
Programming in Modern C++

Professor Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture No. 01

Course Outline

Welcome to Programming in Modern C++. This is our first meeting actually before the

regular course module start. I am Professor Partha Pratim Das, from the Department of

Computer Science and Engineering at IIT, Kharagpur. And a very passionate developer,

designer, moderator, tutor of C++ language and its evolution.

(Refer Slide Time: 01:10)

So, welcome you to this course. This particular module, which we call modules 0 for weeks 0

is meant to give you some head start in terms of what the course will be about, and what it

will contain. In module 1, when the course starts, we will give you very specifics in terms of

the syllabus, in terms of the details of evaluation and all that we are not going to talk about all

this. Here, I am just going to tell you primarily, whatever is listed, what is the overall plan.

(Refer Slide Time: 01:49)

And the objective for this module is and you will see that this is the style that we follow in

every module, every module will start with the objective of what we try to do there and

summarize it at the end. So, the objective of this module is to understand the course outline in

terms of the several modules and tutorials, that will be available to you through this course.

Further, and that is the key attention area is there are critical actions that you need to take

before the course starts. So, before the course starts, how do you prepare, how do you make

yourself ready is what we will outline here. There are four primary actions needed for you,

revision of C, revision of basic data structure, revision of algorithms, installing the tools for

building C and C++ programs. And last, but not the least, if you think that you would love to

have some additional tutorial created for your better understanding, please let us know.

(Refer Slide Time: 03:04)

Now, what is the objective of this course? C++ is a strong language possibly as of now, it is

the strongest programming language ever built. It is certainly with C, it is certainly the most

efficient programming language. But it is not the easiest to learn. If you are looking for

learning a easy language and quickly getting on to some programming, learn Python. If you

want to, just focus on application program development, maybe you should start with Java.

But this C, C++ pair because C++ in a way, partly to a, to a great extent subsumes C gives

you very specific skills to do good level of programming in complex systems in terms of

building infrastructure software, and is one of the most valued programming skills in the

market today. If you compare, the kind of pay packet of developers, skilled in different

languages, C, C++ skill will be among the highest.

So, keeping that in mind, naturally, I just do not want to only impart your knowledge,

because we are engineers. Knowledge is important for us. But what is even more important is

the effective use of that knowledge to create wealth. To create wealth for others, create

wealth for ourselves. Which means that we need to talk about practice all the time. And this

course is focused to that direction.

So, what specifically you would learn is learn to develop software using C++, it has multiple

versions what is been common till about a decade ago and still most people programming that

is the C++ 98 or 03 standard. We will give you glimpses of what the standards are and when

in the, in the actual module. So, we will even learn about what is the features of C++ on top

of C.

So, we expect that you know C, and that is the reason it is critical that you revise C. Then

C++ you have heard always that it is object-oriented language. So, what is the object-oriented

paradigm which, on which C++ relies? And what is a huge, I should not say huge, very useful

libraries that C++ has, which can make the effective use of them can make your

programming easy, fast, reusable, reliable and so on.

So, learning the software development with C++ is a key interest area. Over the last two

decades, C++ has gone through a lot of further development. And the major version of C++

that people have been talking about for the last 10 years or so, is C++ 11, which particularly

is also being called as a modern C++.

Which has features on top of C++ 98 03. It makes some of the very critical programming

aspects directly supported in the language like concurrent programming, you know, parallel

programming kind of concurrent programming. There are things like lambda expressions and

so on, it provides much better quality and efficiency on top of C++ 03. So, this additionally,

we'll also learn about.

So, if you would, you may have noticed that earlier till the semester of, autumn semester of

2021, NPTEL have been offering a course which again, I had created programming in C++,

which was only this part, it was a 8 week course. Now, you are going to do a 12-week course,

which is programming in modern C++, which we will have this on, which will spend nine

weeks and which will have the last three weeks spent on the modern aspects of C++ to really

equip you, make you a skilled developer in C++.

It is also important as I started saying that, just knowing the language will not benefit, that

knowing the language will not give you a good job. You need to cultivate the skill of design

of coding of debugging, testing the software in C++ and so on. Naturally, we cannot cover

those in the course. So, I have been creating certain additional tutorials, which are not part of

the syllabus, but would help you become an effective engineer of C++ development.

So, if you are inclined towards that, if you want to learn more, if you want to really become a

good developer, follow those tutorials well, which are directly linked to several hands on that

you should be doing. And this is the final objective, this is the ultimate objective that you

must attain strong employability with hands on skills. You can pass the interview by

memorizing lot of features of C++, maybe some code segments also. But to be an effective

developer, who can contribute he will have to have hands on skills of software development

and besides the regular C++ modules, on which based on the syllabus on which the tests will

happen, the tutorials will go a long way in helping towards that.

(Refer Slide Time: 10:08)

So, this is about the objective. So, the week zero plan I, as I said, which you will have to

drive it by yourself and week zero is not one week, week 0 is the entire time from when you

enroll to the time the course actually starts. So, it may be a couple of weeks. So, this is about

getting ready. So, Module 0 is what we are discussing here, where you will get the entire plan

of modules and tutorials and so on.

But what is most important are you will also get two additional modules, which we call a

quick recap module. So, it needs a fair preparedness of C to be able to start understanding the

course from day one. So, if your C is kind of got rusted, you have doubts and so on, these are

just kind of summarization module which tell you all that you need to know about C. It is,

these are not a course on C.

Where the courts on C will again be an eight weeks course, ten weeks course like that. But

these are certainly summarizing, the key points about C, which you should go through and

ask yourself that do you know. And if you know, can you write? If you can write, can you

compile and run? If you can compile and run, can you debug? Can you fix, can you test? So,

do that exercise by yourself and get ready.

So, expectation is that when you start attending the C++ modules or going through the C++

modules, you must have got this confidence over C because we will right away start

assuming that you know C. Other thing that we need is a lot of these examples used or the

problems discussed rely on basic data structures and algorithms. Now, certainly I am not

talking about a whole range of data structures.

I am talking about simple ones, like array, stack, queue, priority queue maybe matrix vector a

little bit of graph. If you know more, if you know you know different kinds of trees, different

kind of all varieties of graph representation then skip list and randomized BST and so on,

good. But the minimum is an array, stack, queue priority queue, matrix vector little bit of

graph. If you got rusted, please revise from any source.

There is a course on this but certainly you cannot start attending that right away. But you can

pick up the common books and do that. Similarly, you must be familiar with the basic

algorithms, algorithms for doing simple things like adding a set of numbers, doing different

types of sorting, at least few common sorting algorithms like quicksort, merge sort, bubble

sort, selection sort this kind of.

And doing some searching like linear search, binary search and so on. These are, this is very

minimal requirement, but it will be good to revise them before you get into the course

because we will be continuously taking to illustrate how the language can, C++ language can

effectively help you in programming over C and independently how we can model different

scenarios.

We will often refer to these data structures and these kinds of elementary algorithms. So

please do a recapitulation of that, before you start doing the course modules. Last but not the

least is you must have when you start doing the course, every module will have a number of

examples discussed in terms of the code in terms of the expected output and so on. So, I will

strongly advise, that the easiest way to get skilled as a developer would be to take each and

every example and actually compile them, build them, run them and see the effect. Whether it

is, some examples are meant for correctly working, some are meant to illustrate some errors

or pitfalls and so on. You should be able to experience all of that, not merely by what I say in

the slide, but by actually doing them.

So, you need a C and C++ compiler, because we have, we will be working on both of these,

you will need a debugger. So, for this, you will if you are on Linux, then normally the Linux

distribution has that, what we call is a GCC your G, GNU compiler collection. Which has C

compiler as well as C++ compiler. If you are on windows, then you should use this particular

compiler, which is called minimalist GNU for windows or MinGW.

Use MinGW, use the GDB from the GNU project and if you want assistance in terms of how

to install them, I have given reference of a, given reference of a video here, which is from

YouTube here that the presenter has very nicely described how to install GDB on the

windows, so, get that installed. So, your actions, to summarize your actions before the course

starts is to familiarize with the modules and tutorials overall.

Do not try to spend a lot of time, because they will gradually evolve. This is just a checklist

for you, for the future also. Revise your C either independently or through this quick recap

modules. Recap, revise your data structures, revise your algorithms both at the basic starting

level and install and try out the build tool. If you have done this, you will be rightly

positioned to start the course from the very first module. And he will be able to make most

out of this course. So, please try to do that.

(Refer Slide Time: 17:24)

Now, in terms of the overall course outline, as you know, this is a 12-week course, every

week you will get 5 modules, for 12 weeks. Each module would be about half an hour, some

may be of 28 minutes, some may be 32 minutes, but on average of half an hour. And so, you

will have total of 60 modules, the modules are numbered by M. So, like this is M00, your

first module of week one will be M01, second will be M02 like that.

In this way you will have up to M60. So, they will cover the core syllabus and they are used

for assignments and examinations. So, this is your primary source of information. You, I have

already talked about supplementary quick recap module which are shown as keyword, which

is primarily to help you recapitulation on C. Then there are a series of tutorials givens. The

objective of the tutorials is twofold.

One is to help you practice some of the core things that we are doing in these modules. That

is one part, but what I have been trying to focus very significantly is to cover those aspects of

software development particularly in C++, that you must know but that is not a part of the

course syllabus. For example, how to build a C++ program, well how to build a library? How

to use automation in there in building a C++ project, which is slowly getting big?

If we are talking about C and C++ both, are they compatible? Will a C program, can a C

program be considered as a C++ program and be compiled with the C++ compiler? What are

the different tools available for development for testing for archiving and so on so forth. So,

there are various aspects, that are beyond the basic learning of the language, which are

required for you to become good developers.

Tutorials will not be used for your assignments or examination. So, if you do not immediately

have time to do them all, it is your call. But if you want to become a good developer of C

C++, and want to attract attention of a good pay package, I will say that do the tutorials very

thoroughly, repeatedly and practice whatever we are trying to say in those. Tutorials are of

true nature one way is saying the complimentary type.

Complimentary type of those which actually does not talk about make reference to the

language so much, but talks about other things like what are the programming practices?

How do you build programs, various aspects of program development and so on.

Supplementary ones are extensions of your language knowledge. For example, how to mix in

a project, if you have some files, which are in C, some files in C++.

How do you deal with that mix situation? Can a C function call a C++ function? Can a C++

function call a C function and so on so forth. What is the compatibility between these

languages and so on, which are talking about the language to a good extent. But talking

beyond the scope of the language learning in the course, but very much in the scope of

becoming a good C++ developer. So, I have clearly said tutorials are not part of the syllabus.

They are included for developing all-around skills for you, if you desire to do so.

(Refer Slide Time: 21:44)

These are the week wise topics, normally in every, I mean the way I have organized in every

week, I have a primary theme that we are trying to learn. And how do they cover, so here are

those. And as you can see that as first 9 weeks, we will primarily focus on the commonly

known C++, which is C++ 98, or 03. And the last three weeks will focus on the modern

aspects of C++, which is modern C++ and C++ 11. So, these are the basic topical details.

(Refer Slide Time: 22:28)

In terms of tutorial, I have already said that we will have complementary nature tutorials, and

we will have supplementary in nature tutorials. Later on, in this module itself, I have some I

have a tentative list of the tutorials that we are going to provide to you.

(Refer Slide Time: 22:48)

Now, from this point onward, for every week, you will have, you will find a slide which talks

about the theme of that week, which is on top written in brown. And these are the different

module numbers. So, it is M01 to M05 is what you get in the first week. And what is the

topic of that particular module is described here. It is no point reading, keep on reading this

out. So, I will just, you know flip through and you can make references and you can make

your own notes based on this plan of how you want to schedule, your study and so on. So,

this is about building and executing C programs in C++ writing equivalent programs.

(Refer Slide Time: 23:36)

Week two will primarily talk about the procedural extensions of C into C++, which are not

object oriented but very important for the language.

(Refer Slide Time: 23:48)

Week three, we will start on the object-oriented programming and we will continue into week

four. So, we say OOP in C++, part one. Which talks about the basic features encapsulations

and so on.

(Refer Slide Time: 24:00)

OOP in other features, overloading, namespace, structure, union, this will be done in the

second part, in week four.

(Refer Slide Time: 24:12)

Week five, we will talk about another very, very strong feature of object orientation that is

inheritance. What is generalization, specialization concept?

(Refer Slide Time: 24:22)

It will extend to polymorphism, where you can various ways you can write the same function

which behaves in multiple different ways, based on the context of the object.

(Refer Slide Time: 24:36)

We will have information on casting, how do you take object of certain type and use it as an

object of a different type which is a very key area of understanding, it is important to

understand, it is as well as for to for effective use and as well as for avoidance of common

errors.

(Refer Slide Time: 24:57)

Week 8, we will talk about exceptions. That is one theme, which is what happens if your

program gets into some difficulty at the runtime. So, that C++ has a very strong feature to

talk about that. And the other theme, so, it has two themes actually, the other theme is

templates, which is called Meta Programming in C++. In simple terms, templates are kind of,

that kind of programming in C++, where you write a function and then you have certain

parameters of that, which we see our type parameters. When the, when someone uses that

function, then based on the actual type of use, the compiler will generate multiple functions.

So, it is a code generator within your program. So, it is a very, very strong feature.

(Refer Slide Time: 25:54)

And we will close on C++ 03 which discussions on input output structures like streams, vary,

a variety of them, and the brief overview of the standard library.

(Refer Slide Time: 26:10)

From week 10, we will move into modern C++ introducing you. Again, in a similar manner,

which part of C++ is just better C++? It so sounds a number of features are again provided

just to enhance the language, not really primarily giving you something new.

(Refer Slide Time: 26:34)

Week 11 would be very, very interesting and somewhat difficult, where we will talk about

again, two key things one is lambda expressions. Lambda expressions are nothing but they

are functions, but they are anonymous function. That is, they do not have a name. These are

functions which do not have a name. Now, what does that, all that mean? So, you will see.

And then support for concurrency for writing concurrent programs. And we will try to do

some specific examples work out in this.

(Refer Slide Time: 27:06)

In the concluding week, we will talk about some of the other foundational concepts in C++

11, the move semantics, the R value, you have heard about our value L value. But what is R

value semantics? What is R-value reference? And what are the extensions to the C++

standard library coming to C++ 11. And then we will summarize on the course. So, this is

this is a overall plan. And as you as you keep doing, it will keep on unfolding.

(Refer Slide Time: 27:43)

In terms of the tutorials, there are some about 15 tutorials are currently planned. First four of

them is about building C, C++ program, next 02, 05 and 06 is for mixing C and C++ code.

The next two 07 and 08 are basically will be directly useful to the module because we work

out a number of examples to show you, how you can make a user defined type which behaves

similar to any built-in type like int or double.

Like how do you build a type for complex or how do you build a type for, say, a fraction?

You want a fraction to type to be there and behave exactly like int? How do you do that?

Then, in 09 and 10, we will talk about the concepts of design pattern, which will be

foundational in terms of your design understanding, if you want to specialize into that. 11 and

12, we will talk about compatibility between C and C++.

We will talk about several standard software development processes for C++ and tools in 13,

and 14, and in 15, we plan to cover C++ coding style, that is, what is a good way to write

code in C++. This is not an exhaustive list like unlike the modules which are frozen. The

tutorials are not an exhaustive list. These are what currently we plan to do. We may record

appropriately more tutorials if there are requests from you all. So, please feel free to suggest

if you think that well in this area or in this topic, it would be good to have a tutorial, which

will complement and or supplement your knowledge to become a good developer.

(Refer Slide Time: 29:30)

So, with this I conclude on this module, we have discussed on the course outline in terms of

the different modules and tutorials that you can expect for the course. And just a reminder for

the critical actions. Please take these actions before you start getting into the course revise

your C, revise your basic data structure, revise the basic algorithms and install GCC and

GDB and try out several C programs with it.

Even if you have an access to some other C or C++ compiler on your system, you must use

install these GCC and GDB. Because throughout the course, we will take this as a standard

and all examples, all comparisons will be done based on that. So, if you come and say that

what can my Turbo C++ is giving this I am not going to, I am not will be, I will not be able to

listen and respond to that.

Because I, I do not have that compiler. There are hundreds of compilers. We have the most

popular is GCC and it is free. So, all of us can use it. And we will use that as a standard tool.

In fact, much of the industry also uses this as a standard tool. So, we will keep to that. And if

you think suggest more tutorials, I will be happy to record it for you.

So, welcome again, to programming in modern C++ course. I am really happy that you have

decided to skill yourself up in a very critical area of computer science and I hope you will

have excellent couple of months, very successful couple of months with this course. Thank

you.

