
Real Time Systems
Professor Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture 09
Clock-Driven Schedulers

Welcome to this lecture. In the last lecture, we had looked at some very basic concepts in real

time task scheduling, we had said that the scheduler is a very important component in a real time

operating system. The scheduler is the primary mechanism for meeting task deadlines. And

today we will look at some basic types of schedulers and we will start with the simplest real time

task scheduler. Now, let us proceed to that.

(Refer Slide Time: 0:59)

Real time task scheduling, a lot of developments have occurred in last 50 years or so, it was

actually one of the most researched topic in the area of computer science to develop effective

real time task schedulers. Initially, the research and

Even on a laptop or a desktop, we have multi core processors even in embedded applications. We

have multi core processors, and also we have distributed systems. So, the schedulers of the, for

the multiprocessors and distributed systems were developed, but the thing is that they were



developed based on the schedulers for uni processors. So, we need to thoroughly understand the

schedulers for uniprocessors.

Because still many embedded processors and real time systems work on uniprocessors and also

the schedulers for multiprocessors and distributed systems they are based on the schedulers for

uniprocessors. Many of them actually finally, on different processors on a multiprocessor

distributed system. It is only a uniprocessor task scheduler that is running, but that is for later.

Let us now understand tasks scheduling for uniprocessors well.

(Refer Slide Time: 3:08)

As I was saying that a lot of development occurred in real time task scheduling on uniprocessors

in 1970s and 80s. Some are landmark results, we will discuss some of those results, very

fundamental results, we will discuss and we will apply that in task scheduling. The real time task

schedulers on a uniprocessor can broadly be classified into clock driven and event driven, this

classification is done based on how the scheduling points are defined.

Remember, that the scheduling point is a very fundamental thing in real time task scheduling.

The scheduling point is a point of time, a point in time at which the scheduler becomes active the

scheduler does not run continuously. At certain points in time, the scheduler gets activated, and it



tries to find out which task to run next, and it may take out a task and assign it to the processor

and run it.

In a clock driven scheduler, the scheduling points are defined by clock interrupts and in event

driven scheduler, the scheduling points are defined by events other than clock events. So, the

basic classification of Task Scheduler into clock driven and event driven, it is based on how the

scheduling point is defined in a clock driven scheduler, the scheduling point is defined based on

clock interrupts. And in event driven scheduler, the scheduling points are defined by other

events, we will see what events exactly.

(Refer Slide Time: 5:50)

Now, let us look at an overview of the different task scheduler. Possibly the simplest scheduler,

which maybe it does not really qualify to be called as a scheduler. But then, in very, very simple

primitive system, we just have a endless loop. While true loop, and inside that we pull the

different events and process. Very simple system. But then, we in a slightly more sophisticated

embedded systems, we have, we call it a cyclic executing.

Let us try to understand what is the difference between a operating system and an executive, an

executive is basically the scheduler that is the operating system. The operating system does not

offer too many facilities other than task scheduler. So, the scheduler itself is the operating system



and we call it as the executive, the cyclic executive based on a timer, where we have a single

frequency of operation, that is the different events occur based on a common frequency, multiple

of a common frequency.

So, at every, we set a timer and we just check at which points the different events occur, and then

run them that is the simple timer driven cyclic executing. The third one, the third one here is the

multi rate cyclic executive. So, here we have multiple frequencies at which tasks occur, a small

variation of the timer driven cyclic executive, your tasks can have multiple frequencies. And here

again, based on the timer interrupt, the specific event is pulled and actions are taken. We will

look at these two.

And in a more sophisticated system, we have priority based preemptive scheduling. So, these are

the event based, the middle two are clock driven. The fourth one is a event driven scheduler. And

the first one of course, even clock is not there just a simple program. So, in a priority based

preemptive scheduler, we also poll and also there are specific interrupts, which needs to be

serviced. We will look at these in more detail.

(Refer Slide Time: 9:22)

First, we will look at the clock driven Scheduler. In the clock driven scheduler, there is a clock

which give interrupts. So, the clock interrupts are obtained in the rising edge of the clock pulse



and these are the scheduling points. The rising edge of the clock pulses are typically used as the

scheduling points. But one thing is that even though we have shown it to be periodic timer,

timers can be of two type.

One type of timer is called a one-shot timer. In a one-shot timer we set the timer and it just gives

one timeout signal, one timer interrupt, but in a periodic timer, we set the timer and it keeps on

giving interrupts at regular intervals. So, let me just repeat that in a one-shot timer if we set the

timer for some time, it gives one interrupt when the time elapses, the given time elapses. On the

other hand in a periodic timer, we set the timer and once we set it every fixed interval that we

have set it keeps on giving interrupts.

And in the clock driven scheduler, we have a table which contains the tasks and when exactly it

is to be run that we call as the scheduled table something like this. So, here as you can see that

the first column here is the task, task number. And the second column is the time for which it

will run. So, for task one, it will run for 5 units. Let us say we have set a timer whose time is 1

unit, so, it will run for 5. And then the next one is 7, 10, 5, 2 etc.

So, fundamental to all clock driven scheduler is a table like this called the scheduled table. And

once the scheduler becomes active at the scheduling point, the control is transferred on the

interrupt to the scheduler, the scheduler starts running. And it consults the scheduling table and it

dispatches the task, the next task on that table we will just see details of this. But that is the main

idea here. And the timer interrupt can come at periodic intervals or maybe at different intervals

depending on whether we are using a one shot timer or a periodic timer.

(Refer Slide Time: 13:35)



Now, let us look at some assumptions behind the clock driven scheduler. The clock driven

scheduler as I was mentioning, they are very simple. Here we do not even have tasks. Its just a

program with some functions, and so on procedures. But there are no tasks even though we refer

them as tasks, they are not really tasks for our convenience maybe we refer to them as tasks.

And here in each cycle, if it is a, on each interrupt, clock interrupt, we run few sequence or

procedures and here the program is simple and all the procedures share common address space

and also share data just like a C program with a global data and function calls and here the data is

not protected we do not use semaphore etc. because here every task is assumed to run up to its

completion every time slot is, every clock interrupt, we run the code that should be run to

completion, we do not leave the data structure and interrupt the tasks and so on since interrupting

a task is not there here a task runs to completion, task means a set of code.

So, there is no concept of a semaphore here, we do not use semaphore, the code runs, the

intended code runs in the assigned time slot and we do not need semaphores and all the processes

here that is the code segments or a few procedure calls, they are assigned some multiples of the

basic clock interrupts.

(Refer Slide Time: 16:01)



And we call this as deterministic because we know the task characteristics, the clock driven

schedulers are run in deterministic systems, very simple systems, where we know what are the

tasks to be run, what code to be run, and when to run all that we know. So, these are used in

deterministic systems, for more sophisticated systems, we need to use event driven scheduler and

all the tasks are assumed to be periodic based on the clock interrupt we will service these tasks.

And also, the different parameters of the task are known a priori for example, what will be the

execution time what processing exactly needs to be done, which code to be run and so on, for

every task, this is known, the maximum execution time which code to run and so on is known.

But then, we can accommodate few aperiodic jobs also but, in a clock, driven scheduler, it is

very hard to accommodate sporadic jobs.

We had said that sporadic jobs are also they occur at random time instants. But they have hard

deadlines. So, in a clock driven scheduler it becomes extremely difficult to accommodate

sporadic jobs, we can in a event driven scheduler, we can accommodate sporadic jobs, and we

will see how to do that a little later. But in clock driven scheduler, which are used in very simple

systems, we have only few deterministic periodic tasks and if at all few aperiodic tasks, it is said

that a periodic tasks is like a human query and so on those are examples of periodic jobs.

(Refer Slide Time: 18:17)



Now, the clock driven schedulers are also known as offline schedulers or static schedulers. These

are called offline because the designer manually prepares the schedule that which tasks to be run

at what instant at what clock interrupt, which tasks to run, that all is decided during the design

time. And therefore, it is offline scheduling, no scheduling decisions as such need to be taken

during runtime accepting consulting the table and trying to run the task that is next.

These are also called static schedulers, because all the tasks are known beforehand that no new

tasks can be accommodated or in other words, the system is static that is well known tasks, few

of them and run at regular intervals. So, these are static schedulers. But in small embedded

applications these are used extensively and remember that small embedded applications are vast

in number.

Many of them are hidden. We do not see them. There are many safety critical systems where we

have embedded applications running inside we do not see them, they just keep on running and

many of them they do use the clock driven schedulers.

(Refer Slide Time: 20:15)



Now, let us understand what are the advantages and disadvantages of the clock driven

schedulers. So, we will be in a better position to know where to use this clock driven schedulers

and where not to use the clock driven scheduler. One of the most important advantages of the

clock driven scheduler is that these are extremely compact just about 100 line of code or less.

And that is the operating system because this is the executive, there is no other operating system

support just 100 or so lines of code and require very little storage space and for very tiny

embedded systems, these are ideal very small program needing very little storage and these are

efficient. The complexity of the scheduler is very manageable just consulting a table identifying

which starts to run and running that, very small time overhead for the cyclic executives and

another main advantage is that in safety critical systems we are often called to establish that these

are very high reliability.

Now, how do we establish that the operating system is of higher reliability that whatever be the

situation the event combinations or extraordinary situations, it should not get into some path in

the code where it gets delayed or it gets into an infinite loop or it just keeps on waiting and so on.

We need to prove that for safety critical systems and when the code is very small like 100 lines

or so, simple code it becomes easy, we can even formally prove that the code will behave well

under all situations.



So, getting a reliability certification for clock driven scheduler, the cyclic schedulers is much

easier than event driven schedulers and large operating system where the code is so big that there

are millions of paths in the code possible and there may be some paths we do not even know and

if the code gets into those paths, under some situation never know whether it will hang, it will get

into infinite loop and so on.

So, that way the clock driven schedulers are advantageous in use in safety critical applications

we can even prove the operating system is well behaved. Now, let us look at the disadvantages of

the clock driven Scheduler. One is the inflexibility, we cannot accommodate sporadic tasks here

we had already said that that a task occurs at random instant and it has hard deadline becomes

difficult to accommodate that in a clock driven scheduler.

And also, the tasks which may arise dynamically it becomes difficult to accommodate here these

are static schedulers. But as you are saying that there are hundreds and thousands of low-cost

applications where the clock driven schedulers are popular.



(Refer Slide Time: 24:28)

Now, let us look at the types of clock driven scheduler. The round robin scheduler also qualifies

as a clock driven scheduler, because based on clock interrupt, we run the next task in a round

robin manner. But then, in real time systems round robin schedulers are not normally used

because it becomes difficult to meet the deadline subtasks, it just gives equal time slice to all

tasks and a task which is nearing its deadline, it takes no special effort to meet the deadline. So,

the round robin schedulers are not really used in real time applications even though it is a clock

driven scheduler, and that is why we have included here but will not spend much time on the

round robin schedulers.

The table-driven schedulers here, we have a basic table containing when which tasks to be run.

And based on that, we run those tasks and that is the table-driven scheduler, extremely simple

scheduler. The main thing here is about the table and every scheduling point, it just consults the

table and runs the next task. And then the cyclic schedulers. These are slightly more

sophisticated than the table-driven schedulers and they optimized several things, several of the

shortcomings of the table-driven schedulers are overcome using cyclic schedulers.

The cyclic schedulers are very popular. Out of all the three, the cyclic schedulers are most

popular, round robin schedulers almost not used in real time applications, table driven



schedulers, they have lots of difficulties, shortcomings, we will see that. The cyclic scheduler is

the one which overcomes that, and we will see that these are very popular.

(Refer Slide Time: 26:51)

The round robin scheduler, based on the clock interrupts, it just takes up the next task and run.

And here, the long running tasks are interrupted. These are preemptive, whereas the other two

that we discuss, we will discuss the table driven and the cyclic scheduler are not preemptive. And

here we have time slice the interval between timer interrupt and every job is given a time slice.

(Refer Slide Time: 27:44)



The time slice is a critical parameter for the round robin scheduler, because if it is too long, then

it becomes a first in first out kind of scheduler. And if it is too short then the scheduler becomes

very inefficient because the scheduler needs to be invoked again and again, the scheduler takes

time and also the context switch time between different jobs that dominates the computation time

and becomes extremely inefficient. We are not going to really discuss about round robin

scheduler, maybe you would have also read it in your basic operating system course.

But since it is a clock driven scheduler, we just had a minute or so discussion we will not discuss

this further. We will look at the table-driven scheduler and the cyclic scheduler. But then we are

almost at the end of this lecture, we will stop here and we will continue in the next lecture.

Thank you.


