
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture 07

Reference & Pointer

Welcome to Programming in Modern C++, we are in week 2. And now we are going to discuss

module 7.

(Refer Slide Time: 0:37)

In the last module, where we started discussing extensions of C into C++ without the object-

oriented features, but other features which makes it a kind of a better C and we discussed about

how to replace macros without or with parameter by either const qualifier or by using inline

functions. So, we have discussed constant volatile, the both types of cv qualifiers in that context

and discussed about how inline functions can really help.

(Refer Slide Time: 1:27)

Now, today we will discuss about references, which is a very key idea in C++, which are similar

to pointers, but a different from pointers.

(Refer Slide Time: 1:41)

This is the module outline as you can see on the left-hand side all the time. So, what is a

reference variable? A reference variable is like an alias or a synonym kind of most of us have

some name and we have some pet name. Say my name is Partha Pratim Das, my pet name most

of my colleagues and students called me as PPD. So, PPD is an alias of my name.

So, this is another identity. So, the alias, if I define a variable, say i and initialize it with 15, let us

say, I can define an alias of i by doing this where the key point syntax to be noted is before the

alias variable or reference j, I need to put an & and then after the initializer symbol, I put the

variable that it is an alias 4.

So, if I look into that, this scenario now, in terms of what happens in the representation on the

memory, i is the variable it has been initialized with the value 15. Let us arbitrarily assume that

its address is 200, j is an alias or reference to i which means j is just another name for the same

location. Therefore, if you look at the address, then the address of i if you compute and the

address of j if you compute it will be the same value 200. So, this is the basic idea of your alias.

(Refer Slide Time: 3:42)

Now, let us look at the behaviour of an alias in the program. So, we have defined a, initialized it

with the 10 and an alias of a which is b defined as with this &. So, b is a reference of a. So, a and

b are necessarily the same variable, but 2 names of them, that is all. That is all the reference talks

about. So, they necessarily have the same memory location.

So, if I print the memory location of a and b, as you will see here, the values are identical and

therefore, the value the print are also identical. If I increment a, say I pre-increment a then a

changes and therefore b also changes by that because b is just another name. So, when I print a

and b after incrementing, both prints as 11. Instead, if I change b, a also changes because it is just

b is just another name of a. So, for with another increment when I print a and b, they both

become 12. So, a and b enjoyed the same location, they are the same variable, they will have the

same value and changing one will necessarily change the other and vice versa. So, that is a basic

property of a reference variable.

(Refer Slide Time: 5:13)

Now, there are a few can reference b, what are the kind of pitfalls that you can get into while

defining a reference. So, on left I show some of the common wrong declarations that is, here I

have tried to define a reference, but without an initialization. So, I am saying that PPD is the

nickname of then I do not say who.

So, I am trying to create an alias where the original object, the original variable is not given. So,

that is not possible it must be initialized. So, I can say like this, where i is an alias or reference

for j. Here, I have created an alias j initialized it with a constant 5 this is also not allowed, why?

Because an alias, how will the alias identify itself with the original variable?

Because it needs an address it needs the address of the variable. So, if this is done, then &i is the

address and j necessarily uses that address which is computed as &j to be able to track that it is a

second name for i, or rather, i is the second name for j, here i is the alias. Now, if I have a

constant, constants do not have an address, they are just a value. They do not have they just have

an rvalue, they do not have an lvalue.

So, I cannot use that to define an alias I cannot have an alias of a constant value, what they can

do, if I want to do that, what I have to do is I have to define that as a constant reference, what

does that mean? That means that this is a reference which is referring to an expression which is a

constant. So, what the compiler will do?

Compiler will specifically allocate a location for j for 5 that j can track and whenever I talk about

j, it will actually get the 5 from that location. Similar thing will happen if I have an expression on

the initialization that I use again an expression has only a value, it does not have an address.

It whatever address it is computed in is a temporary address. So, I cannot have a reference to

that, but if I make it const then the compiler will actually allocate an address where j plus k is

computed and b then value of j plus k will be stored there. So, if j and k changes, that value will

not change, and i will become an alias to that value, the expression j plus k.

So, these are some of the basic pitfalls. So, you can see here I have i declared as a variable

initialized, j declared as a reference to i, k declared as a constant reference to 5 and l declared as

a constant reference to the expression j plus k. So, when I print the addresses and values I will

see that if I print i it is 2, print j it is 2, their alias and they necessarily enjoy the same location,

when I print k, I get the value 5 and I do have an address just 5 will not have an address.

But here the compiler has specifically given address to keep 5 which j is referring to actually.

Similarly, j plus k has a value 7 and as a reference to that l has an address which is given here

again compiler has given a specific address instead of a temporary for keeping the value of j plus

k and please note that subsequently even if j plus k changes, the value of l will not change

because it is treated as a constant. So, it is referring to a constant always. So, that is the basic,

this are some of the basic rules to remember.

(Refer Slide Time: 10:03)

Now, let us move on to what is known as call by reference? So, you all are familiar with call by

value that is what is commonly used in C, what happens is when I call a function passing a

parameter, then the actual parameter value is copied on to the formal parameter value and then

the function starts proceeding. So, actual and formal parameter enjoy different locations.

So, even if I change the formal parameter, the actual parameter will never get changed, that is the

basic scenario. Here in C++, C does not support this, but in C++, I can have a parameter which is

of reference type. I write it with this int &. It is a reference parameter when I write int, it is a

value parameter.

So, when I define the function, so, this is my reference parameter and this is my value parameter.

So, what it means is when I call the function say with a and a, the same variable. b is a reference

parameter. So, b necessarily becomes a different name for a, b does not the value is not copied,

the value is not copied.

But just you are saying that in function under parameters in this function, whatever you call b is

the actual parameter a is just a different name for it. So, if you change b, a will get changed,

whereas, this is a copy because this is a call by value parameter. So, C will take the call time

value of a and that will be copied into c in a different location.

So, in the main when I print these addresses, subsequently, say I print the address of a and here

the address of b, c, you will find that a and b. a in the main the actual parameter and b in the

function, the formal parameter have the same address because it is a reference parameter. So, this

talking about the same variable whereas c which is called by value, therefore, it is a copy it is a

different variable in the function as a formal parameter will have a location which is different

from a and b. So, here we have learned that how to pass parameters by reference where they are

not copied, but just they become a second name to the actual parameter and accordingly these

addresses will be assigned as of you have seen this already.

(Refer Slide Time: 13:24)

Now, let us come to one of the earliest programs you probably have written or earliest functions

you probably have written that is swap that is I have 2 values I want to interchange them. Now,

let us say what we need to do in writing swap. Now, if we write swap directly by using call by

value these are called by value and then this is the swap port which is very straightforward using

a local variable t, I can always write this code and then I call swap.

Now, the problem that happens is these are called by value. So, when I call it with a and b, a is

copied to c and b is copied to d. Subsequently c and d are swapped, but when the function comes

back a and b are different locations. So, they will not be swapped they will remain to be the

same.

So, I pass this to swap, but on swap, no changes happen, no swapping has happened in this you

have seen in C. So, how do you bypass this in C or what is the hack in C? The hacking C is that

instead of passing the parameter directly you pass the address of that. So, you pass the address of

that. So, now instead of calling swap(a, b), you are calling swap(&a, &b).

So, when I look into the formal parameter the address of a is copied to x and address of b is

copied to y. These copies are by call by value, do not confuse these copies are called by value,

but what you are copying is the address. And then what you are doing in the swap? You are

actually dereferencing that address and making the swap.

So, the addresses have been copied, they are in different locations, x and y, but they are referring

to the original actual parameters a and b. And so, when by dereferencing, you swap effectively a

and b gets swapped. That is the basic idea. So, when you swap like this, this will actually take

effect that is the correct way to write swap in c.

And when you do this, that is you use call by value, but pass addresses to make changes back

into the actual parameter, you typically refer to it by called by address, it is not a very popular

name, but this is colloquially, most often we refer to that. So, that is here, you can, you can get

the summary of what I have just stated. And this is what happens in C. So, what is becoming is if

you look carefully, you will see that the call to swap is becoming somewhat unnatural.

(Refer Slide Time: 16:25)

I am having to pass &a, &b they will not writing swap is unnatural. So, let us see. Now, let us

compare this with C++ and using reference. So, on left again is the original C function, which

has called by value, the swap and it cannot swap. Now, I write it in C++, instead of having call

by value parameters, now I have reference parameters.

So, instead of int, I write int& int& and then I call swap. Now, what will happen? x and y in this

function, x and y in this function are reference parameters. So, what it means that x necessarily

becomes a different name for a, y necessarily becomes a different name for b. So, whatever you

call a, b in the caller mean is called x and y in the swap.

So, when you swap x and y, actually, we are also swapping a and b. So, this is actually a, this is

actually a, this is b, this is b. But in the function, they have different names, and that is possible

because of the reference parameter. So, whatever changes you make, that correctly computes the

swap, and performs it.

So, it makes it a lot more natural because your call is now not like &a, &b, you can just call them

passing the parameters. As they are only thing you need to do is to make sure that the parameters

are by reference. So, kind of you can see that call by value only allows you to input a value give

it as a copy, whereas call by reference gives you the ability to input as well as output the value.

Input because the initial value will always be the value that you called with will always be

available in the function. So, it acts as an input like the call by value, but also changes that you

making that variable will be reflected back in the caller. So, it is also an output variable.

(Refer Slide Time: 18:55)

Now, so when you use a call by reference, what will happen that a function may inadvertently

change that variable. Suppose you want to use something only as an input, but you have used it

as a reference parameter. And we will see the reasons of why we want to do that because a big

advantage of using reference is that I do not need to make the copy.

If my parameter is big, if that is a huge object, then copying it is a huge overhead and I do not

need that I just need that value to compute in the function. So, I would like to pass it as a

reference, where no copy will be required. But the side effect of that or the possible danger of

that is if the function happens to change that parameter, then the actual parameter will also get

changed.

So, to stop that, you can again make use of constant So, what you say that not only I am passing

x as a reference, but I am passing it as a constant reference, which means that it is not allowed in

the function to change x. The same concept of const reference we have just seen couple of slides

ago.

So, x is a reference, but it is a constant reference, like whatever it is referring to that referent, that

value that it is referring to that variable that is referring to cannot be changed. Therefore, if I

have this, and I write ++x and then return x, this will not compile, it will say that x is a constant,

and you are not allowed to change x.

So, you cannot do ++x, because plus plus x will necessarily change x, which effectively will

change a, would have changed a if compiler would have allowed or if I did not give this const.

Whereas I can write it like this, it is a constant reference, instead of doing ++x, I compute x plus

1, which is necessarily what I was doing on the left column, that it will be allowed, because you

are not changing x in the function ref const.

So, in the left, the code will not compile. In the right, it will work properly, and give called with

10, it will print 11, there is no violation. So, this is the constness of the reference parameter that

you will have to keep in mind.

(Refer Slide Time: 21:36)

Now the question is, if I can pass values by reference, can I return values by reference as well?

Yes, I can. In C, as I do call by value, similarly, I have returned by value, the value that is

returned is actually return through copy, whatever you write in the return statement, will be

returned as a copy of that.

So, here I have, I have just made a function which is pathological. It is not doing any

computation. But it just takes a variable and returns that same variable. So, return x, and this is

the C, return by value mechanism. So, it will simply return a copy of x. So, when I do this, I will

get a copy of x. So, a and x will necessarily have the same location, whereas b, which I am

making a reference to the return value has a different location.

Now, I can return this value by reference. So, all that I need to do is again, put an & after the int,

which means that the x that you have in the function will be returned by itself, not a copy of it.

So, when I set int& b, it basically becomes the reference to x. And you can see that I pass the

parameter also as x. So, x is an alias of a and b is an alias of x.

So, necessarily a, x, b, all of them are the same location. Whereas here b when I reference it is a

different location, because it is not x, but a copy of x a temporary that is created. Now, the

question is here, you will note that I have written const. Why did I write a const? For the same

reason, that if I am defining a reference and my initialization is an expression, then the value of

the expression is a temporary, which will not be stored otherwise.

So, to give it permanency, I need to make it constant. So, that the compiler has retained that

address that location and have kept the value of read function returned by value a into that

location and b is now become a reference to that. So, in here, x is a reference of a but b is not a

reference of x, but b is reference to the temporary carrying this entire expression. In here, when I

returned by reference using this constant is not necessary. Because this by itself is a variable.

(Refer Slide Time: 25:11)

So, return by reference can also get tricky, you can see that, for example, you can write

something like this, which is kind of some syntax, you can say, no this error, how can you write

function on the left-hand side, I cannot write a function on the left-hand side, if it is returning my

value. Because it is a value, it does not have an address. But, and on the left-hand side, I always

need an address.

But if I am returning by reference, then what I have is a variable, it is an address. So, I can

always write it on the left-hand side. So, if I write it like this, then in this case, what will happen?

a is a, x is a reference of x. And that x is what is here. So, this actually is x, which means a, so

the assignment actually is happening to a, so a becomes 3.

Whereas if I have used a temporary here, and say incremented, that temporary, that is not very

important. And I return that temporary, then this is a reference of this local variable t, which

actually has no existence after the function has returned. So, it is actually dangerous. So, it can

be very, very risky. And this assignment will be made to that temporary t which have returned by

reference, therefore, a will not change and it will remain to be 10. So, this can get you into really,

really big trouble. So, the thumb rule to remember is when you return by reference, never return

a local variable.

(Refer Slide Time: 27:05)

So, if I summarize the input output parameters of a function, then there are these are the different

possibilities if it is a value parameter, then the purpose is to input and you can use call by value if

it is a reference parameter, then it is it serves as input as well as output, it is called by reference.

If it is a constant reference parameter, then it is input only, call by reference in constant and for

return value, you can either have returned by value, you can have returned by reference or you

can have also have constant return by reference.

And remember that C has the mechanism in C that we saw call by address which is called by

value with pointed and similar corresponding return are also available in C++. But there is no

reason to use them, you will not find any situation where you need to use them. So, always try to

avoid them.

(Refer Slide Time: 28:05)

So, instead of the recommended mechanisms, as to how reference can help, when you are

making a call, if you are passing a built in type, always pass it by value. The reason for that will

become clearer, as we move somewhat forward, it gives you a much better efficiency, because

the copy actually is very lightweight.

Only remember that array parameters are always passed by reference even in C. In C that is the

only situation where the entire array is never copied, it is just passed by reference, which means

the base address only passed. Same thing happens in C++, but any parameter which is a user

defined type pass them by reference, because you can avoid unnecessary copy of big objects by

passing by reference which is not possible if you pass by value.

Similarly, for return if you are returning built in types do by value if you are returning user

defined types do by reference and reference value is not copied back it is faster, but remember

that the calling function the caller can now change the returned object. So, you have to be careful

about that and never return as shown in a local variable by reference.

(Refer Slide Time: 29:27)

So, to before we summarize, let us just compare the pointer that you knew and the reference both

of them reference to an address in some way or other. In pointer that address is exposed you can

print that, you can do computation with it. In reference, you cannot do that. So, those of you who

know Java, please do not relate. Reference here with the reference in Java. Reference in Java is

neither exactly a pointer nor exactly C++ reference. So, please do not confuse that. Pointers can

be null reference cannot be null, you will always have to initialize it as we have seen.

References can be pointers can be changed from time to time I can define a pointer and let it

point to different objects, but reference cannot be changed it is by birth. So, once you have made

a reference to a certain variable you will have to the reference will always be made to that

variable only.

For pointer, you need to do a null checking because it may not have been initialized in reference

that question does not arise. Pointer allows operations on the address like you can take diff of

pointers, you can increment and so on. But in reference, you cannot do anything of that sort

whatever you do with the reference. Actually, it means the variable, the referent that the

reference is talking about. Finally, arrays of pointers are possible, and arrays of references are

not allowed.

(Refer Slide Time: 30:53)

So, this brings us to the end of this module, we have introduced a very important concept of

references in C++ and studied the difference between call by value and call by reference or

return by value and return by reference. And this will be this idea will be used very heavily all

through the course so. Please try out these examples and try to understand it well. Thank you

very much for your attention and we will meet in the next module.

