functions, which are functions having the same name. So, f, f, f, f, these four are
candidate functions f 2, f 3. f 6, f 8.

Out of these candidate functions, you decide on the set of Viable functions, Viable functions
are those which match the number of parameters, that has to be possible. So, here there is one
parameter. So, this goes out, this takes O parameters, this also goes out, because it needs 2
parameters, this will be valid, it has one parameter, this will also be valid because though it
takes 2 parameters, the second parameter can be defaulted. So, | can call it with one

parameter. So, what remains from this is f 3, and f 6.

(Refer Slide Time: 26:59)

o In the context of a list of function prototypes:

int g(double); F1
void £(); F2
void £(int); F3

The fall site to resolve is:
£(5.6);
o Resolution:

O Candidate functions (by name): F2, F3, F6, F8
O Viable functions (by # of parameters): F3, F6 /
O Best viable function (by type double — Exact Match): F6

o
Programming in Moder C++ Partha Pratim Das mog23 4

So, if I want to call, then actually 5.6 the actual parameter value, will have to go to here for f
6 and have to go to here for f 3. The first one is exact match, double to double, and the second
one is floating point to integer conversion. So, what did they say, exact match promotion,

conversion, user defined conversion.

So, the top most, the first is exact match. So, | have, we have got an exact match here.
Therefore, f 6 is my resolution, you can try it out by trying to run this program, we will see

that it binds with this function, whatever is there in that function, is what will be executed.



(Refer Slide Time: 27:59)

[ﬁ;] Example: Ambiguity in Overload Resolution

o Consider the overloaded function signatures:

int fun(float a) {...} // Function 1
int fun(float a, int b) {...}
int fun(float x, int y = 5) {...} // F

int main() {
float p = 4.5, t = 10.5;
int s = 30;

fun(p, s); // CALL - 1

fun(t); // CALL - 2

return 0;
}
o CALL - 1: Matches Function 2 & Function 3
o CALL - 2: Matches Function 1 & Function 3
o Results in ambiguity for bath calls

a
Programming in Moder C4-+ Partha Pratim Das woe2e 84

Now, there could be ambiguity also, for example, here, as you can see that three candidate
functions, and |1 am calling it with 2 parameters in CALL — 1. So, there are two viable
functions, and there is no way to resolve them because they have the same types. Similarly, if
| call it in CALL — 2, with one parameter, there also the variable there are two viable
functions, Function 1, and Function 3. So, | cannot resolve them. So, in such cases, the

compiler will say that | am confused, and | cannot resolve this.

(Refer Slide Time: 28:35)

W Default Parameters in Overloading
i

Default Parameters in Overloading

a
Prograning i Modero - Partha Pratim Das moszs &




o Compilers deal with default parameters as a special case of function overloading
o These need to be mixed carefully
Default P: Function Overload s
-]
#include <iostream> #include <iostream> Ll
using namespace std; using namespace qtd;
int f(int a = 1, int b = 2); int £0);
int f(int);
int f(int, int);
int main() { int main() {
int x =5, y = 6; intx=5,y=6;
£0; a=1,b=2 £0; int £Q);
1(x); a=x=5b=2 £(x); int £(int);
f(x,y); //a=x=5b=y=6 f(x, y); // int f(int, int)
} }
o Function £ has 2 parameters defaulted o Function £ is overloaded with up to 2 parameters
o £ can have 3 possible forms of call o £ can have 3 possible forms of call
o No overload here use default parameters. Can it? %
Programming in Moder C++ Partha Pratim Das M08.26 “‘

Now, naturally, you can have default parameters. Also, with function overloading, or rather,
the default parameter mechanism itself is a function overloading. Because if you look at this,
then there are three possible ways to call it, which means that if you had three different

overloaded functions, you would have had the same behaviour.

So, default parameter is a semantically different entity, but it actually tells us, or tells the
compiler that you are doing an overloading in terms of the number of parameters and their
types. So, it is the default parameters are handled in the same way as the function overloading
is handled.

(Refer Slide Time: 29:27)

Lﬁé} Program 08.08: Default Parameter & Function Overload

o Function overloading can use default parameter
o However, with default parameters, the overloaded functions should still be resolvable

#include <iostream>
using namespace std;
Overloaded Area function:
int Area(int a, int b = 10) { return (a # b); }
double Area(double ¢, double d) { returp (c * d); }
int main - d = 20.5,
t = Areals
cout << "Area = "

<< t << endl;

t = Area(x, y);

cout << "Area = "

u 5.0, f;
Binds int Area(int, int = 10)

<< t << endl; Area = 12
Binds double Area(double, double) \/

<< f << endl; Ar

ds int Area(int, int = 10) \/

<< f << endl; Are

f = Area(z, u);

cout' << "Arew= "

£ = Area(z);
—
cout << "Area = "

Un-resolvable betwe
f = Area(z, y);
P

Programming in Modern C++

en int Area(int a, int b = 10) and double Area(double c, double d)
Error rloaded Area(double&, intk) is ambiguous

Partha Pratim Das

«
Mo8.27




Now, you can have a mix of them as well. For example, you can have function overloading
with default parameters like in what we have here. Is overloaded function Area, this has one
default parameter, the other has none. So, there are multiple ways. So, what is Area(x)? x is
int, it is one parameter. So, it cathed to be the first function and it matches.

So, this is an easy case, bind says. What is Area(x, y)? 2 parameters so, both functions are
actually viable, but the first one has the exact match. So, this is what you get. If we do
Area(z, w), z is double, w is double. I am sorry z u, z is double w, u also is double. So, the
second function out of the two viable function, the second function has a perfect match, as an

exact match.

But suppose you call it with Area(z), where z is double, then naturally, there is only one
viable function, which is the first one, and therefore, it will still be able to bind, but it will go
through conversion from double to int. Now, suppose if you call it with Area(z, y), where z is

double, and y is int, double an int. 2 parameters, so both of them are our viable.

And you see, if you want to find the exact match in the first, then the first parameter needs a
conversion, second parameter is an exact match. If you take the second, the first parameter is
a match, exact match, second parameter needs a conversion. So, the weightage of these two

are same to the compiler.

So, the compiler will again get confused and say that | cannot resolve, and we cannot have

this Area z vy, this invocation is un-resolvable as a overloaded function.



(Refer Slide Time: 31:42)

[ﬁéj Program 08.09: Default Parameter & Function Overlo:

o Function overloading with default parameters may fail

#include <iostream>
using namespace std;
int £();

int £(int = 0);

int f(int, int);

int main() {
int x=5,y=6;

£0); Error C2668: f

function £()
function f(int = 0)

£(x); int £(int)
f(x, y); int f(int, int);
return 0;
«
Programming in Modern C++ Partha Pratim Das wezs B

Similarly, you will have to make sure that when you have default parameters, and
overloading, default parameters and overloading together must be resolvable. For example,
here a function call without parameter is not resolvable, because between the first and the
second, it can be either of them. Whereas with one parameter or 2 parameters, this is

resolved.

(Refer Slide Time: 32:06)

o Function overloading with default parameters may fail

#include <iostream>
using namespace std;
int £();

int £(int = 0);

int f(int, int);

int main() {
int x=5, y=6;

£0); Error C2668: f: ambig

function £()
function f(int = 0)

£(x); int £(int)
f(x, y); // int f(int, int);

-

Programming in Modern C:++ Partha Pratim Das Mos2s 84

So, to summarize, we have introduced the notion of default parameters, and discuss several
examples, and particularly the necessity of function overloading and how does it bring in the

first major type of polymorphism known as a static polymorphism, which will play a very



critical role in different aspects of modern C++ as we go forward. Thank you very much for

your attention, and we will meet in the next module.



