
Algorithms for Protein Modelling and Engineering
Professor Pralay Mitra

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture 08
Application to Protein Docking, FFT

Welcome back. In this lecture, we shall continue the application of the surface matching that we

started in the last lecture for protein docking. Also, we shall highlight the advantage of utilizing

the FFT or fast Fourier transform algorithm in this context.

(Refer Slide Time: 00:38)



So, we plan to cover the protein docking problem statement and FFT-based algorithm for this

purpose. The keyword is the grid, the fast Fourier transform, and protein docking.

(Refer Slide Time: 00:56)

So, let us start with the definition of the protein docking problem. Given two protein molecules

computationally you have to determine the most probable orientation or the best orientation of

the given two protein molecules that will interact with each other. In other words, the protein

docking problem says that given to protein molecules, you have to output a biologically relevant

protein complex without the need for experimental verification or validation. But you should



remember that when somebody is developing his algorithm for protein-protein docking, there is a

requirement of experimental validation or verification, which is just for benchmarking or

validation purposes. Truly, you always do not need experimental validation.

If you look at the left-hand side of the figure, it is the same protein subunits that we have

discussed and we took that example of PDB ID: 6BB5 from the last class. The only difference is

that I have rotated and translated the red component keeping the yellow component unchanged.

How do you benchmark your algorithm? You start with a known protein complex, separate their

component chains, apply some random or arbitrary transformation on both or at least on one

subunit, then allow them to dock. Once it will dock then you compare the docking result with the

existing protein complex. Usually, it is practice when you are designing a protein docking

algorithm.

In this context, you understand that there are two subproblems - one is the generation of the

protein molecules, another is the scoring of the protein molecules. When I say the generation of

the protein molecule that involved one term known as a decoy.

The concept of the word decoy has taken from the war-front, where a soldier put his helmet on a

stick and from the trench he used to show to the enemy. The enemy by looking at the helmet will

feel that probably that is a soldier but that is not a soldier. This is kind of a decoy.

Similarly, in the context of protein docking, decoy looks like a protein complex, but it may not

be the protein complex. First, what do you need to do? If I start with this yellow and red subunit

that is given here. I generate all possible orientations.

I know this is complex, I separate chains. Next, I have to generate all possible orientations of one

molecule to another by applying random translation and rotations. Given, three axes, I can

translate along the X-axis, the Y-axis, the Z-axis, and rotation about the X-axis, the Y-axis, and

the Z-axis or a combination of them like about an arbitrary axis. Based upon it I shall generate all

possible orientations or decoys. Next, we shall compute the matching score on the decoys using

the previous algorithm which includes penetration information. It is required since I am working

with the computer program, so there is a possibility that atoms may penetrate that is not allowed.



(Refer Slide Time: 07:24)

I penalize such cases to discard those. After that, I use the score function and go by the rule that

the maximum interacting surface is most likely to be correct. Nowadays, we have seen that it will

be large enough for the interaction, but it may not be the maximum. Thus, instead of outputting

highest or maximum score, we score and output a significant number of cases where the score is

good enough. Therefore, two parts – (i) generate all the possible orientations, and (ii) for each

orientation score them.

Thus, in the protein docking problem with protein A and protein B as input, we generate several

orientations (generating phase) called decoys and score them to rank those decoys based upon

the score. The ranking step is a simple step that sorts the decoys based on the score function. If

the score function is maximized then I sort by decreasing order or non-increasing order.

Grossly the score function can be either an integrated scoring function or an edge scoring

function. In the former case, scoring is done during the generation of the decoys, whereas in the

latter case scoring is done after completion of the decoy generation. The advantage of the

integrated scoring function is that you have the opportunity to decide whether to retain an

orientation or not during the generation phase and hence you output provable decoys. Whereas in

the case of edge scoring function, you output all decoys first before the scoring.

(Refer Slide Time: 10:38)



Mostly, we rely on this integrated one where we generate and score. An example is the surface

matching score with the penetration option that I demonstrated to you. If we find the score is not

good enough, then we discard that orientation immediately. I rely on an integrated one because

during the generation phase if there is a possibility of penetration then those are not biologically

valid, and will be eliminated (no need to store) because of the penalty due to penetration.

Given two protein molecules red one and a blue one in three-dimension space with their

coordinate system (XYZ). They can translate along all three axes and rotate about all three axes

and hence there are six degrees of freedom for molecule A for molecule B. Now, the question is

how many orientations should you generate? The tagline is higher the decoys better the

possibility of having a hit, so, generate as much as possible. How many are good? There is no

limit, but well, you need at least a few true positive cases or correct biological orientation.

While I am interested in it, I have to decide my translation steps along the X-, Y-, and Z-axis, and

when I rotate then my angular step might be 1-degree, 2-degree, 3-degree, ... Regarding the

orientation, remember that 360-degree rotation indicates that I return to the same position. So,

whatever the angle step you will decide it must divide 360 to an integer value. For example, if

you decide on 9, then 360/9 is divisible, if you decide 12, 360/12 is divisible. So, these both are

fine and will give you some integer value, but if you say decide on 360/7 degree then it is not an



integer. So, there will be some mismatch. Usually, this is not accepted for rotation, but 9-degree,

12-degree, which divides 360 degrees to some is accepted.

(Refer Slide Time: 14:03)

The first subproblem is to generate several possible orientations from the input protein molecules

by applying 6 degrees of freedom (3 translations + 3 rotations) on both the protein molecules.

Moving to discrete space the molecules are on the grid. Now, you have to translate so that there

will be contact between the protein molecules, without which there is no point in doing



orientation calculation. Just think, do I need to translate and/or rotate both the subunits? You

think carefully.

One situation is that translating and rotating this one and keeping another one fixed is

theoretically the same as translating and rotating both. Thus, the translation rotation of both

molecules is not required. Keeping one fixed if I translate and rotate the other one, then you will

get the same result that is why there is no need for translation rotation on both which reduces the

total computation time. If it is only one then which one? This answer is I believe is simple. Given

two protein molecules, since I need to translate and rotate only one and I ensured that translation

and rotation of one are good enough for translating and rotating both, I mean, both are same or

equivalent. So, for translation and rotation, I choose the small molecule. I select the smaller

molecule to be mobile means it will translate and rotate whereas the other one will be static.

Hence, I can reduce some computation time. Is not it?

Here are the steps of your second algorithm where the input is two protein molecules and output

is several orientations of the protein molecule. The word several depends upon two facts,

translation and rotation steps. If I decide translation of 1 Å and rotation of 12° degree then I will

have a combination of orientations if I decide that translation of 3 Å and rotation of 30°, then

there will be less number of orientations. However, I do not know a prior whether all the

placements will be retained or not, because if there is penetration that positioning may be

excluded.

(Refer Slide Time: 16:40)



Anyway, you have two protein molecules. I decided to translate and rotate only the smaller one

and keep another protein molecule static. Considering 6 degrees of freedom, 3 translations, and 3

rotations will be nested like this.

After the orientation, we score. We already discussed the scoring equation where Z and Z prime

are incorporated for penetration purposes. So, while I output, I mention if the score is greater

than some threshold or not. What is this threshold value? Assume that the number of grid cells is



more than 200 or the score value must be greater than 200 or I can decide on the size of the

protein molecules.

If both the molecules are large and of comparable size, then 200 overlaps may occur. So, it is

always a good idea to give some conditions for outputting the orientation so that penetration

cases will be ruled out from here. The next step of analysis will be easy. Mentioning some

thresholds by analyzing the size of the protein molecule is very easy to calculate during parsing

or reading the protein structure file.

All the algorithms which are available as docking software use this kind of concept. The score

must be greater than a threshold to output decoys. If you output all then there is no point in doing

an integrated scoring function that can be an edge scoring.

However, one negative point is the computational complexity – O(N6). That is huge and you

should also remember that in a standard protein molecule the number of atoms will be of the

order of thousands.

Additionally, if I consider that score computation will take some time then definitely combining

all these will take a huge time. When I say O(N6) and each step is a microsecond then hardly you

encounter any problem since high-speed processors are there. But if your score function is not

that simple if some other auxiliary physicochemical information in your atom and amino acid

record is attached and you are doing that calculation, then it will be highly time-consuming. The

size of the protein is 103, to the power 6 for the complexity. That is huge. If I consider that each

step will take one second, I cannot afford that one. Hence, we need to adapt the fast Fourier

technique.

This is the score function and the first Fourier algorithm. I declare MolCα,β,γ on the complex

MolA(i, j, k) multiplied with MolB(i+α,j+β,k+γ) and i,j,k all varies from 1 through N. I am

assuming that it is a cube. The grid size is identical along all the axes (X, Y, and Z) and without

any loss of generality, I am assuming that all the grid steps are the same. Moreover, I am adding

α,β,γ along the X-, Y- and Z-direction, respectively so that I can have overlapping information.

(Refer Slide Time: 23:13)



I calculated the overlapping information. After that, I computed MolC, and that way I have

several values out of which I output the best one for that particular orientation. So, we are

moving to the discrete Fourier transform. If you remember, the approach is taken for fast Fourier

transform. The best is that you move on to a Fourier space, you do the calculation on there and

by inverse Fourier transform come back and then output the result. The steps will surely expedite

the process.



(Refer Slide Time: 25:16)





The Discrete Fourier transform DFT in sort of a function Xl(m, n) can be written as:

Now, taking the analogy with the previous slide you see α,β,γ here and i, j, k here i+α,j+β,k+γ

now, here o, p, q and l, m, n it varies from l, to m; n 1 through N. So, taking this analogy, I can

convert this MolA and MolB to DFT the same thing is done here.

As you see C=DFT(MolC), A=DFT(MolA), and B=DFT(MolB) and A* star is the complex

conjugate of A. We can write

This is the equation that I computed for the surface matching with the penetration option. Now,

in the Fourier space, I am getting only the simple multiplication of A conjugate and B where

A=DFT(MolA) and B=DFT(MolB), and that way I am getting the DFT(MolC).

Since I am getting the DFT(MolC), so, to get MolC I have to compute the Inverse Fourier

transform or IFT of this C. Now, it is clear to you what I did instead of calculating directly the

MolA multiplied with MolB with the penetration option. I converted MolA to Fourier space



using the DFT(MolB). I applied DFT on MolB also. Then, I multiplied the conjugate of A and B

to get C and apply inverse Fourier transform on C to get MolC.

(Refer Slide Time: 29:35)

Hence, my algorithm will be a simple one. The same input-output but my algorithm digitize

MolA, A* is the complex conjugate of DFT(MolA), digitize MolB then B=DFT(MolB), then

multiply A* with B (small c will be Inverse Fourier Transform of C) and get the score value,

change the orientation (rotation and translation), go to step three until the required number of

orientation changes are not reaching, sort the decoys in non-increasing order by the score value.

If you take the help of a fast Fourier transform algorithm then the computational complexity will

reduce. Usually, if you apply FFT on O(N2) algorithm then you will get O(N log N). So, you can

calculate what will be the complexity if you apply FFT on O(N6) algorithm.

(Refer Slide Time: 31:12)



This particular algorithm is available in this publication. It is done by Katchalski and Katzir and

published in PNAS in 1992, long back. But this is one of the basic works on the protein-protein

docking and most of the existing techniques like FTdock, Zdock to some extent uses this

particular kind of concept to reduce their computation. Thank you.


