

Real Time Systems

Professor Durga Prasad Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Lecture 45

A survey of some contemporary Real-Time Operating Systems (Contd.)

Good afternoon to all of you. Now let us continue where we have left from the last class that

is few more contemporary real-time operating system, those are available commercially, we

will discuss those things, now.

(Refer Slide Time: 00:29)

Last class we have already seen about Micro-C Operating System 2, VRTX, etcetera. So, today

we will discuss about VxWorks, Lynx, Windows CE, Symbian RTOS, and some other recent

modern real-time operating systems we will see.

 (Refer Slide Time: 00:48)

These are the key words we will use like VxWorks, Tornado, QNX Neutrino, Windows CE,

and Android.

(Refer Slide Time: 00:56)

Let us start with the VxWorks. So, this real-time operating system VxWorks it was

manufactured by a company named Wind River Systems. Intel acquired Wind River Systems

on July 17, 2009. This VxWorks it is based on VRTX, VRTX already we have discussed in the

last class. Many pictures of VxWorks are similar to that of VRTX. The difference is that VRTX

supported only few basic features, very few basic features were supported by VRTX. And

VRTX does not support like file system, development environment, etcetera. We will see these

features are supported in VxWorks.

(Refer Slide Time: 01:40)

Now, let us see how VxWorks is different from VRTX. So, VxWorks it has added to VRTX

kernel some more features and as well as development environment. Please see here I have

already told you that VRTX is supported only few basic features, several features we are not

supported. Such as lacked file system, it does not support development environment, etcetera.

So, these things now they are supported in VxWorks.

So, that is why I say here that VxWorks has added to VRTX kernel. What the following takes,

several new features, several advanced features, several additional features and development

environment which are not there in VRTX kernel, now they are added to VxWorks.

Now, let us see one of the applications of VxWorks where it was used. So, VxWorks was

deployed in the Mars Pathfinder which was sent to Mars in 1997. This Mars Pathfinder, it

landed in Mars, then it responded to the ground commands and started to send various data,

those are related to science and engineering, it started to send the various science and

engineering data to us.

(Refer Slide Time: 02:55)

Now, let us see some of the unique features of VxWorks. Here, the Semaphores, it supports,

VxWorks supports Semaphores with a priority inheritance, it uses binary and counting

Semaphores. So, it supports Semaphores with priority inheritance, it uses binary and counting

Semaphores. So, it uses a shell-based user interface.

This VxWorks it uses a shell-based user interface. It also supports file system, I have already

told you VRTX does not support file system, but VxWorks support file systems. It uses a

simulator called VxSim. It also provides symbolic and source level debugging capabilities.

VxWorks also provides symbolic and source level debugging capabilities, as well as it provides

a performance monitoring, it provides a better performance monitoring capability. So, these

are some of the unique features of VxWorks.

(Refer Slide Time: 03:50)

So then, let us see about its kernel. I have already told you earlier classes there are two types

of architectures for the kernel, this monolithic architecture and the microkernel architecture.

VxWorks uses monolithic kernel. So, this operating system VxWorks, it is RT-POSIX-

compliant. In addition to its own APIs, it is RT-POSIX-compliant. What is RT-POSIX? We

have already seen in the last class.

This VxWorks is based on the host target approach. This host target approach also we have

discussed in earlier courses while discussing the Unix based real-time operating systems.

VxWorks also uses a memory management unit, MMU. So, VxWorks also uses a memory

management unit. It provides virtual to physical memory mappings. So, this Vxworks it uses

memory management units. It provides virtual to physical memory mappings. These are some

of the unique features of the VxWorks.

(Refer Slide Time: 04:49)

Now, let us see another real-time operating, another important terminology Tornado IDE. This

IDE consists of the following, a VxWorks target operating system, some application building

tools, and a simulator called VxSim. Now, let us say that this IDE, it contains these things

VxWorks circuit operating system, application building tools, and VxSim simulator.

So, this application building tools it contains what? The application building tools include

various cross compilers, some debuggers, etcetera. And it uses host target communication. So,

it also provides what, it provides running, debugging, and monitoring VxWorks applications,

So, these application building tools, they provide capabilities for running, debugging, and

monitoring what different or various VxWorks applications. So, these are some of the or this

Tornado IDE consists of these following components.

(Refer Slide Time: 06:01)

Now, let us see some of the products which use VxWorks real-time operating system. I have

already told you this example that your, it was used in this Mars Pathfinder. So, let us see some

other products here, this VxWorks were used. Mars exploration Rovers Spirit and Opportunity.

The Mars exploration Rovers Spirit and Opportunity, this used in several other spacecraft as

well.

So, this VxWorks was used in Mars exploration Rovers Spirit and Opportunity. It was also

used in several other spacecraft as well for example, the Deep Impact mission. It is also used

in Boeing 787 airliners. It is also used in the Linksys wireless routers. Siemens medical

solutions also use VxWorks to control the real-time events of the MRI scanners in these

medical applications. So, this VxWorks also it was used in KUKA and ABB industrial robots.

So, these are some of the products where VxWorks was used. These are some of these products

where VxWorks is used.

(Refer Slide Time: 07:18)

Now, let us see another real-time operating system called as Lynx. It was first released in the

year 1988. So, this real-time operating system it is fully preemptable, it is re-entrant, as well as

it is compact. So, earlier the Lynx 3.0 it moved from monolithic architecture to microkernel

architecture, that means when on Lynx 3.0 was developed at that time they were using a

monolithic architecture and gradually in the advanced versions of Lynx they have switched

over from monolithic architecture to microkernel architecture.

The microkernel size is of 28 kilobytes in case of Lynx. So, microkernel is 28 kilobytes in size.

So, this microkernel it provides only the essential services, because you see the size is very, it

is quite less. So, this provides only the essential services of scheduling, interrupt dispatching,

and synchronization, etcetera. So, only essential services such as scheduling, interrupt dispatch,

and synchronization they are performed in this microkernel. So, then, where these other

services, how they will be provided, let us see.

(Refer Slide Time: 08:33)

Other services, they are provided as kernel plug-ins. The microkernel provides essential

services of scheduling, interrupt dispatch, and synchronization, whereas other services are such

as IO related services, handling file systems, TCP IP, handling streams and sockets, KPIs,

etcetera. These services are provided as a kernel plug-in, so we call them as KPI. The KPIs

here they are used they are normally multi-threaded. The KPIs they are normally multi-

threaded.

(Refer Slide Time: 09:06)

Now, let us see so we are discussing about the Lynx. Now, let us discuss the details or some

more detail about Lynx OS. The Lynx operating system kernel provides the basic services, I

have already told you those basic services are these things like scheduling, interrupt

dispatching, and synchronization. The kernel is protected. So, memory intensive applications

for example, compilers, debuggers, etcetera. They assess the memory throughout through a

memory management unit.

So, here, in Lynx operating system the kernel is protected. The memory intensive applications

such as compilers, debuggers, etcetera. They access the memory through MMUs, memory

management units. So, Lynx operating system supports a single scheduling policy. Please

remember, Lynx operating system it supports a single scheduling policy. Fixed priority pre-

emptive with 256 priority levels.

So, in this scheduler contains fixed priority pre-emptive, what, maybe tasks with 256 priority

levels, there are 256 priority levels maybe from 0 to 255, those priority levels are present in

Lynx operating system. In Lynx operating system the clock tick frequency is fixed at 100 hertz.

These are some of the features of Lynx operating system.

(Refer Slide Time: 10:32)

Now, let us quickly go to another real-time operating system that is QNX Neutrino. So, this

QNX Neutrino it is a POSIX-compliant Unix-like real-time operating system. So, this real-

time system is just like Unix and it is POSIX-compliant. We have already seen what is POSIX-

compliant in earlier classes. This operating system was developed by Gordon Bell and Dan

Dodge with the students of the CS department at the University of Waterloo in Canada in

1980s.

So, this QNX Neutrino it uses microkernel design. In this microkernel design the kernel

provides various thread and the time services. This design allows the developers to easily turn

off any functionality they do not require. So, because this is what to make the size less in order

to fit into the memory. So, we do not require all the modules all the functionality always, so

whenever we do not require the module or a particular functionality then we can easily turn

off. So, this microkernel design allows developers to easily turn off any functionality which

they do not require.

(Refer Slide Time: 11:34)

So, every driver, every application, every protocol, and the file system they run outside the

kernel. Please remember in QNX Neutrino each driver application protocol and file system

they run outside the kernel, in the safety of memory-protected user space. So, in the safety of

the memory-protected user space. So, each of the driver application protocol or file system

there are on outside the kernel. Any component can fail and restarted. That is possible in QNX

Neutrino.

That is special what feature of QNX Neutrino. Any component can fail and restarted without

affecting other components or the kernel. So, without affecting any other component or the

kernel, any component can fail and restarted. If your component has failed, you can restart it

without affecting the other components or the kernel. So, any component can fail and restarted

without affecting other components or the kernel.

We have already known POSIX, the objective of the POSIX we have seen that better

portability. Since QNX Neutrino is POSIX-RT compliant. So, it provides very good application

portability, that means the application written in QNX Neutrino that version provided by one

vendor it can easily run in another version or in another system.

(Refer Slide Time: 13:15)

Almost every service in QNX Neutrino runs as a user process, it includes a special process

known as PROC, which performs process creation. So, in QNX every service runs as a user

process, it includes a special process known as PROC, which performs process creation. So,

the memory management is performed with the help of the microkernel.

So, in QNX Neutrino the memory management is performed with the help of the microkernel.

So, due to the use of the microkernel architecture QNX is also considered as a distributed

operating system. It is not using a monolithic architecture. It is using a microkernel architecture.

So, due to the microkernel architecture QNX is also considered as a distributed operating

system. So, this is something about this QNX Neutrino.

(Refer Slide Time: 14:08)

Now, let us see Windows CE. So, Windows CE you can see that it is a variant of this Windows

operating system. Windows CE is a very popular operating system for these PDAs and mobile,

PDAs hand held PC. So, Windows CE is a very popular for PDAs and mobile devices.

Windows CE 6.0 the latest version. Now, I think you can check right now it is already 6.0 after

that 7.0 and 8.0 has come up.

So, Windows CE 8.0, now I think it is the latest version you can check from the net. Windows

CE it is a 32-bit operating system. So, it is supports 4GB virtual address space. It is divided

into kernel and user space. So, this 4GB virtual address space it is divided into kernel and user

space, as in any other Windows operating system. It can be configured to be small, but very

feature rich. So, this Windows CE it can be configured to be very small, but it is very feature

rich, so many features are provided in Windows CE.

(Refer Slide Time: 15:17)

The bare minimum kernel in Windows CE is called as MINKERN. Its size is 350 kilobytes,

but it does not support graphics and the windows, because the size is very less so it does not

support graphics and windows. Then let us see what Windows CE supports. Windows CE

supports the following things. It supports multiple processes. It supports multi-threaded

programming. It supports DLL, dynamic linking libraries. It also provides virtual memory

management. It also provides or it supports a large number of IO device drivers. So, these

features are supported by Windows CE.

(Refer Slide Time: 15:58)

So, let us see this memory model, Windows CE 5.0 memory model. In Windows CE 5.0, how

the memory model looks like? What are the special features? It is 32 process limit that means

say each process can access 32 MB of memory. And there are 32 slots for the processes. It uses

a shared memory, usually the upper half of the user space in the shared memory, I will just

show the diagram.

So, it uses shared memory, the upper half of the user space is known as the shared memory,

you can see the diagrams that look like this. I already told you here it supports how many that

4GB virtual address space. Here I have already told you, the upper half of the user space is

known as this shared memory, this is the upper half of this, you can see this portion in the user

space.

So, this upper half in this shared memory and on top of this 2GB kernel space is there. So, there

are 32 user processors are there. So, it is having single 2GB virtual memory for all the

processes. So, this is how the Windows CE 5.0 memory model looks like.

(Refer Slide Time: 17:13)

Now, let us see how interrupt handling occurs in Windows CE. So, the device driver in

Windows CE consists of two pieces. A tiny kernel mode ISR to decide how to handle the

interrupt. And a user mode Interrupt Service Thread, which does the bulk of the work. So, in

case Windows CE, the device driver consists of two pieces. First one is it a tiny kernel mode

ISR, interrupt service routine to decide what, to decide how to handle the interrupt.

Then what is the second piece, it is a user mode Interrupt Service Thread, IST, what does it do,

which does the bulk of the work. Now, let us see how the interrupts they are handled. When an

interrupt occurs the kernel first saves the state of the currently executing user mode code. So,

whenever an interrupt occurs first the kernel saves the state of the currently executing user

mode code then the kernel calls the respective ISR, interrupt service routine to handle the

interrupt. I am repeating again, when an interrupt occurs first the kernel saves the state of the

currently executing user mode code, then the kernel calls the respective ISR, interrupt service

routine to handle the interrupt.

(Refer Slide Time: 18:34)

Then why do ISRs delegate most of their work? Here, I have already told you that the kernel

calls ISR to handle the interrupt. Now, let us see, why do ISRs delegate most of their work.

There are some reasons, why the ISRs they delegate most of their work. They run on a very

small stack so the number of local variables is very limited. So, that is why this is one reason.

The ISRs, they run on a very small stack and hence the number of local variables is very less.

So, when an ISR runs most of the interrupts are masked. So, when an ISR runs, most of the

interrupts they are masked. These are the reasons why the ISRs they delegate most of their

work.

(Refer Slide Time: 19:19)

Let us quickly look at the other features of Windows CE. So, one most, one important feature

is resource handling. So, Windows CE 3.0 it supports priority inheritance, you have already

known what the priority inheritance, different protocols you have shown, PIP, and what, a PIC,

etcetera, you know priority inheritance protocol, PCP, priority selling protocol, HLP, etcetera

I have known.

So, Windows 3.0 supports priority inheritance, or supports some protocols to handle priority

inheritance. In earlier versions the processes could undergo unbounded priority inversions. So,

before Windows 3.0, the earlier versions of Windows CE in those earlier versions of Windows

CE, the processes they may undergo unbounded priority inversions but since in Windows CE

3.0 it supports priority inheritance.

So, those priority inversions, those unbounded priority inversions will not arise here. It also

another feature is, another feature Windows CE is context switching. So, the Windows CE was

designed for a fast context switch. So, normally this Windows CE it was designed for providing

fast context switch.

Unlike the normal Windows operating system such as Windows 2000, which gives each

process its own page stable, Windows CE processes share, they share a single page table. Please

see, in Windows 2000 what is happening, it gives each process its own page table but unlike

that the Windows CE processes they share a single page table. This is one of the differences

between Windows 2000 and Windows CE.

(Refer Slide Time: 21:03)

Now, let us quickly see about the Windows CE versus Windows for desktops. Unlike Windows

NT and Windows 2000 or Windows XP, Windows CE does not support the multiprocessor

please remember, Windows NT and Windows, unlike like this Windows NT and Windows

2000 and Windows XP this Windows CE does not support multi processors. Windows CE can

support up to only 32 simultaneously executing processes.

This real-time operating system Windows CE it can support up or it can support up to how

many concurrently processes, it can support up to only 32 simultaneously or concurrently my

executing processes. Out of these concurrently executing processes are, many of those

processes are taken by the Windows CE kernel itself. For example, kernel, device drivers, file

systems they are taken by the Windows CE kernel itself.

The processes in Windows CE have 32 MB address space. The processes in Windows CE they

have 32 MB address space as compared to 2048 MB for desktop versions. So, normally for the

desktop versions the address space size was 2048 MB, but in comparison to that Windows CE

have just only 32 MB address space.

(Refer Slide Time: 22:25)

So, Windows CE dot NET we will see another variant of this Windows CE. It is normally

designed for the mobile applications. It supports Bluetooth, IP version 6, etcetera. It also

supports Kerberos, those who have studied distributed systems, this is a security protocol in

distributed systems Kerberos. So, Windows CE supports Kerberos security protocol and the

secure socket layer or SSL.

Windows CE dot NET developers they can build and test their application on Windows 2000

or Windows XP desktops using emulation. So, Windows CE dot NET developers, they can

also build and test their applications even on Windows 2000 or Windows XP desktops how by

using the concept of emulation. This is a little bit about the Windows CE dot NET.

(Refer Slide Time: 23:16)

Now, we will see one more this real-time operating system that is Symbian RTOS, it was

specially designed for mobile phones. Actually in 2008, the Symbian Software Limited was

acquired by Nokia and this Symbian platform was made open source in February 2010.

Symbian operating system account for on that this Symbian operating system account for 46.9

percent of smartphone sales. Making it the world's most popular mobile phone operating

system, is not it? Nowadays many of you are using what these Nokia phones this, in almost all

of these smartphones you see they are using the Symbian operating system. So, Symbian

operating system counts for 46.9 percent of this smartphone sales, which makes it the world's

most popular mobile phone operating system. Many of these mobile phones, many of the users

of the mobile phones, they use the Symbian operating system.

(Refer Slide Time: 24:16)

Now, let us see some of the features of Symbian operating system. It uses microkernel design.

We have already seen what is a monolithic design and microkernel design. Like the other

operating systems, it also uses pre-emptive multitasking and memory protection, what schemes

or memory protection, what techniques.

The CPU is switched into a low power mode; in case of Symbian real-time operating system

the CPU is switched into a low power mode. That means when applications are not directly

dealing with an event. In case of Symbian real-time operating system, the CPU is switched into

very low power mode in order to consume less power when the applications are not directly

dealing with an event. So, these are some of the basic concepts of Symbian real-time Operating

System.

(Refer Slide Time: 25:00)

Now, let us quickly look at some of these recent real-time operating system, some of the

modern real-time operating systems which are available commercially. The first real-time

operating system, the first modern real-time operating system will see as DEOS. So, these are

developed by DDC-1. And normally this is used, these are developed for the safety critical

applications, avionics application.

So, this is safety critical and avionics real-time operating system. Where it can be used? It can

be used in air data computers, air data inertial reference units, cockpit displays, flight control,

flight management, engine control, and many more. So, in these cases, this DEOS can be used.

Another modern real-time operating system age embOS. So, these are developed by Segger.

This is a very powerful and easy to use API. It shows high performance with low memory use.

The kernel awareness plugins are available here. Here zero interrupt latency is there, in case of

embOS that is zero latency, zero interrupt latency. So, just like the standard POSIX. So, there

is another standard called MISRA-C. So, this real-time operating system embOS, it is MISRA-

C 2012 compliant. We will not discuss about this complaint, this POSIX for us this is sufficient.

(Refer Slide Time: 26:27)

Another modern real-time operating system is FreeRTOS. These are developed by Amazon. It

supports a diverse range of processor architectures. So, this FreeRTOS supports a diverse range

of processor architectures, more software development now in AWS. More software

development is now in AWS Greengrass to directly target platforms based on this RTOS. More

software development is carried out now in AWS Greengrass to directly target the platforms

based on this real-time operating system FreeRTOS.

Next type is integrity. This was developed by Green Hills Software. So, it uses hardware

memory protection to isolate and protect the embedded applications. So, it uses some secure

partitions, the secure partitions guarantee each task the resources needs to run correctly. Now,

it uses some secure partitions, this operating system. The secure partitions guarantee that each

task or the secure partitions guarantee each task that the resources it needs to run correctly.

This is about this operating system integrity.

(Refer Slide Time: 27:35)

Also, another modern operating, real-time operating system that is Keil RTX. It was developed

by SoftBank, it is also a royalty free, it is a royalty free operating system. It is deterministic in

nature with the source code then it uses a flexible scheduling. These are real-time operating

system uses flexible scheduling such as Round Robin, pre-emptive, and collaborative

scheduling techniques. Unlimited number of tasks each with 254 priority levels. So, this real-

time operating system supports unlimited number of tasks each with the 254 priority levels.

Then the next real-time operating system the MQX, this was developed by NXP, this real-time

system MQX has good base functionality. The challenge in this operating system is that given

the ownership the end OEM, I think original equipment manufacturers they are concerned

about being locked into a specific silicon supplier.

Let us see what is the challenge in MQX. The challenge in MQX is that given the ownership

that the end OEMs, the end Original Equipment Manufacturers they are concerned about being

locked into a specific silicon supplier. These are some of the recent or modern real-time

operating systems we have discussed. There are several other modern operating, modern real-

time operating systems, you can sort them from the net.

(Refer Slide Time: 29:02)

So, one more real time. So, two are there you can see here, one is a Nucleus which are

developed by Siemens. So, this is a real-time operating system intended for the embedded

space with a source royalty-free model, of course, you may have to pay a little bit, so this is a

real-time operating system intended for the embedded space with a source maybe with paying

something royalty-free model.

Its presence appears to have slowly declined as a mentor monetized software, including the

core staple of event driven architecture. So, the presence of this operating system nucleus

appears to have slowly declined as the mentor on monetized software including the core staple

of event driven architecture. Then one more recent real-time operating system is PikeOS, this

was developed by Sysgo.

This operating system is your commercial hard real-time operating system. This offers a

separation, this offers a separation kernel-based hypervisor with the multiple logical partitions,

partition types for many other operating systems and applications. So, this real-time operating

system PikeOS, it offers a separation kernel based on what, or it provides a hypervisor actually,

this real-time operating system offers a separation kernel-based hypervisor with multiple

logical partition types for many other operating systems and applications.

(Refer Slide Time: 30:29)

And the last one today we will discuss on this modern operating system is this one. This is

about the Google's Android operating system, many of you are using Android operating system

in your mobile phone. So, this Android operating system is based on the Linux kernel. Please

look at the architecture at the bottom level this Linux kernel is there, you can see there are

several drivers, of the display driver, keyboard driver, camera driver, web driver, Wi-Fi driver,

then flash memory driver, audio drivers, and then maybe what are some other drivers here you

can see.

And finally, the Power Management module is also there. On the top there are the various

applications are there, such as the home and then the contacts, phone browser and so on, many

applications are there on the top layer. Then below the applications the application framework

there you, or like various managers are there. So, the activity manager, package manager,

technology manager, window manager, etcetera. These are present in the activation manager.

And next layer, various libraries are there, and a sublayer is there, called as Android Runtime.

So, various libraries you can see like this, you can say that surface manager and SSL, SGL.

And what you can see that Freetype are or something. So, these are the libraries available here.

And in the sub layer, Android runtime, we can see the core libraries are there, as well as the

Dalvik virtual machine is there.

So, like this. So, this Google's Android operating system looks like, it is based on the Linux

kernel. You can see at the bottom layer, the Linux kernel is there and the top-level applications

are there and below application, the application framework and libraries are there. There is a

what sub layer called Android runtime is also there.

This is how the architecture of the Android operating system looks like. You have already

known that Android operating system was developed by Google. This was the architecture of

Android operating system. All of you are using in your mobile phones, this shows the

popularity of this Android operating system.

(Refer Slide Time: 32:44)

So, today we have discussed about first the operating system VxWorks, then we have discussed

about Lynx, then we have discussed about Windows CE, then we have discussed about

Symbian operating system. Finally, we have discussed the basics or the fundamentals of several

recent or modern real-time operating systems, including the Google's Android operating

system.

(Refer Slide Time: 33:05)

We have taken these things from these two books and from some internet sources. Thank you

very much.

