
Algorithm for Protein Modelling and Engineering
Professor Pralay Mitra

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture-09
Implementation Details

Welcome back. Today, I am planning to give you the details on the implementation of the

algorithm that we have discussed in the last two lectures.

(Refer Slide Time: 00:27)

That’s why the coverage I mentioned as Protein docking problem, but it will be the

implementation details for the algorithms that we discussed in the last lectures.





(Refer Slide Time: 00:43)

In the last class, I mentioned that there are two subproblems - generating the different

orientations in a protein docking problem, and scoring them. I also mentioned that we prefer

the integrated scoring, where during the generation phase (generation of all possible

orientations), I calculate their score function. Next, based upon that score function and a

threshold value, I decide whether to take that particular orientation or reject that particular

orientation. Now we go for the implementation details.

(Refer Slide Time: 01:49)



When we are working with a protein structure undoubtedly our database will be Protein Data

Bank that we discussed. I also mentioned that it is not the complete entry by in each row it is

truncated column-wise. On the left-hand side, it starts with the ATOM keyword. The chain

information intentionally I omitted. Here there will be chain information chain ID and after

this one there will be occupancy information, B factor information, optionally atom name.

Currently, that is not of interest to us, that is why I removed it.

While we are working with the implementation of the algorithm, incomplete structure

information becomes a problem for us. Therefore, you have to be very careful about parsing

or reading the information from this file. I am going to discuss a few known issues that might

occur. Apart from those you may be encountering some other issues that you can report to

me.

(Refer Slide Time: 03:36)

The first issue is to check the molecule structure for correctness. No missing atoms or

backbone information chain break information etc. It may possible that in your structure

side-chain atoms are missing or some backbone like C Carboxyl C or say Amino N

information is not there - it is missing. So you have to check during your parsing stage

whether all the atoms are present or not, if not, then you have to fix that if it is a small or

minor mistake or minor omission.



But, if it is a major one like one Amino acid has missed completely, then perhaps we do not

have any other option rather we have to discard that entry. We cannot work with that. Why

can we not work with that one? Let us illustrate with an example, remember what we have

done in the surface matching - we digitize the protein molecule put in the grid cell and look

for the overlapping information.

Now, if one surface residue is missing because of some mistake maybe at the experimental

level or refinement level, then the surface match will be inconsistent. That leads to an

incorrect calculation of the surface matching score.

Therefore, you have to discard those entries unless otherwise, it is not fixed. Some techniques

are there which can fix it. Mostly, they are time-consuming. We are not discussing that fixing

problem since we have plenty of good structures. We shall focus on good or correct

structures. But if the missing information is known then better to avoid or ignore that

structure.

The first atom or residue number may not start with 1. I mentioned this in my previous

lecture. Sometimes it may start with some negative number sometimes it may start with a

positive number like 567. My previous example also starts the atom number at 44, the residue

number starts with 5.

If you are planning to store the atom, and amino acid information in an array then irrespective

of the language, either the array index will start with 0 in the case of C or 1 in the case of

languages like Fortran or Pascal. So, if the atom or amino acid number is starting with

anything other than 0 or 1, then you cannot use that residue number or the atom number as

your index for the array. Therefore, have your indexes and store the atom number and the

residue number as an integer type in a data structure.

Multiple occupancy cases may occur which says that during the experiment or the refinement

stage sometimes there is confusion between multiple amino acids, for example, confusion

between Isoleucine and Leucine, between Alanine or Cysteine. It may occur during the

experimental technique, then the authors, I mean the experimentalists deposit both the

information in the PDB with a probability value. For example, probability 0.5 for Isoleucine

and probability 0.5 for Leucine; or probability 0.3 for Alanine and 0.7 for Cysteine, definitely



all of them will sum up to probability 1. This means one atom (or residue) is there, but I am

not sure which atom (or residue) it is.

Under this circumstance both the residues can not exist at the same position, so you have to

pick one. In this case, perhaps it is easy - you can pick with the higher probability. For equal

probability like 0.5 and 0.5, you may break the tie arbitrarily and pick the first one say.

Another issue lies with the Hetero atoms including water molecules that you need to exclude.

There may be a separate section for the heteroatom or it may be a part of a chain, all those

entries that start with HET can be excluded for the time being. Similarly, you may exclude

non-standard amino acids.

(Refer Slide Time: 10:56)

To handle these situations, my suggestion is that write a separate pre-processing program that

will clean up all those messes or all those problematic cases or all those issues from the PDB

and give you the refined structure file on which you can work. Otherwise, whether the

program fails because of your coding mistake or because of your wrong calculation, or

because of your wrong protein structure file you will not be able to judge. It is always a good

idea to have some pre-processing algorithm and almost all the software refine the protein

structures using their algorithm. Now in your library file, apart from 3 letter amino acid to 1



letter amino acid conversion and vice versa, you have to write one more program to clean up

all those issues from your PDB.

Another problem that may arise is that you will see say residue number 94 is not changing.

Assuming 94th residue is aspartic acid (ASP) Glutamic acid may also assume 94 residue

number when corresponding to 94th residue multiple residues occurs. Therefore, two different

residue names, but the same residue number. Is it a mistake? For that case, look for their

occupancy you will see their occupancy adds up to 1. It indicates that at the 94th position

authors are not confident that which residue it is, it may be aspartic acid, or it may be

glutamic acid.

(Refer Slide Time: 12:33)

That’s why I said that you have to pick one maybe the first one or maybe with the higher

occupancy. Usually, the highest occupancy occurs fast, so my suggestion will be to pick the

first one and discard or ignore the rest. There may be some Hetero atom entry mostly the

hetero atom entries occurs at the end after the entry of the atom is over and they are

terminated by TER. But it may not be the case, hetero atom entry may occur very much

inside the atomic entry. I mean the atom then hetero atom after that one TER will occur and if

it is the case for the time being our suggestion is that you exclude or you ignore that hetero

atom entry completely.

(Refer Slide Time: 15:31)



Look at the structure, I am picking the blue ink so that I can discriminate. I mention the atom

number may not start with 1 or 0 which may be required for your program implementation in

C, Python, C++, Fortran, Pascal, or any other language. Better you define array index and

store this information for processing purposes.

Regarding hydrogen atoms, mostly they are absent in the crystal structures but is present in

NMR structures. Thus, either you include all the hydrogens or exclude them altogether. If

hydrogen atoms are partly present then use some software to incorporate the hydrogen atoms.

We shall discuss this part later. However, if you are not dealing with the hydrogen atoms for

the score calculation, better remove all the hydrogen atoms.

By this time you are familiar with the way the PDB stores the residue and atom information -

amino N, C alpha, then Carboxyl C, then Carboxyl O - this is part of a backbone or main

chain. After that one side starts. Since it is Alanine, only one CB, C, and then H are there. If it

is not Alanine other side chain information will be appended. After that residue number will

change from, atom number will keep on incrementing. Again it will start from the backbone

amino N, after that CA, now the C and O are missing here that you will note and when it is

missing there may be the change in atom number after 55 two atoms are missing, so it may

start from 58 or it may start at 56. I do not know. But there is no information that it is

missing. Thus, again I suggest you should have one pre-processing algorithm which will



pre-process all these issues and fixes those before we do the actual algorithmic

implementation.

These are some of the issues you may encounter some errors like segmentation fault in

C/C++ programming language. But whatever may be the error you need to understand and fix

it during your pre-processing stage. Make sure that your input is correct and for that if

required you have one pre-processing program which will pre-process your protein and clean

up the input protein file. PDB houses a lot of protein structures, if those corner cases are

removed or ignored then also you will have plenty of structures to work with.

The list of errors that you need to handle is not complete. You may come up with some other

idea you can keep on adding that one. First, you need to discard missing coordinate

information straight away, that is my suggestion. You can fix it, but otherwise, you can

discard that one also. Renumber, the atom and or residue number if required for your

indexing purpose this index is dealing with your array index where you are storing the

information of atoms and residue. Retain only one atom or residue for each position from

multiple occupancy cases. As I mentioned it is better to keep the first one. Well if in your

PDB file you are not able to identify the occupancy column then you may not think about it.

Mostly it is present if it is an experimental structure. For computational structure, it may not

be present.

(Refer Slide Time: 20:07)



Either retain all the hydrogen atoms or remove all, sometimes you will see that hydrogen

atoms are required, if required then you add missing hydrogen atoms using some software

like VMD. If not required you remove all the hetero atom information mostly we do not need

that information.

It is better to scan or read the member information of a record based on the column number as

specified in the PDB help file. Be careful if you are using C/C++ programming language or

any language that uses a space as a deliminator. At times, between two fields you may not get

a space. If it is the case, then it will create some problems. Better you look at the PDB help

file and pick column-based information. if you are implementing in C programming language

then use substring or strstr() function to read the particular field.

Assuming that the PDB file is preprocessed, we get that clean protein structure file. After

that, we go for the implementation of that FFT-based generation and the scoring algorithm

that we discussed in the last lecture.

(Refer Slide Time: 23:57)

Now we need to decide about a few input parameters. The first one is the grid size that is very

easy to calculate using the Xmin, Ymin, Zmin, Xmax, Ymax, and Zmax. Also, it is a good idea if along

all the axes you add some extra space like some percent plus delta or something. Next, you



decide on the angle of rotation. I also mentioned that this angle of rotation if I divide 360 by

angle of rotation then it will be interior value so that the number of steps for the rotation will

be an integer in nature.

Next, decide on the mobile molecule for computational efficiency. Truly, the translation and

rotation of the small molecule are computationally less expensive. Thus my suggestion is that

at the beginning you look at the two protein molecules consider the smaller molecule (in

terms of the number of atoms) as a mobile molecule and which one is the larger you consider

that as a static molecule.

Question - how many cases will be selected for each transformation? I got one orientation,

using the Fast Fourier transform I am getting one peak. From that peak, whether the peak

only will be considered or apart from that peak three other cases will be considered how

many such cases you have to keep that you have to decide.

Next decision on the score function – will it be only surface overlap score or any additional

score. We discussed the surface matching wherein one grid cell if there is overlapping from

molecule A and molecule B then we will compute that one or we will consider that one.

Apart from that one whether any other physicochemical features, we wish to incorporate? I

mean, it is not only the overlapping, but whether the overlapping is between one base amino

acid and other acid amino acid or they are hydrophilic and hydrophilic? Will those cases also

be considered as part of the score function? You need to decide that. If you consider that one

then definitely you will get an edge, I mean the advantage compared to if you just consider

the surface overlap. These things you have to carefully think and accordingly you have to

incorporate.

Next is the restriction on the orientation of the interface area. It is crucial in the context of

biological information. A biologist may give you some additional information in terms of the

binding site or not binding site. For binding site information when you can accept those

decoys with more confidence for not binding site information you may add some penalty to

reject or block those cases. The blocking or putting some restrictions may be suggested by the

biologists. Then you can restrict those or allow only others. This particular approach is

sometimes called guided - you are guiding the exploration.



Surface thickness in the grid size (α,β,γ) and penalty for penetration is also required to be

decided. Whether will it be a high negative number like -100 or -200 or a small positive

number? In your program development, you allow the user to decide on this, but at the same

time, you should have some default value if the user is not that competent and does not

provide any such information.

(Refer Slide Time: 30:28)

Thus, a set of default parameters are required in your program which will be called if a user

does not know anything or set any parameters. Also as a user, if you set you can not set some

random values. It must be logical and based upon your understanding and the justification

must be there for this one.

Finally, there should be a provision not only here for all the long-running programs to save

the intermediate state so that it can be resumed if it stops for any failure like power cutoff.

Saving the intermediate state will allow you to resume right after where it has ended (the last

saved state) instead of restarting it from the beginning. Regarding saving the state, it is also

required to be decided the frequency of the saving the state. Since this is a complete overhead

in terms of time and space. It is better if you have built a habit of doing this specifically when

you are writing a program that will take a huge amount of time for the simulation.



Apart from that you existing library functions like FFT library whenever those are available.

No need to write that explicitly. A lot of FFT library functions are. You need to install that

one in your current path and you use it.

(Refer Slide Time: 31:59)

In the output, you need to store the orientation. Either you store the complete coordinate

information of the decoy complex or store the initial coordinate and the transformers matrix

so that you can generate the decoys whenever you need this. The former option requires a

huge amount of storage space and is not a good idea. For example, if you store the complete

orientation, and there are 1000 atoms, then that will take a huge amount of storage space.The

latter option is followed by the existing software.

If you store only the initial coordinates and the transformation matrix or the translation and

rotation information, then whenever you need the orientation, you use that one, there will be

one program that will take these two protein molecules as input and apply that transformation

or the translation rotation to generate the protein complex.

Your approach should be like this for generating the output, not the complete orientation, so

input or some initial orientation of two protein molecules or input protein molecules along

with that transformation matrix corresponding to each orientation or 3 translations, 3

rotations information corresponding to each orientation. So, that is it. Thank you very much.


