
Algorithms for Protein Modelling and Engineering
Professor Pralay Mitra

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture: 04
PDB Parsing

Welcome back.

We are going to discuss the PDB parsing. This is important because, in most of the

algorithms that we will be developing and implementing next, one of the reliable sources for

input data is PDB. Specifically, when we shall perform structure-based analysis or, we

develop the algorithm that needs the protein structure, then we need to take the input from

that protein data bank (PDB).

There are a few pros and cons - I should not say pros and cons rather, I will say that there are

some limitations in the protein data structure. So, we should know the limitations and we

should also know how to parse that data.

(Refer Slide Time: 01:13)



While parsing the data, we should focus on the fact that it is a flat-file. I mean only the

column information is given and from that column information I have to extract the data.

Currently, I shall not specify any specific programming languages, rather I shall explain it in

pseudocode. But, you may find some similarities with the most widely used C programming

language.

(Refer Slide Time: 01:57)



And today we shall continue the PDB file format and shall discuss how-to scan the PDB file.

Now, this is what we have discussed in the last class. And also, we discussed this particular

column information, data type, field, and definition of that one.

The first column will have Atom information, after that is the serial number of the atom from

columns 7 to 11. After that atom name, then it is alternate allocation, etcetera. Can you tell if

I am interested to generate one sequence from this protein structure information then what I

can do?



(Refer Slide Time: 02:48)

Structure information means this structure information. With the structure information I have,

I need to look for this column. And from this column, I need to read that column information

and from there I need to generate the FASTA sequence. How can I do that one? While doing

that you should remember that this is representing the amino acid.

But in each row, one particular amino acid will many times be based upon how many atoms

are there inside that amino acid. That way by row-scanning, it will be difficult to know how

many amino acids are there? If I look at the residue/amino acid ID then I can identify it by

noticing the change in ID.

When I am scanning this file to know how many amino acids are there and who are they, then

I need to identify the change in amino acids. Because after one alanine there can be another

alanine and if there are multiple alanine molecules one after another, then whether it is the

continuation of the alanine or the change of the alanine that I have to figure out.

One way to look at this is by noticing 5 changing to 6. Instead one can look at the row where

the atom is CA. Because this CA, C alpha must be present in any amino acid unless there is

not a huge structural information loss. Usually, if at least one atom is present corresponding

to any amino acid then that is going to be C alpha (CA).

You should rely on this C alpha. And if you rely on this C alpha then the best thing is to look

for this column while parsing. If you read only the C alpha and this C alpha then you will get

the consecutive amino acids. If you are using a Linux or Unix environment then there is one



command (at the terminal) called grep, which helps you to search for the existence of CA by

outputting the lines consisting of CA.

Now, it may come to your mind if there is any other CA substring inside that line. Yes, that

will create a problem. So, you have to be vigilant or you have to be careful about that fact.

But this is one simple suggestion. This is my atom, this is my column corresponding to the

atom. What I shall do with that column? This is columns 13 to 16. What shall I do? I shall

read this 13 to 16. If I open this one then I mention 13 to 16. What I shall do is read one line.

Next, extract 13 to 16, map 13 to 16 columns to single letter code. These are the steps. For

each programming language, there will be one command for the read a line.

(Refer Slide Time: 06:23)

In the C programming language, you have fgets() for reading from the line. After reading that

you can extract using say strstr() string function. Else you can read columns 13, 14, 15, and

16 - basically 13, 14, and 15. Here 16 will be extra that we shall discuss later when the

multiple atoms/residues situation will arise. The situation, when experimentally or

computationally, it is not possible to confirm whether it is going to be residue 1 or residue 2

(like leucine or isoleucine). Then instead of keeping one reside information, both are kept

(like leucine and isoleucine) and mention that there is a 50% probability that it can be

isoleucine and 50% that it will be leucine.



Column 16 is used for that. Ignoring that you will get a three-letter code. Therefore, you

require one function (viz., three2one() ) to covert a three-letter amino acid code to a one-letter

amino acid code. This three2one() function will accept three-letter code from columns l8 to

20 and will return a single letter code. Thus, ALA is going to be A, CYS is going to be C,

ASP is going to be D, PRO is going to be P, and so on. To summarize, you read a line, extract

columns 18 to 20, and map to a single letter code.

In between, two read a line, extract 18 to 20. You have to come up with something so that

either you read CA or you check for residue ID. If you do not check for the residue ID or CA

then you will get multiple instances of one particular amino acid, which is not correct. This

way what you are getting is one particular protein sequence for the structure you parse.

(Refer Slide Time: 10:57)



After getting this protein sequence what else is interesting to you, I shall come to that. I am

interested to know how many chains are there or how many connected components are there.

When I say how many connected components are there, you remember that I have a drawing,

not the same but something like these two chains, I may have three, I may have four.

Each one is one connected component. I mentioned that one chain ID will be given or

mentioned that chain ID you can have here and that chain ID you will have this here 22, you

are getting gene ID at 22. What you need to do is to read this character from column 22.

Again, using any programming language, you can read that column 22, which is going to be

your chain ID and I mentioned that chain ID can be either a character from A to Z, or a single

digit 0 to 9 (considered as a character). It may be a small letter or a capital letter. Sometimes



you will find that there are two chains both are with the same ID like A and A. If so then

there must be TER keyword indicating the end of a chain. TER starts at the beginning of the

line.

Therefore, using any programming language you can read your zeroth column, first column,

second column, and optionally say the third column to check whether it is TER (short form of

TERMINAL). If it is only TER, then this is T, this is E, this is R, and this is either newline

(‘\n’) or end of word ‘\0’ (in C programming language). In both cases, it indicates the end of

one chain - the end of one connected component.

Therefore, by counting these numbers of TER, you may get how many chains are there or

what is the end of the chain. Also, I am suggesting keeping an eye on column number 22 and

use both. Because I have seen instances where there is no TER. I have seen instances where

there are multiple chains with the same ID. So, to avoid those, it will be better to use both the

information.

Regarding this END keyword, it indicates the end of the coordinate information. Once you

will encounter this END, you know the end of the file. Again this is 0, this is 1, this is 2

column number which means, it will start from the new line.

MODEL information, as I mentioned occurs mostly in the NMR structure. If several

instances of one structure are there and the author wishes to keep all such instances, then

different instances will be separated by their MODEL information. MODEL starts from the

new line. After MODEL there will be one integer value say 1, 2, 3 that indicates how many

models are there. This integer value on the model number - 1, 2, etcetera up to say 18, 20

whatever is there it will be.

ENDMDL indicates the end of the MODEL which again starts from the first column of a new

line. End of which model? The model which has started. Thus, corresponding to each model

there will be pair information in MODEL indicating only one MODEL. If I have five

MODELs, they need to be starting with a MODEL 1, then there will be 1 ENDMDL, after

that one there will be MODEL 2, ENDMDL, after that 3, after that 4, after that 5 and

ENDMDL will be there.

Regarding CONECT keyword, I mentioned in my last lecture that for the essential amino

acids, I know what are the covalent bonds. And since that list is limited, so all my



information I can keep in my program and that is why the covalent information for the

essential amino acids are not explicitly present in the PDB structure. However, if there are

some nonstandard amino acids or say other molecules starting from the water molecule or

any moiety or small molecule, etcetera. It is not possible to remember what are their covalent

bonds. The best idea is to declare them as heteroatom to separate them from the Atom

information. Who is the atom? I am assuming that is part of the essential amino acids for

which I know the covalent bond information.

And when it is the heteroatom for which implicit information is not there. Therefore,

explicitly I have to mention that what is their CONECT information, means that what are

their covenant bonds and for that, I will be using their Atomic serial number. Of course, they

will be represented as heteroatom instead of atoms.

(Refer Slide Time: 18:51)



If it is an essential (one of twenty that I mentioned) amino acid then each line will start with

an ATOM. This is my 0 position, this is 1, this is 2, this is 3, and this is the column

information. In the case of other (small molecules or non-standard amino acids), then it is

HETATM that starts at 0, this is 1, this is 2, this is 3, this is 4, this is 5, and this is my column

information. And, for this one, I need the CONECT information.

The CONECT information indicates who will be connected with what. But definitely rest of

the thing say, for example, this integer, the serial number. Although it is mentioned that the

atom serial number, for the hetero atom also one serial number will be there and that serial

number information will be used to know the CONECT information.



(Refer Slide Time: 20:20)



We discussed how to generate a sequence from the PDB structure. And on the last lecture, I

also mentioned that the sequence you generated from the PDB structure I mean the atomic

coordinate information may not match with the SEQRES information it has in it. Because

some residue structure information of some residue may be missing and if it is then you may

not track it down.

Next, we discussed reading the chain information, where you may go by the chain ID which

is a piece of single character information either A to Z or a to z or 0 to 9 or you may go by the

TER based information. You may probably have both in your program so that you can take

whatever is available. In some cases you may see TER is missing, in some cases, you may

see that TER is there but multiple chains are with the same ID, so it is possible.

If the situation is something like I have Atom information ATOM and say chain ID is also

mentioned here A and this and after that I have TER, then ATOM, then A, again A, if like

that I go then using this TER you can identify one chain, and this is another chain.

But if TER information is missing then usually this A will not continue, then this A will be 1.

But I am not telling that if the TER information is there, then always it will be AAA it may

be AAA, sorry it will be 1, so 1 1 or say maybe BBB or may be different. That is why I am

suggesting you have both TER as well as the change in column number 22, that is containing

the information of your chain.

Next is reading the amino acid information. When I am reading the protein sequence or say I

am generating the protein sequence from the PDB, then I am also reading the amino acid



information. That is the information corresponding to which amino acid is present. But apart

from that, if I need a little more information like I know that since it is only 20 amino acids.

It is very much possible to have one lookup table or one separate data structure or file where I

shall have the full connectivity and atomic information of each amino acid, not the coordinate

I am talking about. I am talking about how many atoms are there corresponding to each

amino acid and which are they what are their covalent bonds and if along with that one I wish

to attach some physical-chemical information, then those things I can have.

Let us assume that I wish to make a match with the aspartic acid, whether the O- is present in

the side chain or that particular atom is missing. If I need that kind of information, then I have

to write one separate function for reading amino acid information. Next is reading the ATOM

information. Combining the amino acid and ATOM information is very essential. Because

when I am reading the ATOM information, then I am reading the coordinate information.

Coordinate information is available at the atomic level.

When I say it is the residue, then unless I mentioned at the atomic level that the C alpha atom

of the residue is representing that residue or the C beta atom, I cannot say that I can able to

read the atomic information for the residue level. The coordinate information is available

only at the atomic level.

Residue level coordinate information does not make sense unless otherwise, I mention that

which atom is there. I am reading the Atom information. Let me go back and give you this

information first. The coordinate information is available here. This means 31 to 38 is X

coordinate then 39 to 46 is Y coordinate and 47 to 54 is Z coordinate. Along with I need 7 to

11 atom number, then 13 to 16 atom name and I also need this 18 to 20 residue name.

(Refer Slide Time: 26:55)





What can I do using this information?. Read a line using some function, extract relevant

information by of column, and store that information. Of course, I need some data structure to

store that information. Defining the data structure is going to be very important. The data

structure you should define in such a way that your data access will be fast enough.

These we shall discuss from week two onwards. From week two onwards we need to store

the data and process the data. We should remember that while reading the ATOM information

and the amino acid information, we need to define one data structure also for storing the PDB

information. As of now, I discussed some of the topics of PDB parsing. Now, you can

practice writing the code for PDB parsing since PDB information will be required for us

when we will be developing the algorithms. Mostly the input will be taken from the PDB and

also it will be taken from the UniProt. Please note that UniProt provides the sequence data.

Thank you.


