
Real Time Systems

Professor Durga Prasad Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Lecture 44

A survey of some contemporary Real-Time Operating Systems

Good afternoon to all of you. Today we will discuss a survey of some available commercial

contemporary real-time operating system. There are so many commercial real-time systems

operating systems are available. Today we will discuss few of them.

(Refer Slide Time: 00:37)

We will discuss first the we will see how this Linux operating system can be made in real-time.

Then we will see about these details of RT-Linux, another real-time operating system you will

see Micro C operating system 2, then embedded configurable operating system and finally, we

will see about a type of real-time operating system called VRTX.

(Refer Slide Time: 00:59)

So we will see some of these keywords like Preemption improvement, Interrupt abstraction,

HAL or hardware abstraction layer, Programmable interval timer, embedded configurable

operating system, VRTX, etcetera.

(Refer Slide Time: 01:15)

Let us start with the Linux. In the previous lectures we have already seen Unix and windows

and about their suitability for real-time applications. This we have already discussed in the

previous classes, today we will talk about these fundamentals of Linux and how it can be made

real-time. A special person will see that RT-Linux which is what can be used for real-time

applications.

So, let us see how we can make Linux real-time or how making Linux real time will be feasible.

There are two main approaches are available for making Linux real-time one is this Preemption

improvement, another is the Interrupt abstraction. You have already known that Linux is a free

software and but it has several advantages, you know, it is normally a general purpose operating

system, but how we can make it real-time oriented let us see.

For these two available approaches are their number one is Preemption improvement. In this

approach, the recent patches Ingo, Ingo you can consider as a company. So, recent patches

from Ingo it includes a large number of technologies for improving the preemption and

debugging of preemption issues with the Linux kernel. So, in this preemption improvement

several recent patches, they are considered.

These recent patches are taken from Ingo they include a large number of technologies for

improving the preemption and debugging issues with the Linux kernel. So, in the second

approach that is the interruption abstraction; here the real-time kernel it takes over the interrupt

handling from the Linux. So, or the Linux kernel you can say so, in this approach interrupt

abstraction, the real-time kernel takes over interrupt handling from the Linux kernel. So here,

the Linux kernel thinks that it is disabling the interrupts but actually it is not really like that it

is not, it is really it is not.

(Refer Slide Time: 03:23)

So now, let us see the first approach in detail that the preemption improvement. So here the

Linux code, it is modified the available the existing Linux kernel code it is modified the amount

of time that the kernel spends in the non-preemptible parts it is substantially reduced. Here,

what the main strategy adopted?

So, in this approach, we reduce the length of the longest section of the non-preemptible code.

And why we do this, this would minimize the worst-case latency of the interrupts in the system.

That is why we have to reduce the length of the longest section of the non-preemptible code.

This is the main strategy adopted in case of the preemption improvement.

(Refer Slide Time: 04:05)

Then let us see what is happening in interrupt abstraction. So, in case of this interrupt

abstraction, instead of instrumenting the Linux kernel, what we are instrumenting? In

Preemption improvement, I have already told you in preemption improvement. the Linux code

is modified; the Linux code is instrumented but here we do not instrument the Linux kernel,

we do not what modify the Linux kernel.

So instead of instrumenting, the Linux kernel to increase the preemptibility, what we do here?

Here the entire kernel is made preemptable we are in case of interrupt abstraction the whole

kernel is made preemptable. So here is separate layer called as the hardware abstraction layer

or HAL. So, in this interrupt abstraction, a separate layer called the hardware abstraction layer

is used this separate layer, maybe call it the hardware abstraction layer it intercepts and

manages all the hardware interrupts.

So please mark the difference between the interrupt abstraction and the preemption

improvement. In case of preemption improvement, the Linux kernel code is modified or it is

what instrumented but in case of interrupt abstraction, the entire kernel is made preemptable

and a separate layer is inserted which we call as abstraction, hardware abstraction layer this

layer it intercepts and manages the hardware interrupts.

So, this hardware abstraction layer it has the complete control over the hardware interrupts So,

who does this? So, this hardware abstraction layer it has the complete control over the hardware

interrupts. So, under the real-time scheduler, so, in case of this interrupt abstraction under the

real-time scheduler, the Linux kernel runs as a low priority task. So, there are two kernels you

are observing. One is this Linux kernel, maybe under the real-time kernel. So, here under the

real-time scheduler, the Linux kernel runs as a low priority task.

(Refer Slide Time: 05:59)

Let us quickly look at the limitations of the preemption implement model and the limitations

of this interruption abstraction model or the interrupt abstraction model. First, we will see the

limitations of the preemption improvement model. So, this approach it increases preemptability

in the Linux kernel. So, we can say that this preemption improvement model, this approach it

increases the preemptability in the Linux kernel, it is guarantee the longest measure interrupt

latency.

The preemption improvement model it gives guarantee that the longest time measured the

interrupt latency is there. It guarantees the longest measured interrupt latency, but the limitation

is that it does not provide a guarantee about the maximum latency. It does not give guarantee,

it does not provide guarantee about the maximum latency why, because it is difficult to examine

each and every possible code paths in the kernel.

It is very much difficult to examine each and every possible code path in the kernel that is why

it does not provide a guarantee about the maximum latency. So, the hard real-time performance

guarantees cannot be made, also in this preemption improvement model another drawback is

that the hard real-time performance guarantees it cannot be made, it cannot be insured in case

of the preemption implement model.

(Refer Slide Time: 07:12)

So let us now see the limitations of the interrupt abstraction model. So, here I have already told

you in this interrupt abstraction model the Linux kernel runs on modified, the Linux kernel

runs on a modified. The kernel loadable modules they actually include the deal with the real-

time tasks, the kernel loadable modules are the real-time tasks they are written maybe in form

of the real-time tasks they are written in the form of the kernel loadable modules.

 The APIs are used for real-time task, so for real-time task, the real-time task so many API's

are used. So, the real-time you know that nowadays the real-time applications they are

becoming more and more complex. As they are becoming popular they are also becoming more

and more complex. So, in this interrupt abstraction model, what are the keys to build, to develop

the complex real-time applications. So some of these what keys are like, you have to provide a

memory protection, you have to provide efficient resource management.

We have to provide process isolation these are the key issues these are the major challenges to

build the complex applications using the interrupt abstraction model. So, they are the important

issue they are the key challenges or the major issues for building real complex real-time

applications.

(Refer Slide Time: 08:39)

Now let us see another variation that is called as RTAI. It stands for real-time applications

interface. The underlying architecture for RT-Linux and for RTAI. RT-Linux means this real-

time version of Linux. So, the underlying architecture for RT-Linux and RTAI are quite similar.

For both the systems that is RTAI and RT-Linux, the Linux operating system is run as the

lowest priority tasks of the real-time kernel. For both RTAI and RT-Linux, the Linux operating

system is run as what not the highest priority, it runs as the Linux operating system is run as

the lowest priority task of the real-time kernel.

(Refer Slide Time: 09:20)

So now, let us see how this what task communicate in RTAI, the real-time task in RTAI they

communicate with ordinary Linux processes through a shared memory and this RTAI limits

the changes to the standard Linux kernel. RTAI limits the changes that are to be made to the

standard Linux kernel, how it does this. So, just like I have told you HAL in case of this what

interruption interrupt abstraction approach. So, this RTAI limits the changes to the standard

Linux kernel by adding a separate layer called as this hardware abstraction layer. In contrast to

what RT-Linux does?

So, in RTAI or RTAI limits the changes to the standard Linux kernel how? By adding a separate

layer called as this hardware abstraction layer but in RT-Linux what happens it applies or RT-

Linux applies most changes directly to the kernel source files. So, in case of RT-Linux, what

it does it applies the almost all of the changes directly, to what, to the kernel source files,

whereas RTAI limits the changes to the standard Linux kernel. This is how these two operating

systems they are different. Now let us see details about this RT-Linux because this is a very a

commonly used operating system in the industry or even in academics.

(Refer Slide Time: 10:43)

So let us see details of RT-Linux. So, this RT kernel intercepts all the interrupts. I have already

told you that Linux is a general-purpose operating system it can be made what real-time

oriented the real-time kernel it intercepts all interrupts that means if an interrupt is to cause a

real-time task to run, the real-time kernel it preempts Linux kernel, if Linux is running at that

time if it is not running then it is fine.

But if Linux is running at that time and an interrupt is to cause the real-time task to run then

the real-time kernel it preempts the Linux and what does it do it lets the real-time tasks to run

so then it will allow the real-time tasks to run. So, how does it look like you can see that these

at the bottom layer this hardware layer is there on the other side Linux is there. So, this RT

kernel it sits in between this hardware and the Linux. You can mark that this RT kernel it sits

in between the hardware and the Linux. This is how this RT-Linux the architecture of the RT-

Linux looks like.

(Refer Slide Time: 11:52)

So, in case of the RT-Linux different modules of the kernel can be selectively loaded to fit into

the available memory, you may not require you need not what a load almost all of the modules,

what you can do, only those modules are required for you they can be fit into, they can be

loaded.

So different modules of the kernel can be selectively loaded depending upon your requirement

which are very much important relevant these modules can be loaded in order to fit into the

available memory. Both fixed and dynamic priority levels are supported.

We know that in order to make it real-time we require also static priority levels, along with

dynamic priority levels. So, in case of this RT-Linux both fixed that means static as well as

dynamic priority levels are supported. The context switch time in the order of 15 microsecond

in case of RT-Linux.

(Refer Slide Time: 12:43)

Let us see what is the biggest advantage. The biggest advantage I have already told you this

Linux is a general-purpose software and is a free software. The biggest advantage of RT-Linux

is that the source code is available, the source code is available online and if a specific driver

or a specific part of the kernel is known to be causing undesirable delay then what he can do

simply that that code can be fine-tuned.

This is the advantage of RT-Linux since the source code is available, if a specific driver or a

specific part of the kernel is known to be causing undesirable delay, it is giving you some

delays then the code can be easily fine-tuned.

(Refer Slide Time: 13:23)

Let us see this Linux kernel architecture then you will see this RT Linux kernel architecture

then you will compare. In this Linux kernel architecture what is happening you see at the

bottom layer the hardware is there and the top layer the user processes U1, U2, U3 are the user

processes and in between that the Linux kernel is there and in the Linux kernel you can see

there are several device drivers available and on top of this the system libraries are there.

The various user processes they can communicate they interact to the Linux kernel through

these system libraries. Then this Linux kernel can interact with the hardware or the device

drivers present in the Linux kernel they can interact with the hardware through what you can

say IO operations and hardware interrupts. This is how the Linux kernel looks like.

(Refer Slide Time: 14:20)

Then let us see how does this RT-Linux kernel look like please mark the difference. So, in case

of this RT-Linux at the bottom layer hardware is there and on top of the hardware instead of

having the Linux we are having RT-Linux plug in. Just see compared here it was what it was

there was this Linux kernel in case of Linux kernel above the hardware layer the Linux kernel

it there and so many device drivers out there but in case of RT-Linux you can see, so on top of

this, the RT-Linux plug in is there.

And there are several real-time schedulers in this RT Linux and whatever they are earlier in the

case of the device, what simple Linux kernel, so here Linux kernel, in case of the RT-Linux

the Linux kernel is executed in the background. So, in between or above the hardware the RT-

Linux is there and the Linux is executed in the background, it communicates with the RT-Linux

through various IO operations on software interrupts.

And this RT-Linux plugin it communicates it interacts with the hardware through various IO

operations on the hardware interrupts. This the RT-scheduler the real-time scheduler presents

in this, the real-time scheduler present in this RT-Linux plug in. So, there may be several, real-

time schedulers or at least there is one the real-time scheduler. The real-time scheduler present

in the RT-Linux plugin, so, it schedules all these real-time tasks. The real-time tasks they can

also directly assess the hardware. So, this is how the RT-Linux kernel it looks like. Please mark

the difference between these what Linux kernel and the RT-Linux kernel.

(Refer Slide Time: 16:00)

Then we will see the performance improvement in RT-Linux. In case of the RT-Linux the

system calls normally take a very long time to change the mode and preempt. So, how then

how this overhead can be eliminated, how that can be brought improvement in the performance

in RT-Linux. So, this overhead as I have already told you overhead means what?

The system call or the system calls, they are normally taking a very long period of time to

change the mode and the preempt. So, this overhead can be reduced can be eliminated this

overhead can be eliminated by running the real-time process in kernel space. So, if you can run

if you can execute the real-time processes in the kernel space, then perhaps this overhead can

be eliminated and the system calls will not take very long time.

So, this overhead can be eliminated by running the real-time processes in kernel space. So, I

have already told you this overhead can be eliminated if the real-time processes can be executed

in the kernel space.

(Refer Slide Time: 16:51)

Let us quickly see what are the benefits you will get if we can execute the real-time tasks in

the kernel space. First one first advantage is that it prevents the threads from being swapped

out. Then the threads are executed in a processor supervisor mode.

And the threads have full access to the underlying software. We are discussing the advantages

of executing the real-time tasks in kernel space. So, the threads are executed in the processor

supervisor mode and they have full access to the underlying hardware. So, the real-time

operating system and the application share are both the real-time operating system and the

application they share a single address space. Due to using or due to executing the real-time

tasks in kernel space.

The real-time operating system and the application both they share a single address space. So,

now the system call becomes a simple function call because I have already told you earlier that

the system calls normally, they take very long time, but this overhead can be eliminated or

reduced by learning the real-time process in the kernel space.

So, by executing the real-time task in the kernel space, so here the real-time operating system

on the application they are sharing the single address space and hence as a result the system

call just to becomes a very simple function call. You may remember that the software interrupt

has a higher overhead. So, this is these are the advantages that we can get by executing the real-

time tasks in the kernel space.

(Refer Slide Time: 18:24)

Now again, I go back to our point where I have left the performance improvement in RT-Linux.

So, RT-Linux scheduler it treats the Linux kernel as the lowest priority level, real-time task.

This I have already told you. Please remember that this RT-Linux scheduler, it always treats

the Linux kernel as the lowest priority real-time tasks. Here, the users can use their own

schedulers.

In RT-Linux, the users, they can use their own scheduler and these schedulers that can be used

as can be written as a loadable kernel module, So, the users can use their own schedulers, these

schedulers are used as loadable kernel modules. This thing makes it possible to experiment

different scheduling policies.

So, you know, there are different scheduling policies, you want to experiment with all those

different scheduling policies. So, if you can use your own scheduler, if it can be used as a

loadable kernel module, then as a programmer, it will be possible to experiment with the

different scheduling policies. So, these are some of the advantages you can say, of this RT-

Linux.

(Refer Slide Time: 19:31)

Now let us see how does the timers are provided, how does the timers work in RT-Linux? You

know that timing inaccuracy is they cause deviation from the planed schedule. If the time

service it is provided or the timing it is provided is inaccurate then obviously it will cause a

what deviation from the planed schedule. The timing inaccuracies they cause the what

deviation from the planed schedule.

This may result in task release and completion jitter. If the timings are inaccurate then this will

result in task release and completion jitter. So, that way I have already told you somewhat you

can say roughly delay. So, the standard desktop Linux programs in standard desktop Linux

programs the hardware timer interrupts occurs at normally 100 hertz for example 10

milliseconds precision but RT-Linux can be used or the RT-Linux can use the hardware clock

to provide a 1 microsecond precision.

So, in case of the standard desktop Linux programs, the hardware timer interrupts occur at 100

megahertz for example 10 millisecond precision. But the real-time Linux can use the hardware

clock to provide a finer precision of the order of say 1 microsecond precision here a

programmable interval timer for example 8354 it is used. So, this is how the timers in RT-

Linux they work.

(Refer Slide Time: 20:57)

Then let us see how IPC works in RT-Linux. How this inter process communication was in

RT-Linux, the Linux kernel can be preempted by any real-time tasks that I have already told

you. So, you see RT-Linux there are two kernels Linux kernel and what real-time kernel that

is why this RT-Linux is known as a dual kernel, here there are two kernels Linux kernel and

RT real-time kernel.

Now let us discuss how this inter process communication occurs in RT-Linux. The Linux

kernel can be preempted by any real-time task, so the communication using the standard Linux

preemptive is not a satisfactory option. So, since this Linux kernel it can be preempted by any

real-time tasks, so making communication using the standard Linux preemptives it is not of

course a satisfactory opening option. So, what you can do? now let us see the simple FIFO

buffers are used for inter process communications. So, in this RT-Linux simple FIFO buffers

they are used for the inter process communications.

(Refer Slide Time: 21:59)

Now at the end let us quickly look at these after shortcomings of RT-Linux, what are the

possible disadvantages? First one is the duplicated coding effort, what do you mean by

duplicated coding effort? So, something you have to write twice the coding effort is just

duplicated. Tasks cannot make full use of existing Linux system services. So, what are the

existing Linux system services or file systems networking etcetera.

So, the tasks in RT-Linux they cannot make full use of the existing Linux system services. So,

you have to again write down the code for same. So, you are putting duplicated code, you are

making duplicated the coding effort, the coding effort is duplicated. Then fragile execution

environment. The processes run in unprotected kernel space. That is another major

disadvantage of RT-Linux.

The processes in RT-Linux, they run in unprotected kernel space, which is not desirable, then

programs need to be written using a small subset of POSIX API, this RT-Linux does not use

all the functionalities of this or all the APIs of POSIX, it just uses a small subset of POSIX

API. So, then what will happen for complex real-time applications you cannot write because it

is using only a small set of POSIX-API. So, you cannot write what complex real-time

applications using this RT-Linux.

So, programs need to be written in RT-Linux programs need to be written using a very small

subset of POSIX API and hence moving the existing Linux code to RT environment becomes

difficult. You have to again write. It is very much difficult to write the complex real-time

applications from the moving the existing Linux code to RT environment it becomes very much

difficult. So, these are some of the possible shortcomings of RT-Linux.

(Refer Slide Time: 23:43)

So, this is something about this RT-Linux, then we will go to another real-time operating

system called MICROC operating system 2, even if this mu, you can use for MICROC. So,

MICROC operating system or mu C operate OS2 it represents a MICROC operating system 2.

So, microcontrollers and this MC stands for microcontroller operating system version two, so

MICROC operating system 2 stands for microcontroller operating systems version 2 in place

of micro you can use this symbol mu, this a very small real-time kernel.

And here the memory footprint is about just 20 kilobytes for a fully function kernel because it

is a very small real time kernel. So, this memory size is about to just 20 kilobytes for a fully

functional kernel. The source code about the source code is about just 5500 lines and it is

written mostly in ANSI C.

It is a source is open but not free for commercial usage. You can get the source from the net

but not for commercial usages only for academic research usages you can use it. So, its source

code is open but not free for commercial usages. And it is only available for academic and

research applications.

(Refer Slide Time: 24:59)

Let us see the details about MICROC operating system 2. So, it is also known as mu C OS 2

or UCOS2 any notation you can use. This MICROC operating system has been designed

initially as a small footprint in real-time pre-emptive. It was designed for embedded use on the

8-bit platforms on upwards. So, initially this MICROC, it was designed for embedded

applications, for embedded use on 8-bit platform upwards.

This uses a pre-emptive real-time and a multitasking kernel. Over 100 microprocessors are

supported by MICROC OS 2. In MICROC OS 2, round robin scheduling is not supported

please see this MICROC OS 2 in this operating system round robin scheduling it is not

supported. The memory management is performed using fixed size partition. So, in case of

MICROC OS 2, the memory management how it is performed? It performed using fixed size

partitions.

(Refer Slide Time: 26:02)

We will see another real-time operating system that is ECOS. So, here you have seen a

MICROC OS2, here you will see ECOS. ECOS stands for embedded configurable operating

system. This is also an open source. ECOS this is an open source, royalty-free RTOS. It is

intended for embedded applications also, this operating system is highly configurable, it is

highly configurable, it allows the operating system to be customized to application

requirements you can easily customize this, what operating system according to your own

needs according to your own requirements.

So, this is highly configurable, it allows the operating system to be customized to the

application needs or the application requirements you can get this ECOS from this website

because this is freely available. The ECOS is targeted at high volume applications. So, normally

when your applications or the applications you are using they are of very high volume then

ECOS is targeted those applications. So, ECOS is targeted at high volume applications such as

for customer electronics, for telecommunications, for automotive, automotive, etcetera. For

those types of high-volume applications ECOS can be used.

(Refer Slide Time: 27:14)

So, the ECOS here or the real-time tasks run in kernel mode. Please remember in ECOS the

real-time tasks run in kernel mode, that is no user mode. ECOS is normally implemented using

C plus plus. The features those are supported by ECOS are as follows. So, choice of scheduling

algorithm. So, in ECOS, ECOS supports choice of scheduling algorithm, you can choose your

scheduling algorithm you can make choice of the scheduling algorithm that you like that you

want to use.

Choice of memory applications-allocation strategies, similarly you can use your preferred

memory allocation strategies. Also, it supports the timers and counters, it also supports for the

interrupts and the DSRs. And also, exception handling is provided is supported in ECOS

supports exception handling, and host debug and communication support. So, ECOS also

support the host debug and communication support. So, these are some of the specific features

of ECOS, we will not go into details of ECOS.

(Refer Slide Time: 28:18)

Now, let us see another real-time operating system which is called VRTX, very popular

operating system. VRTX stands for versatile real-time executive. It was developed by Ready

Systems in year in 1980s, then it was acquired by Mentor Graphics in 1995. Then, let us say

VRTX is suitable for which operating system, for which kinds of systems? So, normally VRTX

is used for SOC architecture, you know SOC system on a chip. So, VRTX is suitable for system

on a chip or SOC architectures. It is also very much suitable for traditional board based

embedded systems.

So, originally the VRTX its size was just 4KB, originally it was 4KB in size. Now, since this

size is very small, it did not support many required functionalities only the basic functionalities

it has supported, it could not be used as a real-time operating system because it size is less, it

does not support many required functionalities, so it could not be used as a full real-time

operating system. So, this VRTX actually comes in two versions like VRTX SA and VRTX

MC. Let us first see VRTX MC then we will see about VRTX SA.

(Refer Slide Time: 29:35)

VRTX MC stands for VRTX micro controller, this VRTX MC it is optimized for low power

consumption and ROM and RAM sizes. The kernel in VRTX MC it occupies just only a few

kilobytes. So, why it was intended VRTX MC it was intended for embedded applications such

as a cell phone. This was the first commercial real-time operating system certified by what,

FAA, Federal Aviation Authority for safety critical applications such as avionics.

So, please remember very much important, this VRTX MC was the first commercial real-time

operating system certified by FAA Federal Aviation Authority for which type of applications,

for safety critical applications such as avionics. I hope you have already known what is a safety

critical application? Examples like your avionics systems, a rocket is flying or the aero plane

is flying it is what a navigation system these are all examples of safety critical applications.

(Refer Slide Time: 30:41)

So, what are the targeted products for VRTX MC? VRTX MC was targeted for the products

where the memory efficiency and low power consumption is important. So, the cases or the

products where memory efficiency is very much important, the power consumption should be

very low. For those types of cases, VRTX MC was targeted.

Let us see some of the quick examples of the products where VRTX MC was used. So, the

product examples were VRTX MC can be used are such as set-top boxes, digital cameras, video

game systems, routers, and handheld computing devices. You can see that many Motorola cell

phone systems they use VRTX MC. So, many of these cell phones are produced by Motorola

they use VRTX MC.

(Refer Slide Time: 31:32)

Then quickly let us see at VRTX SA. So, here SA stands for what, SA stands for scalable

architecture. So, this VRTX SA is a functional superset of the VRTX MC which you have

already seen. So, besides that, this VRTX SA it is POSIX-RT compliant, we have already seen

what POSIX is.

This VRTX SA is designed for medium and large-scale applications, VRTX SA is designed

for medium and large applications. So, in VRTX, there is extensive IO support, memory

protection is also provided in VRTX SA. There is reduced interrupt and text switch latency in

VRTX SA, these are some of the unique characteristics of VRTX SA.

(Refer Slide Time: 32:17)

Some of the other features let us see of VRTX SA. It supports for priority inheritance and

multi-processing. So, I hope what is priority inheritance etcetera you have already known

earlier. VRTX SA supports for priority inheritance and multi-processing. Here, in VRTX SA

the system calls fully preemptable and deterministic. In VRTX SA the system calls are fully

preemptable and deterministic. So, one of the examples use of VRTX SA is the Hubble Space

Telescope, you can see a telescope here, this Hubble Space Telescope in this telescope this

VRTX SA real time system was used.

(Refer Slide Time: 32:58)

So, today we have discussed the two main approaches for making Linux real-time, we have

explored the real-time Linux performance improvement, we have discussed about the uses of

timers in RT-Linux, also how message passing can be done, how inter process communication

can be done in real-time Linux we have seen, we have seen what two other earlier time

operating system such as mu C operating system 2, Micro C operating system 2 and VRTX,

we have highlighted the different aspects about mu C, Micro C operating system 2.

We have also discussed about the features of the embedded configuration operating system or

ECOS. We have also presented another operating system VRTX, the different features of

VRTX, two variants VRTX MC and VRTX SA, those things we have discussed today. So, that

is what we have discussed on today. You have mainly discussed some of the, some survey on

the commonly available real-time operating systems in the market.

(Refer Slide Time: 34:00)

We have taken those things from these two books. Thank you very much.

