
Real Time Systems
Professor Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture 05
Characteristics of a real-time embedded system

Welcome to this lecture on Real Time Systems. So, far we had looked at few basic topics. Now,

let us continue from what we had discussed.

(Refer Slide Time: 00:23)

We had remarked that an operating system in a real time system called as the real time operating

system, it plays a crucial role in the operation of the system. Every embedded system, non-trivial

embedded system would have a real time operating system in it. Now, let us see why do we need

an operating system in an embedded system?

The most important reason for having an operating system in embedded system is that every

embedded system responds to various types of inputs that are given by sensors and so on. And

these responds must be attended to end results produced in time. And if the response is late, if it

is the hard real time system, then we will say that the system has failed.



We will define what is a hard real time system? How is it different from firm and soft real time

system? And we will see that in hard real time system any single task failing logically that is

producing incorrect result or producing late results in failure of the system. And in this context,

the role of the real time operating system is that once the designer specifies time constraints with

tasks the real time operating system it helps the task to meet its deadline.

Another important concern for the real time operating systems is that as far as embedded devices

are concerned, the hardware is specific to the device. Do not use a general purpose of the self

device like a desktop or a laptop, special hardware is manufactured, and therefore, the real time

operating system should be easily implemented in various types of hardware.

We will see how is that done? How can operating system be easily installable across various

types of hardware? And that is one of the important requirements for the real time operating

system other than helping the tasks to meet the deadline. There are various other roles or

purposes of the real time operating system. We will look at them in this course.

(Refer Slide Time: 03:28)

Now, let us identify some of the important reasons why we need a real time operating system in a

embedded device. The first thing is that the system must respond to various types of events

which are produced by the environment of the system. Maybe there are various types of sensors,



maybe a dozen sensors or maybe two dozen sub-sensors and each sensor produces some signals

and these are input to the system.

And for each of these events the system typically creates one task to handle that event. And

naturally any non-trivial embedded system is multitasking, should be able to have multiple tasks,

should be able to schedule among these tasks and the tasks may need to communicate and

therefore synchronization among the tasks.

As we had already identified, helping the tasks meet their time constraints. That is one of the

very important roles of operating system in embedded device. Memory management, different

tasks may have different data that they deal with some are private, some are shared, the program

code itself and there may be multiple tasks and the code for these tasks. So, all these are stored in

memory. Memory management is important issue for these operating systems.

The file systems there may be permanent data stored. And these are stored in files or databases.

And that is also to be supported by the operating system. Networking, nowadays most of the

embedded devices are Internet enabled. And therefore, supporting networking and providing

basic network facilities to the real time tasks is a important role of the operating system.

Displays, the users or the operators of these systems they would need graphic display, various

parameters and interaction with the system. Various types of I/O devices are typically attached to

an embedded device, for example, a camera, maybe a microphone, maybe a heater, various types

of actuators, sensors and so on. And the operating system should support interfacing various

types of I/O devices.

And then scheduling and buffering the I/O operations. Security, and nowadays because these are

Internet-enabled, security, providing security to the system so that malicious users should not be

able to hack the system and power management. These are some of the important features of a

real time operating system. As part of this course, we will look at the basic features of the real



time operating system. And we will see all these issues. But let me just mention that possibly the

most crucial and most investigated issue is the real time task scheduling.

We will build up with the very basic notions of real time task scheduling. We will call them as

clock driven schedulers. Those are the real time task schedulers used in very simple systems.

And one thing is that the simple systems are very large in number. Many places we find these

simple systems which are using clock driven schedulers.

And of course, the event-driven schedulers that is a very large topic we will discuss, we will take

several classes to discuss the nitty-gritty, schedulability, various modifications, improvisations,

and so on to the schedulers and task synchronization for the real time tasks. So, that is one of the

largest topic in this course, that is real time task scheduling, resource sharing, synchronization.

And we will look at real time databases, real time communications and so on.

(Refer Slide Time: 08:46)

But a question naturally arises is that is it necessary to have a real time operating system in

embedded device? The embedded devices are large in number and very inexpensive. Can we

afford to have a real time operating system? Do we need all the features there? Cannot we just

write a small workable system during the program development? And have those features

developed along with the application? The specific features, for example, networking or



whatever is needed. Cannot we just write that as part of the program development? Why have

full operating systems? Would not make the system expensive?

Let us just address that question. Let us just examine a cell phone. If we, it has, it comes with

operating system. Maybe it is Android or something. But if we look upon examine that operating

system, we will see that the size of the operating system is huge, 5 million lines of code. And if

somebody argues that why not develop some of those basic features along with the application

program that we are developing so that we save costs on the operating system.

Then just look at this, that to develop all this code on their own, you will be over budget over

time. Just look at the size of the code. The application program maybe several thousands of lines

of code, maybe 10,000 or 20,000 lines of code. And here we have 5 million lines of code, much

more than the application program. And whatever the application, whatever the license fee for

this operating system.

Per device the license is a few dollars and in rupees terms, it may be few hundreds of rupees.

And if we do not have that in embedded device, the system development may never complete, it

will be full of bugs, because you are developing such a large system in a limited time and these

operating systems are well tested across thousands of applications. But again, there are some

very low-end devices, maybe using a 8 bit processor and doing very limited tasks like sampling

some temperature, and based on the temperature reading, switching something on or off. Maybe

the program code itself is a few hundred lines.

We do not need a 5-million-line operating system for that, because the embedded device might

have a very small memory, a very simple processor. And running this large operating system will

be counterproductive. And there we might just have a simple operating system. We call this a

monitor developed as part of the application program. During program development, we will

discuss about the monitor approach, where we develop a simple scheduler, clock driven

scheduler. We just sample some data from sensors, run the code as required and in time and the

operating system code maybe few hundreds of lines.



So, very simple low-end devices may not need a full-fledged operating system. But a vast

majority of the embedded devices do need a licensed or open-source operating system to be

installed. And slowly the number of embedded devices with complex functionalities is increasing

very rapidly.

(Refer Slide Time: 13:31)

Now, let us examine a very fundamental issue that is the types of real time tasks. We said that in

response to a system input, the system input is typically either a sensor input or a user input a

task is created. In response to a system input, sorry, sensor input or a user input a task is created

and these tasks are of various types.

Now, let us understand what are the different types of tasks that may be there in a real time

system? One thing is that, if we say that it is a real time task, what we mean is that, they have

some time constraints associated with them. Typically, it is a deadline, deadline constraint that

the task must complete before some time.

And these tasks, one way to classify these tasks is based on the consequence of a task failing that

is producing a incorrect result or exceeding the deadline. There are two ways in which a task can

fail; one is produces a wrong result; the second is that, it produces the result later or after the

deadline has passed. Now, depending on these types of failure we have three types of task, hard



real time tasks, soft real time tasks and firm real time tasks. Now, let us look at these three

categories of tasks.

(Refer Slide Time: 15:37)

Now, first, let us look at the hard real time tasks. We say a task to be hard real time if a deadline

is not met, then the system fails. The task is not meeting its deadline or producing an incorrect

result. And in that case, the system itself fails. Remember that the system may have many tasks,

but just one hard real time task failed because it missed its deadline or maybe there was an

incorrect result produced and the system fails. So, this is the characteristic of a hard real time

task. And here, the task deadlines are of the order of few micro or milliseconds.

Rarely, the deadline is a second, mostly talking of the task completion times of the order of a few

micro or milliseconds. And many of these hard real time tasks are associated with systems which

are safety critical. We will define this term as we proceed today in this lecture. What is a safety

critical system? In very layman term, a safety critical system is one which causes severe damage,

injury or loss of life, if there is any failure. So, let me just repeat that. A safety critical system is

one where any failure of the system causes severe damage, injury or even loss of life.

Let us look at some examples of hard real time tasks in systems. Industrial control applications,

they have hard real time tasks, onboard computers, and fly-by-wear aircraft, we are just



discussing about a drone which carries out some operations, safety critical operations, maybe

surveillance of enemy areas or maybe a fly-by-wear aircraft or an automated, an autopilot

system. And there we have onboard computers and many of the tasks in these systems are hard

real time tasks.

A robot is another example where we have had real time task. One is, for example, the task

handling the movement of the robot. So, if the movement is not done in time, the robot may

collide, for example. So, these are some of the systems where we have hard real time tasks.

(Refer Slide Time: 19:04)

Now, let us look at the firm real time tasks. Here a firm real time task is one where if there is any

failure of the task, that the task does not meet its deadline or the logical incorrectness, then even

if the task fails, the system does not fail. It is only the tasks that fail. And the results that are

produced by the firm real time tasks which are produced late or incorrect, these are just rejected

but the system does not fail.

We can represent the task utility in this graph. If the result is produced before a time D, D is the

deadline, and then the utility of the result is 100 percent. But if the result is produced after the

deadline, the utility of the task is 0. That means we just discard the result. It is not useful. So, that

is the characteristic of a firm real time task.





(Refer Slide Time: 20:18)

Some examples of firm real time tasks is a video conferencing applications. Here the frames are

received. And if there is a delay in receiving frame or a delay in processing the frame, then these

are simply discarded. If we still show a delayed frame, then it will appear as a glitch in the video.

The users can notice that there is something wrong. But since there are many frames per minute

are being played, if few of the frames or missed, the user may not notice them. So, few frames

which are processed late can be simply dropped.

A telemetric application, data is received maybe every few milliseconds or a second. And if there

is a delay in some data, because these data are getting processed in real time, there is a delay in

processing or receiving up some data these may be simply dropped without really hampering the

functioning of the system. A satellite-based surveillance application. So, here, signals are

received by the satellite sent and these are processed for surveillance. And a few of the signals

are delayed or missed. These can be dropped without really hampering the surveillance

application as long as these are not too many, just few of them can be simply ignored.



(Refer Slide Time: 22:08)

Now, let us look at the third category of the task. We had looked at the hard real time, firm real

time; now let us look at the soft real time tasks. In the soft real time task, if a deadline is missed,

then the system does not fail. And also, unlike the firm real time system, the late results are not

discarded. These are used, but the utility of the result decreases with time.

And if the result is produced late, we say that the system is having a degraded performance. If we

plot this in the form of a graph, we will see that the result of the task has a utility value of 100

percent until a deadline. And after the deadline it does not become 0 like a firm real time system.

But then it is decreasing with time.



(Refer Slide Time: 23:25)

Just to take an example. Ok, before example, let us look at another definition of a soft real time

task. Here we assume that there may be several misses of the deadline, but we give a requirement

and the system in terms of probabilistic meeting of the deadline by the tasks. We may say that 90

percent of the time the result will be produced in time or before deadline or maybe 60 percent of

the time the results will be produced within the stipulated time, or we may say that even in

overloaded situations 60 percent of the results will be produced within time. Or another example

is 99 percent of the deadline will be met.

(Refer Slide Time: 24:30)



Now, let us look at some example. Let us look at a railway seat reservation task. So, here, you

are trying to make a reservation on a railway, a seat reservation. Now, if you made a booking and

you got the booking and printed the ticket, you said that the system performed well. Now, let us

say you are just waiting. You just give the booking request and it is just taking time. 30 seconds

passed. You waited for a minute.

And then you said you are thinking that is the system not responding, is there something wrong

with the system. And if it produces the result after 2 minutes, you say that the system has a

degraded performance. And maybe after 5 minutes, you might just close the application and say

that no, it is not working now.

The typical human response time is of the order of few seconds, like 10 seconds or 20 seconds.

So, if the result is produced in 10 or 20 seconds, you say that the system is working fine. But as it

becomes late than 20 second, maybe 30 second, a minute and so on, you said that the system is

having a degraded performance.

Similarly, web browser, once you clicked on a link and the page displayed within 10 seconds,

you had do not, you say that it has appeared instantly, because human response time is of the

order of 10 to 20 seconds. You do not notice any delay if it displays within 10 seconds or so, say



that the system is having good performance. If the page takes a minute to display, you say that it

is having a degraded performance.

And for that matter, all interactive applications are actually soft real time tasks where a human

being gives input, waits for a response from the system, those are all interactive tasks, and all

interactive tasks can be classified as soft real time tasks. So, we just looked at some very basic

definitions about the tasks and the types of tasks. We are at the end of this lecture. We will stop

here and continue from here in the next class. Thank you.


