
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture No. 10

Constants and Inline Functions

Welcome to Programming in Modern C++, we are in week 2 and we are going to discuss

module 6.

(Refer Slide Time: 0:36)

In the last week, we have given an overview of C++ programming particularly contrasting it

with the programming styles in C or the availability of standard library in C and C++ and we

have shown how starting from very common simple programs involving IOs, variables,

loops, to arrays, strings, sorting, searching, everything can become much easier compact and

much less error prone to write in C++, where often you need to write much less code.

And you get a much better quality of code. And from this, what I would strongly suggest is

all the examples that were discussed in the last week in the 4 modules first one being just

introduction. In the 4 modules, I would honestly request you to try out those executing those

builds them on your system using whatever GCC you are using. And really check out what

you are getting and make small changes and see how things are changing. So, that slowly you

start getting accustomed to the programming styles in C++.

(Refer Slide Time: 2:09)

Now, from the module today, we will we are actually get starting to get into C++ per se its

features and primarily we will start focusing on certain features of C++ which actually make I

should say it is a better C kind of a language that is these are these concepts were there in C

but C++ have found better ways of expressing them or handling them, so that it gets easier to

use as well as better in the quality that you get. So, today in this module, we are discussing

about constants and inline functions, which are in contrast to 2 forms of macros that you had

in C.

(Refer Slide Time: 2:56)

This is outline as always, first let us talk about consonants and cv qualifiers. So, in C, C++,

both we have manifest constants or some people call it macros without parameter. So, we do

that using hash define. So, we hash define this is a C preprocessor directive and which takes

the name and replaces its textual by the string that follows it till the next newline. So, this is

called hash define, because you are defining a symbol and if you want to understand a lot

more about the CP processor, there is a separate tutorial also you can go through that.

So, here what we are primarily doing is we are defining 2 symbols one is TWO which is

defined as constant to another is PI, which is a constant expression. So, what does that mean?

atan basically means tan inverse atan is the name of the function which is tan inverse. So, if

you do atan 1.0 that is tan inverse 1.0.

So, we all know that tan PI by 4 is 1. So, tan inverse 1.0 is PI by 4. So, if you multiply this by

4 you get a value of PI. So, this is a convenient way to get the value of PI to a great precision.

So, now what we are, we do is we use these 2 manifest constants in the expression here to

find the perimeter of a circle of radius r. So, this is a manifest constant, and PI is a manifest

constant as well as these are also called macros.

They look like variables, they look like variables this is important, but they are not actually

variables. So, what happens when the CP processor works it takes every directive like the

#include to #define and several others and takes the action according to the directives. So,

#include includes the header files say here. So, if you see the output after your preprocessing

you will not see #include<iostream> or #include<cmath> lines.

But you will see big code have come in which are replaced from the library files. Similarly,

what it does for hash defines is it takes the definition of the symbol, fixed definition constant

definition of the symbol and replaces it wherever the symbol has occurred. So, 2 was

occurring here. So, this CPP the CP processor will replace 2 here. PI is occurring here. So, it

will take this text string of PI and put it here textually.

And after it is done this then it goes on to the compilation. So, compilation starts after the C

preprocessor has worked. So, the basic problem is that the compiler does never get to know

that there was something called TWO or something called PI, because compiler has not seen

that these are these are all gone.

Compiler sees only this, which is a constant expression, and possibly the compiler will

evaluate that constant expression at the compile time because it can, and possibly what is left

with is this kind of a numbered 6.28319, which is the approximate value of PI. So, that is

where the basic problem of manifest constants lies in the fact that they are they look like

variables, but they do not behave like variables compilers never get to see them.

(Refer Slide Time: 7:16)

So, that brings us to the notion of consciousness, the manifest constants, what are their

purpose is to define a constant. And what is the purpose of a variable is to take a keep a value

which can keep on changing. Now, we can combine these 2 in form of what is known as a

constant variable, which is, is a variable in every respect, but, after it has been created, you

cannot change its value.

After it is created, after you have defined it, at the time of defining it, you give it a value, and

then the value cannot change. If you think hash define is exactly doing that. So, we do that,

using this notation, int n initialized with tan is a normal variable. Put the keyword const

before that, which means in will not be able to change. So, now, if you want to make an

assignment to n that whenever there is a compilation error, because compiler knows that

value of n cannot change, it is a constant.

So, in general we have, we write this kind of code integer m is an int, then star p is a pointer

to an int, which is initialized to 0. So, I can put the address of m in p. And using p in indirect

way. I can do *p assigned 7, which will actually change m. So, it is like this, I have m here

which has something, God knows what? Then I have p here, I have put &m here, so p points

here. And I do *p assign 7 so this becomes 7.

So, I am not even talked about it, but I can change the value of m this is a common program.

Can I do this? Can I have p and make it point to n which is ten const. Can I do this? If I could

do this, then I could have done say *p assigns 5 and that will change this to 5 then the basic

property that n is constant will get destroyed, so I cannot do this. So, I say that p, why p is a

pointer to an integer &n address of n is actually a pointer to a constant integer. That is a

different concept. So, being a pointer to an integer and being appointed to a constant integer

are different.

So, like we will see a little more of that soon. So naturally, a constant variable must be

initialized when defined, because otherwise you cannot change them. And variable of any

data type can be a constant. So, I have given an example of the complex number variable. So,

here, you can see that I am saying this is const and initialized it, so which respectively

initializes the 2 components, but then I if I want to change any component separately, I will

get a compilation error, because C is a constant, no component can be changed, that is the

basic idea of const-ness.

(Refer Slide Time: 11:12)

So, now let us try to use this, this is this was my manifest constant or macro style of

definitions. Now, I have it in terms of const. So, now the C preprocessor does not replace,

TWO and PI, because they are no more #defined, they are no more manifest constants, they

are just variables. So, the compiler gets to see them, compiler gets to know their type. And

the compiler can take a lot of decisions based on what their type and the value is. So, that is

the basic advantage of having const in the system.

(Refer Slide Time: 11:59)

So, basic advantages, one set of constant values are basically naturally constant numbers like

pi, e, golden ratio, and so on so forth. Whereas remember that what you use as in you, NULL

capital in C or C++ is actually not a const value, it is actually manifest constant. And then the

other value of the constant is to define program constants, there is several things like

maximum size of an array number of elements, number of people, if there are these are

constant values, and we you can always put them in the top or in some header together and

define them only once and make sure that all through the program, they cannot be changed

even inadvertently, because we have made them const. So, it makes the programming much

safer, much easier to do.

(Refer Slide Time: 12:55)

So, we would always prefer const over #define. So, these are some of the reasons that

manifest constant does not have a type. Whereas constant variable has a type. So, it is type

safe. Manifest constant is textually replaced by CPP. So, you do not get to actually see if you

have a number of manifest constants and expressions involving them, then you do not get to

see as to what is the result of this replacement.

Compiler, what the compiler sees, you do not get to see and what you see is what the

compiler does not see. But if you use a constant variable, both of you see the same thing.

Since manifest constants are replaced by the preprocessor, they cannot be watched in the

debugger, you cannot see what is the value of n in the debugger, if it is manifest constant,

whereas if it is const int, you can see, see it in the debugger.

And also, the manifest constant like the PI expression, we saw, they are replaced wherever

they are replaced, they are evaluated. Whereas if you have a constant variable, then naturally

its evaluation happened only at the definition time. Everywhere else, we just use that value.

So, it is also efficient. So, in every possible way, manifest constant or it no no, stop using

manifest constant just use constant variables.

(Refer Slide Time: 14:24)

Now, let us quickly look at constants and their interplay with the pointer. See, how

consciousness apply to the pointer scenario. So, suppose I have a like, I have here I have n

here, I have p here, n is a has a value 5 and I have p as a pointer to n. So, this is a structure.

Now, the question is if I want to talk about constants, what is constant? Is this constant that is

I cannot change the value it is pointing to or is this const that I cannot change this point that is

I cannot make it point to something else.

So, there are 2 notions of constants, one is pointed to constant data, that is if p points to

something which cannot be changed, then it is a point at which constant data this is constant.

Whereas, if p is a constant pointer, then it cannot be changed to point to anything else cannot

be done it becomes a constant pointer, 2 types of consciousness. And actually, you can have

both at the same time as well.

(Refer Slide Time: 15:59)

So, here are the examples. So, you see a pointer to constant data, so, you have a constant

variable here and you have a *p which points to a constant int. So, you can use this. Now,

naturally you cannot assign to n because it is constant you cannot assign to *p, because, if p is

pointing to a constant, then *p is constant. So, the fact that he will use p to change n is not

possible, you get this safe.

Whereas, p can point to some other m, which is not a constant, and you can change m

accordingly. So, we can have this kind of situations as well. Now, we can also say we have a

constant here. And suppose I want to use that address to initialize int *p that also is an error.

Why? Because int *p tells me that *p is int it is not constant.

So, if I am allowed to put the address of const int into p, then when I do start p and change it,

I will not be able to know that I am changing something which I am not supposed to change.

So, this itself is an error. So, that is how the logic of that is just the way to look at the logic of

const-ness.

(Refer Slide Time: 17:48)

So, here, you can see that I am talking about another type of const-ness. That is I am saying

int star const p which is a constant pointer to a non-constant data. So, as n is not a constant, I

can put a value. I can do *p, *p is int, *p is int. So, it is changeable, I can assign 7 to it. So, by

which n will change to 7 that is okay. But I cannot do this. I cannot make p point to a

different variable m because the pointer itself is constant.

So, earlier we saw the pointed data point is constant here we see that the pointer is constant.

So, it depends on which side of the star you write the constant. So, if we look in here, then we

can certainly have constant, both sides, which says that it is a constant pointed to a constant

data that is using p neither I can change n because it is a constant is pointing to a constant

data. Nor can I assign any other address to p because it is a constant pointer. So, that is a

basic type of const-ness with pointer. Now, you may from the syntax you may get confused at

times. So, the for example, I would just tell you how to get confused.

(Refer Slide Time: 19:52)

For example, say I am writing const int *p that is alright. This is a pointer to a constant data I

am writing int const * p this also is valid and it also means a pointer to a constant data. I write

int * const p, now, it is not pointed to a constant it is a constant pointer to non-constant int

confusing between these two?

There is a very simple rule whenever you have to write or when you see the code, just draw a

vertical line through the star, whichever side the constants that side is constant. So, if you

draw it here, it is on the point int side the point int constant, you write here it is also on the

point side the point is called. If you write it, here it is on the pointed side. So, pointed is

constant. You write here it is on both sides. So, both are constant. That is a simple way to

resolve. Otherwise, it gets quite confusing at times.

(Refer Slide Time: 21:17)

So, here is an example of using const with the C string, you can see that I can have a string

created and I can access an element and change it. I can copy another string into this name

that is I can change an element or I can change the name altogether. So, NIT Kharagpur, JIT

Kharagpur you have.

Now, if I put a const here, that is if I make the elements constant studies here, so pointy

elements are constant. So, if I make those constant, then naturally I cannot change them I

cannot edit this becomes a compilation error. If I put it on this site that is if I put it on the

pointer site, then I can change the element change said it the name but I cannot change the

name. And if I put it on both, I cannot change either. So, it depends on what is what is that I

want and accordingly I can do these changes.

(Refer Slide Time: 22:44)

So, there is another concept related to this it is called cv qualifier, c is for constant, v is for

volatile. So, we have talked about constant where initialize that cannot be changed. Volatile

is a very peculiar concept when you say that a volatile a variable is volatile if its value can

change even without an assignment. Normally what we know that you have to do a right for

the value to change. But if I have a variable whose value can change by itself automatically,

then it is called a volatile variable. Volatile variables can happen because of several things.

For example, I may have modeled a port or your port as a variable. When the data is written

to that port, naturally, then the variable value has changed. A different data is written to the

port to value a variable has changed and I do not know what value the hardware is going to

write to that port. So, without me knowing the value of the variable can change. This can

happen because of carnal writing something this can happen because of some other thread

writing a variable.

(Refer Slide Time: 23:51)

So, such variables are typically can be marked as a volatile, because it does help in a in a

significant way for the compiler. Let us see here, i’s assigned 0 and I have this loop. Now,

you obviously can know that since no changes to i have being made, this loop is going to be

an infinite, I can i is not equal to 100 and will never become 100, this is an infinite group.

So, what the compiler will do? It will optimize and say that this can never be this is always

true. So, it will make it 0, this optimization. Now, suppose you change that instead of static in

time, you just make it static volatile in time. So, you are saying that i can change by itself.

Now, the compiler will not be able to optimize because it does not know if somebody can at

some point of time can change the value of i, and make it 100.

If it does, then the loop will exit. So, being volatile I can be changed by the hardware or by

other threat at any point of time, so it helps it is not a, it is not a very frequent use. But this is

the other kind of qualified besides the const, which has, the other extreme of the meaning is

what is useful in terms of the qualified variable values.

(Refer Slide Time: 25:21)

Next, we will talk briefly about inline functions. Inline functions are like we have macros. So,

so far, we talked about manifest constants, which are macros without parameters. But these

are macros with parameters. So, this is like, again, their #define, so they have a parameter.

And then expressions, when I invoke I say, square a, they are textually replaced, and you

actually get in preprocessor expansion, you will get this replaced by a * a, which is a very

simple concept, and very useful for having compact computations done, it we I could have

done a function also, but function has a lot more of overhead to write this multiplication,

beyond this multiplications, which is just here in place, so it gets a lot more efficient to me.

(Refer Slide Time: 26:18)

Now, there are several pitfalls and I am sure many of you would know about these that what

if I define the macro like this and call it by a plus 1. Now, I would expect that if a is 3 then a

plus 1 is 4. So, mentally, I am thinking that this is a function. So, I expect a square I want 16.

But if you do this, you will get a result 7 why, because this is textually replaced by the C

preprocessor.

So, what it will replace is a plus 1-star a plus 1. So, now this becomes the priority operation.

So, it becomes a plus a plus 1, which is 3 plus 3 plus 1 is 6 plus 1 is 7, is what you get. It can

you can get rid of this by putting parentheses around them, then it will be like this. And this is

what you must have read in different books also that by doing this, you will make the macro

safe. So, let us try to be the devil a little bit more.

(Refer Slide Time: 27:28)

I have the same. Now, I have the corrected macro. And I invoke it by plus, plus way, what I

expect 3, plus plus a is 4, so I will get 16. But try this, you will get 25. Because you get this

as the replacement code. So, instead of 1 plus plus, there are 2 plus pluses, 2 pre-increments.

So, 3 gets 4, 4 gets 5, and then 5 gets multiplied by 5 gets 25. And it is not easy to fix by

writing a macro in this way. So, macros are good, but they are an evil. So, what a C++ does?

(Refer Slide Time: 28:13)

It defines the concept of an inline function, it is extremely simple, it is just like any other

function just to write inline the keyword inline in front of it.

(Refer Slide Time: 28:23)

So, instead of writing this, you just write this which is a function. So, it since is a function,

the system will first evaluate the evaluate the actual parameter and then make a call to it. So,

if I if we do this, then here with this, this will fail, this will fail. There is no type check, but

here everything will work fine, because it is a function.

And because it is inline, it actually is not making the function call, the compiler does a trick

so that the function is embedded right here. But with all the type checks and with all function

protocols, like evaluate your actual parameter and then pass it to formal parameter, not just

do a textual replacement and so on. So, the semantics of function remains but the efficiency

of macro obtained it is a win-win situation. So, that is the basic idea of the inline function.

(Refer Slide Time: 29:32)

So, you should stop using macros and only use inline functions. Here is a simple comparison

of that. In the first 3 key points are same between the 2, the code bloats and all that. But

macro has significant syntactic and semantic pitfall which in line does not have type checking

is available in inline and it helps to write max swap for all types, which obviously cannot be

done by inline function.

And we will see a different solution for that, like you can, and one way you write a swap

function using a macro, because you need to, we need to work for any type of data. But we

have already seen and we can, we can handle those situations using that template and meta

programming. Otherwise, everything else in terms of inline functions are a plus. And we

would always use inline functions only instead of macros.

(Refer Slide Time: 30:36)

Now, of course, inline also is you should keep in mind that it is a directive. So, just because

you write inline, it may or may not be inlined. Because the compiler makes a judgment as to

whether it is more efficient to inline or it is more efficient to not inline, outline the function

so to say. So, it is a compiler directive compiler makes a judgment on that.

And always implement the inline functions on the headers. So, that you do not have 2

different definitions of the inline functions. Do not implement inline functions in the source

file which is otherwise because the compiler needs to know the code it when the function is

called just knowing the signature will not work.

(Refer Slide Time: 31:27)

So, the to summarize, we have looked at the 2 very basic extensions of C into C++ that is

const-ness and inline function which can do a with macros all kinds of macros without or

with parameters. Thank you very much for your attention, and too we will meet in the next

module.

