
Real Time Systems
Professor Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture 08
Basics of Real Time Task Scheduling

Welcome to this lecture. In the last lecture, we had discussed about timing constraints and how to

model a time constraint, we had seen a simple FSM based modeling of time constraints. And we

had said that there are many usages of modeling a time constraint and it is also not difficult.

Now, let us start with a new topic, look at the different events, how to model them, classification

and so on.

(Refer Slide Time: 0:45)

And now, let us start with a new topic, which is Real Time Task Scheduling. We had said that the

task scheduling is a very important function of a real time operating system it is the primary

mechanism by which the different real time tasks can meet their deadlines. So, this is a very

important topic about the task schedulers in a real time system.



(Refer Slide Time: 01:26)

Now, let us again start with some very basic thing about task schedulers. This is a rather large

topic, the task scheduling and to understand the real time system well, especially a real time

operating system, we need to understand the real time task schedulers well and we will see that a

lot of work has been, lot of results, lot of tools etc. are available for the task schedulers, let us get

acquainted with them.

The real time tasks they get generated when events occur, the events as we had said that the

events can be caused by the environment or by the system. These we call as the internal event

which are produced by the system itself for example, a timer alarm occurred. So, there may be

some event and then there will be a task generated based on this event. On the other hand, there

can be external events which are generated by the environment.

Maybe the threshold of the chemical concentration exceeded, the chemical concentration

exceeded the threshold and then there is a event that is generated and the task would be created

to handle this situation. Or another example, maybe that the temperature sensor sensed the high

level and then it will generate an event, this is the external event and then the system would

generate an event when this event, the system will generate a task when this event occurs.



And in the real time operating system terminology, we say that based on the system event of the

temperature exceeding a threshold a task is released or a task has arrived. We will use both these

terminologies, we will say that a task has been released or we might say that a task has arrived.

(Refer Slide Time: 4:23)

Now, the main thing about the real time schedulers is that they decide which tasks to run when

that is the order in which the different tasks that are present in the system will be run. And as we

have said that the scheduler is the one which helps all tasks to meet their respective deadlines.

The scheduler takes care the one which has sorted deadline, somehow it will make it, meet its

deadline, and the other one may be delayed a little bit.

Since the deadline is farther away, we will see how it achieves. There are some standard ways in

which this is done. And needless to say, that the scheduler part is possibly the most important

component of a real time operating system or RTOS.



(Refer Slide Time: 5:33)

Now, let us get familiar with one or two terminology. One terminology is about a job. A job is a

unit of work, which is to be performed by the system; a job is a unit of work which is performed

by a system. And it may be a task instance. For example, let us say periodically, the temperature

is sensed, and then some action is being taken.

Let us say every 50 milliseconds the temperature is sensed. So, after every 50 milliseconds a new

job or a new unit of work occurs, which we call it a task instance. The task is the temperature

sensing, and it has different instances created every 50 milliseconds. And each of these instances

we will call a job and in this task instance or job, the workload on the system may be to read

some data, to do some computation to transmit a message etc.

Now, a sequence of jobs or task instances they form of a task, temperature sensing is a task

which is sensed every 50 millisecond and each time every 50 millisecond, we have an instance of

the temperature sensing task. So, the task is a sequence of similar jobs. And see here that once

the temperature is sensed, the temperature is sensed here, we say that the task is released or the

task has arrived, but the task does not start execute immediately.

It will start executing based on the scheduler action, which will define when the task will

actually execute. And the scheduler let the task execute at this time instant. And then it executes



for some time. And the task might have a deadline. So, the relative deadline is from the instance

the task is released to the deadline. That is the relative deadline. On the other hand, the absolute

deadline is from the time 0.

Let us say we have zero time here. So, zero time to the deadline is called as absolute deadline.

Maybe the relative deadline let us say the task was released at 500 millisecond and the deadline

is 100 millisecond from there, which is a 600 millisecond. So, 600 millisecond is the absolute

deadline. But the relative deadline is 100 milliseconds. That is the terminology we will use.

(Refer Slide Time: 9:27)

Now, we had said that instance of a task is called as a job and the task typically recurs many

times. And each time the task is triggered by an event. The event maybe a periodic event, which

is usually the case and this can be aperiodic or sporadic and each time a task recurs we say that

instance of task has arrived or generated and this is a periodic task here. So, each time there is a

clock interrupt, a task instance has been generated, but it may execute depending on when it is

scheduled by the scheduler.

It may execute immediately after it is released, or maybe it will execute sometime after it was

released. So, for different instances of the task or different jobs, they might execute at different



time after it has been released. And the ith instance of the task T, we represent it by Ti. So, once it

occurs, we say that Ti has arrived or Ti is released.



(Refer Slide Time: 11:15)

We had just discussed a little bit about the relative and absolute deadline, let us just recapture

what we discussed. We said that the absolute deadline occurs with respect to time 0. So, if this is

1000 second or let me just write millisecond, then the absolute deadline of that task instance Ti is

100 millisecond.

But if this is the enabling event te, based on who is that task Ti occurred, then from this instance,

let us say this instance was 900 millisecond, then the Ti, the ith instance of tasks T is the enabling

event which occurred at 900 millisecond, then the relative deadline is 100 millisecond, whereas

the absolute deadline for task Ti is 1000 milliseconds. Very simple terminology. Absolute

deadline is counted from 0, whereas the relative deadline is counted from the time of the

occurrence of that task.



(Refer Slide Time: 12:39)

Now, let us define another term, which is the response time. The response time is the time from

the event based on which the task arrived or the task arrival time to the task completion time, we

said that the task takes some time, let us say Δ t. And it may get scheduled at different times

depending on the scheduler. The workload on the system, the scheduler might schedule at

different times, it might schedule it here, or it might schedule it here or it might schedule it

somewhere here.

So, if it has scheduled it here, and Δ t is the execution time, then the response time is from the

arrival time of the task to the completion time of the task. So, that is our definition of the

response time. It is a time between the release time or arrival time of a task to the completion

time. The release time is the arrival time or the event generation, the time at which the

corresponding event occurred. And the completion time is at which the task completes and the

result is produced. And typically, the result is produced at the end. So, you can say that the result

produced by the task, or the task completes.



(Refer Slide Time: 14:36)

Now let us, for the response time let us just look for soft real time tasks. Here, one objective of

the operating system is to minimize the response time of the soft real time tasks in a real time

system, there may be many type of tasks, hard real time tasks, soft real time tasks, firm real time

tasks and so on. For soft real time tasks, the response time needs to be minimized. Example of a

soft real time task is the user requests the current system readings, the current system health

parameters, let us say this is a soft real time task, it is a request from the user, and the system

must show it as early as it can.

And therefore, for soft real time tasks, the response time needs to be minimized. But for hard real

time tasks, the objective is to meet the deadline. As long as it is produced within the deadline, it

does not matter whether it was done early or late or so on. As long as the deadline is met, it is

okay. So that is the main difference with respect to the soft real time task and hard real time task,

on the response time behavior, soft real time tasks, the objective of the operating system is to

minimize the response time. And for hard real time task, the objective for the operating system is

to meet the deadline. And there is no advantage in completing the hard real time tasks as early as

possible.



(Refer Slide Time: 16:41)

Now, here is another term. We will use this term as we proceed through this course, this is called

as a phase of a periodic task, a periodic task recurs or repeats based on a timer alarm, a timer

event, let us say e1, e2, e3, e4, e5, etc. These are the timer events. And but the first event occurs

after let us say some delay. Let us say after 1000 seconds, the first event occurs and from then

on, it just keeps on repeating after every 50 milliseconds.

The first event occurs after 1000 second and after that, the task repeats every 50 milliseconds.

So, the phase of the task is 1000 second. Typically represented by Φ the phase of a task is the

time from 0 till the first occurrence of that task that we call is the phase, if the first occurrence of

the task occurs at time 0, and then we say phase is 0. And we denote the phase by Φ.



(Refer Slide Time: 18:28)

Let us look at an example of a phase with respect to a rocket. Now, let us say once the rocket was

fired, initially it accelerates at a very large rate, and after 2000 milliseconds, that is 2 seconds of

the launch of the rocket. The track corrections task recurs every 50 milliseconds from 2000

seconds. So, initially when the acceleration is very high, the task correction task does not take

place.

But then, after every 50 millisecond. The first task correction track corrections task occurs after

2000 milliseconds. And from then on, it occurs every 50 milliseconds. So, the phase of the track

correction task is 2000 milliseconds. So, this is the definition of the phase of a task.



(Refer Slide Time: 19:51)

Now, let us just get used to a few important terms, which we will use again and again. With

respect to the different schedulers that we will discuss, one term we will use is a valid schedule, a

valid schedule is one where at most one task is assigned to the processor, if you do not assign

any task to the processor, like the processor is idle, no problem, but you cannot assign two tasks

to one processor that becomes invalid.

And no task can be scheduled by the scheduler before it arrives, very natural cannot run a task

even before the enabling event occurs. And other constraints in the task have been satisfied that

it should follow some other task, it should have some critical resources etc., and then only it can

run. So, this is the definition of a valid schedule that it does not violate the basic requirement that

at any time a single task is assigned to the processor the task does not run before it arrives.

And also, the task has satisfied its precedence constraints like which tasks are complete and then

it is enabled and then the resource constraints that if it needs some critical section, critical data

then it should have that data. Now, another term is a feasible schedule, a feasible schedule is a

valid schedule in which all the tasks meet their time constraints, in the valid schedule some tasks

may not meet their time constraints, we just had the basic thing that one task is assigned to a

processor, task is not run before it arrives and the precedence constraints etc. are satisfied. But



then the valid schedule becomes a feasible schedule if all the tasks meet their respective

deadlines.

(Refer Slide Time: 22:35)

Now, we call a scheduler, a proficient scheduler, then another scheduler, more proficient which

say that a scheduler is one is as proficient as another scheduler is to, if given a task set, if S2 can

feasibly schedule S1 then S1 can feasibly schedule, if S2 can schedule it, then S1 can schedule it,

but not vice versa. So, the green one that you see here that is S2 is scheduling all these tasks set

each point here is some instance of a task set.

So, for the task set that is scheduled by S2, S1 also can feasibly schedule them, it can find

schedules in which their deadlines are met. But there may be some tasks sets which S1 can

feasibly schedule but S2 cannot, but for all tasks set that S2 can feasibly schedule so can S1 then

we say that S1 is more proficient than S2 or S1 is at least as proficient as S2, so, we can use these

terms.

And when two schedulers will look at various types of scheduler and we will say that, let us say

the EDF is more proficient than let us say the rate monotonic schedule. Then what do we mean is

that whatever tasks can be feasible scheduled by the rate monotonic scheduler, EDF can schedule



them. But maybe there will be some tasks set which EDF can schedule, not the rate monitor. Two

schedulers are equally proficient.

If a task set is scheduled by one scheduler, then the other scheduler also can schedule it and vice

versa. So, it becomes, if this is the our S2, then that is all tasks sets, each task set, we just

represented the point here, then S1 also can schedule all the tasks set that is to come, then we say

them they are equally proficient schedulers.

(Refer Slide Time: 25:37)

Now, we will discuss the concept of an optimal scheduler, an optimal scheduler is one which can

physically schedule any task set which can be feasibly scheduled by any other scheduler. For

example, we have schedulers S1 which can schedule some tasks feasibly, scheduler S2 which can

schedule some other tasks sets, S3 it can schedule all these tasks sets.

Now, we say that S4 is an optimal scheduler because it can feasibly schedule all the tasks set that

S1, S2, S3, which are the possible schedulers that are available, S4 is the optimal scheduler. So,

that is the terminology we will use that an optimal scheduler can schedule any tasks set which

can be scheduled by feasibly scheduled by any other schedulers.



(Refer Slide Time: 26:55)

Now, we will discuss a very important thing here, which is about scheduling points. The

scheduler is basically a piece of code, it runs and then it finds out which tasks to run next and

then makes it run. But this scheduler code, it does not run continuously all the time, because on

the CPU other tasks would run, the scheduler cannot run all the time. So, the scheduler runs at

only certain points of time. That we call as the scheduling points.

In a clock driven scheduler, the time points at which the scheduler will be invoked, which will

start running that is defined by interrupts received from a periodic timer like the scheduler runs

here, here, here for some time it takes runs very less time maybe just a millisecond or something.

But at this point, the once the interrupt received from the timer it runs under the hand in an event

driven scheduler only when certain event occurs, the scheduler starts running.

And typically, in event driven scheduler, the events are task completion and task generation. So,

once a task is generated, the scheduler runs to find out if these tasks would run immediately or

some of the tasks would run or the existing tasks will continue. And if a task completes, it again

runs to find out which tasks to run next. So, in the event driven scheduler, typically the

scheduling points are the task arrival event at that time the scheduler runs and the task

completion when the task completes, runs and decides which tasks to run next.



So, that is the very basic concept about the scheduling point. It is a very important thing. When

we discuss about the schedulers, different types of scheduler, we will invariably look at the

scheduling points of that scheduler. We are at the end of this lecture. We will stop here and we

will continue in the next lecture. Thank you.


