
Real-Time Systems

Professor Durga Prasad Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Lecture 37: A Few Basics in Real-Time Operating Systems

Good morning to all of you. Now, let us today, we will start the new topic, a new chapter on

Real-Time Systems. That is, today, we will discuss about some of the commercial real-time

operating systems available. But before going to the commercial, the available commercial

real-time systems, we should first look at some of the few basics in real-time operating systems,

then we will go to the popularly available some of the commercial real-time operating systems.

(Refer Slide Time: 00:50)

Today, we basically concept, first, what are the basic requirements of an RTOS, that means, a

real-time operating system should support what kinds of things, which requirements. For

example, interrupt latency, virtual memory, flash memory, et cetera. Then, we will discuss a

structure of an real-time operating system, and we will discuss then the spectrum of real-time

operating systems how the real-time operating systems can be categorized into different

classes, and some of the popularly available time operating systems.

(Refer Slide Time: 01:22)

So, some of the key words you we will use are, what do you mean by interrupt latency? What

do you mean by memory protection and memory locking? What is s flash memory? What is

BSP, BSP stands for the Board Support Package. What is the spectrum of RTOS, et cetera,

these things we will use?

(Refer Slide Time: 01:39)

So, now, let us first start with the basic requirements an ROTS. I hope, you must have read a

paper on operating systems in your earlier semesters. So, you might think of this operating

system as a prerequisite for the any advanced operating system such as real-time operating

system or distributed operating system or graphics operating system for any advanced real-

time operating systems you must have to know the basic concepts of operating systems.

So, I requested, those who have not studied they are forgotten please have a look on the basics

of the operating systems then it will be easier for you to understand the concepts of the real-

time operating system. So, now let us first see, what should be the basic requirements upon a

real-time operating system?

First, so the real-time operating system must support for real-time priority levels. I hope, in

earlier classes you have known what do you mean by priority levels. How the priority levels

can be assigned to the real-time tasks et cetera. So, this is one of the important thing every real-

time operating system or support for real-time priority levels.

Similarly, every real-time operating system or support for what real-time task scheduling policy

you have known dependent real-time task scheduling policies such as RMA, EDF et cetera. So,

it must, the real-time operating system or support for the real-time task scheduling policy.

Similarly, it must support for resource sharing protocols. Various resource sharing protocols,

you have seen like PIP, HLP, PCP, et cetera. So, the operating system, the real-time operating

system or support for these resource sharing protocols.

Similarly, the preemption times you might have heard about these normal operating system.

So, for real-time operating system, it should have low task preemption times may be of the

order of some million microseconds, it should not be more than that. And then let us see what

should support the interrupt latency requirements. We will see, whether it should be lower or

higher I will discuss in the subsequent slides. So, what is the interrupt latency requirements?

Then it should support the memory locking, it should support the better memory management.

And since, the important component of real-time services is the real time. So, what should the

time services? So, we must know about the time services that the RTOS must support for, we

should know the timers, also, how the file systems can be supported.

Basically, it should be real-time file system support, so the RTOS must support real-time file

system. And similarly, the real time operating system must support the device interfacing. So,

these are some of the basic requirements for an operating system. Now, let us go one by one.

(Refer Slide Time: 04:25)

First, we will see, the first requirement is support for real-time priority levels. So, you know

traditionally about static task priority to level and dynamic task priority level. In static task

product level, actually, this is explicitly made for the real-time priority level or this is meant

for the real-time systems. So, the operating system, so in static task priority level, what is

happening, the operating system, does not change the program assign task priority.

Once the programmer has assigned some priority to the task, the operating system will not

change the priority. This is called a static task priority level, so, this is also known as real-time

price level. Let us see, what happens in dynamically changing tax priority. So, as its names are

just dynamic. So, here, once the programmer assigns a priority to the task, the operating system

can change it.

So, that is why, this is known as dynamically changing tax priority. And this feature was

supported in traditional operating systems, but for modern real-time operating systems we

require static task writer level. So, why the traditional operating systems they were supporting

this dynamically changing task priority, because, the objective was to maximize the system

throughput, that is why the traditional operating systems they are supporting the dynamically

changing tax priority.

(Refer Slide Time: 05:44)

Now, let us go to the next feature. I have already told you, real-time operating systems should

support task scheduling, and they should support resource sharing worth services, resource

sharing protocols. So, the real-time operating system must allow programmers to deploy real-

time task schedulers, and examples of real time should last you have also already known. RMA

Rate Monitoring Algorithm, EDF Earliest Deadline First or any customized task schedulers

they should be supported by your real-time operating systems.

Similarly, your real time operating system must support resource sharing protocols such as

PCP, that you have already known. So, why the real-time systems, operating systems must

support these resource sharing protocols because they should support the resource sharing

protocols in order to minimize the priority inversions during the resource sharing among the

real-time task, so that is why the real-time operating system they should support PCP.

What is PIP, what is HLP, what is PCP, we have already known in the earlier classes, so we

will not discuss here. Only you should note that, the real-time operating system should support

these types of resource sharing protocols.

(Refer Slide Time: 06:52)

Now, next, next requirement is preemption time. Now, let us say, what should be the task

preemption time in the real-time operating systems? So, in real-time task preemption in real

time systems the tax preemption time should be low, it should be very low. So, why? Let us

say, the real time operating system task preemption time should be of the order of a few

microseconds, that means, it should be very low.

So, the worst case task preemption times for traditional operating systems it was of the order

of a second, it was a little bit high. In case of a traditional operating systems the worst case task

preemption was of the order of a second, which was high, but in real-time operating system the

preemption time should be low, it should be of the order of a few microseconds.

So, why in traditional operating systems there is a significantly larger latency? How? Why it

was caused? The significantly larger latency, it was caused why, by a non-preemptive kernel.

So, since we are using non-preemptive kernels, so that is why, the latency was a little bit large.

The significantly larger latency was caused by using or due to use of a non-preemptive kernel.

(Refer Slide Time: 08:06)

Now, let us say, the interrupt latency requirements. What do you mean by interrupt latency?

First, let us understand. So, interrupt latency means, it is the time delay between the occurrence

of one interrupt and running up the corresponding ISR. What is ISR? Interrupt service routine.

So, the time delay between the occurrence of an interrupt.

I hope, you have always known, what is an interrupt, what is ISR in the traditional operating

systems. Only I am extending to real-time operating system. The time delay between the

occurrence of an interrupt and the running up, the corresponding interrupt service routine is

called interrupt latency. You can show it graphically like this. So, interrupt latency can be

shown graphical like this. The time delay between the occurrence of an interrupt and.

So, suppose, here, the interrupt has occurred, and when the corresponding ISR has started. Say,

at this point the corresponding interrupt service routine has been started running. So, this

period, this gap is known as interrupt latency. What should be the upper bound of the interrupt

latency? The upper bound on interrupt latency must be bounded, and less than a few

microseconds.

I have already told you in the earlier slide that this. This is reading preemption time. So, but

regarding latency requirement it should be low. The upper bound, in case of real-time operating

systems the upper bound on interrupt latency it should be, it must be bounded, and it should be

and it must be less than a few microseconds.

(Refer Slide Time: 09:35)

Then, how it can be achieved? How low interrupt latency can be achieved? So, in order to

achieve low interrupt latency, what do you do, perform a significant chunk of ISR or perform

a backup ISR processing, how, as a queued low priority tasks, which is called the deferred

procedure caller DPC. I think, DPC you must have known earlier in operating systems.

So, in order to achieve low interrupt latency, what do you do, perform the backup ISR

processing or perform a backup ISR processing or perform a significant chunk of ISR

processing by as a queued lower priority task, which we call our default procedure call or DPC.

Then this, RTOS must support for nested interrupts. Not only the preemptive kernel routine.

So, we know that in this RTOS actually, we are using this preemptive kernels, so the real-time

operating systems should support for nested interrupts, not only, the preemptive kernel

routines, it should be preemptive interrupt servicing as well. So, it should support for nested

interrupts. Not only for this preemptable kernel routines, also should be preemptive during the

interrupt servicing, as well.

(Refer Slide Time: 10:50)

Now, let us see, what are the requirements of memory management. What kind of things should

be supported by RTOS on memory management? Let us see what happens first in the traditional

operating system. In traditional operating system the, we are using what, the virtual memory

and memory protection schemes, is it not it.

So, traditional operating systems, they support virtual memory, and memory protection

features. But in embedded real-time operating systems you will see these features, such as,

virtual memory and memory protection features, these are not supported by embedded real-

time operating systems. Why? Because these features that is virtual memory and memory

protection features, they increase the worst-case memory access time drastically, and they also

result in larger memory access dealer.

They will result in what? They will result in large or very large memory access jitter. What is

jitter? Jitter you can say roughly it is delay. You have known already what a jitter may. What

do you mean by jitter, you have known earlier. Roughly, you can say jitter means, delay. So,

these are the two reasons why virtual memory and memory protection features these are not

supported by the embedded real-time operating systems.

So, let us say, since in these traditional operating systems, they use virtual memory and memory

protection features, and they are not supported by embedded RTOS. Let us first see, what do

you mean by virtual memory?

(Refer Slide Time: 12:13)

So, virtual memory means, this virtual memory technique it helps reduce the average memory

access time. The virtual memory, why it was used in the traditional operating systems? Virtual

memory techniques, they help reduce the average memory access time that is why they are

used in traditional operating systems.

Since virtual memory techniques, they help reduce average memory access time that is why

they were using traditional operating systems. But the drawback is that, the virtual memory it

degrades the worst-case memory access time, that is one of the drawbacks. Perhaps, this is one

and the second drawback is that, a page faults incur significant latency. Several page faults will

occur, these page faults they incur significant latency.

Due to these two reasons, perhaps, so that is why virtual memory is not used in embedded real

time operating systems. So, now, let us say, without virtual memory support what will happen?

Without virtual memory support providing memory protection becomes difficult that you have

already known in traditional operating systems. So, without virtual memory support, providing

the memory protection it becomes much more difficult. Also, the memory fragment becomes

a problem.

I hope, you have already known memory fragmentation in traditional operating system. So,

without virtual memory support the memory fragmentation, it also becomes a problem. So,

these are some of the problems that we may face if we will not use, or since virtual memory is

not used in this embedded real-time operating systems.

(Refer Slide Time: 13:43)

Now, I will ask the question. Does any real-time operating system virtual memory? Because I

have told you that the embedded what real-time operating systems, they do not support virtual

memory. But still the question is, does any real time operating system support virtual memory?

And the answer is, yes. Which kind of real-time operating system they support virtual memory?

Let us say, the real-time operating system for large applications they need to support virtual

memory. If you are developing some real-time system for very large applications, they need to

support virtual memory. Why? What will be the problem, if they will not support the virtual

memory? Because of the following two reasons.

So, the real-time system for large applications, they should support virtual memory in order to

meet the memory demands of the heavyweight real-time tasks. So, what will be the memory

demand? I hope, you have already known lightweight real-time tasks and heavyweight real-

time tasks. So, in order to meet the memory demands, the memory requirements of

heavyweight real-time tasks, the real-time operating systems for large applications, they should

support virtual memory.

Similarly, another region is that, support this virtual memory, they support running non-real

time applications such as a text-editors, email clients et cetera. So, if you are developing a real-

time system for large applications, they might require what running non-real time applications

such as text-editors an email client et cetera.

So, in order to support the running up non-real time applications such as text editors and email

clients et cetera, the real-time systems for large applications must support virtual memory. So,

these are some of the reasons, why the large application, the real-time operating system for

large applications, they should support virtual memory.

(Refer Slide Time: 15:30)

Now, let us go to the memory protection aspects of these real-time operating systems, what are

the pros and cons. So, advantages of a single address space are as follows. So, if you will use

a single address space, it saves the memory bits, and also, results in light weight system calls.

We require the light weight system call. So, if you will use single address space, it saves

memory bits and also it results in a light weight system calls.

For very small embedded applications the memory overhead can be unacceptable. But if we

will use this single address space. So, for very small embedded applications memory overhead

can be unacceptable. Without memory protection what will happen? Without memory

protection, the cost of developing and testing a program increases.

So, it will not use memory protection then the cost of developing and testing a program will

increase tremendously. Also, the maintenance cost increases. If we will not use any memory

protection scheme, the maintenance cost of the software, the maintenance cost of the real-time

operating system or software it will increase.

(Refer Slide Time: 16:39)

Now let us go to the next aspect, that is, memory locking support. I hope, memory locking you

have already seen in case of traditional operating systems. So, in memory locking, what does

it do? Why it is used? The memory locking, it prevents a page from being swapped from

memory to hard disk. So, if you are using memory locking, then you can prevent a page from

being swapped from where, from memory to hard disk, that is why what this memory locking

is there.

In the absence of the memory locking support what will happen? In the absence of memory

locking support even critical tasks can suffer large memory access jitter. So, if you do not have

memory locking support in your operating system, then, even these critical tasks, they may

suffer from a larger memory access jitter. So, that is why that memory locking what facility

should be supported by real-time operating systems.

(Refer Slide Time: 17:33)

Now, let us say, the support for asynchronous I/O. I hope, you know two kinds of I/O

operations, synchronous I/O operations and asynchronous I/O operations. Those things you

must have studied in the normal operating system. The traditional system calls such read and

write they perform synchronous I/O operations. So, the traditional system call, such as, read

write et cetera they perform synchronous I/O.

I hope, you know the difference between synchronous and asynchronous I/O in case of your

normal operating system. Those who have forgotten, please again look at them. So, these

traditional read and write system calls. When you are using the traditional read and write system

calls here the process is blocked highly it waits for the results.

The process that is running it is blocked while it is waiting for the result. This is what is

happening in synchronous, what, I/O operations. But in asynchronous I/O operations, what,

these are, so in synchronous the process is blocked, but in asynchronous I/O the processes are

non-blocked, they are non-blocking I/O.

What do you mean by non-blocking I/O? That is, the execution of a process it is not blocked,

as it is happening in the case of the traditional systems or when you are using the read/write

system calls in the traditional operating systems. So, in contrast in a synchronous I/O they are

non-blocking, that is, execution of a process it is not blocked as it does not wait for the results

of the system call. Since it does not wait for the results of the system call the execution process

is not blocked.

Instead, what it does? Instead, it can continue or instead, it continues executing, and then, it

receives the results of the I/O operation later on when they are available. So, examples of

asynchronous I/O. In synchronous, you are using just read and write, in a synchronous I/O the

examples are aio. So, aio stands for synchronous I/O read and asynchronous I/O write, these

are the system calls, these are examples of asynchronous I/O. So, your real-time operating

system must support for these asynchronous operations.

(Refer Slide Time: 19:45)

Now, let us quickly look at the real time operating system for embedded systems. So, embedded

systems they have small memories, is it not it. The embedded systems you are using, they are,

normally, they have small memories. Why? Because the operating system with large footprints

cannot be used in embedded applications.

Take the example of remember your mobile phone. Your mobile phone is a very good example

of embedded real-time system. And if your embedded that for your mobile phone you know

how much memory space you are using their mobile phone. If it will be of very high capacity

then what will the problem?

So, normally, the operating system with large footprints, they cannot be used in the embedded

application. So, that is why, the embedded systems, they have small memories. And also, power

saving feature is desirable in what the real-time system, real-time operating systems for

embedded systems, the memory should be less as well as there should be power saving feature,

it is desirable. Real-time operating system and application programs are stored in a flash

memory.

So, normally, the real-time operating system and the application programs, they are stored in a

flash memory, still, RA M is needed otherwise, the memory access time would be very much

high. And you know, if the memory access times would be very high then what will the

consequence? The programs would run very slow.

So that is why, what RAM is also needed otherwise the memory access times would be very

high and the programs would run very slow. Now, as I have already told you. RTOS and the

application programs, they are stored in a flash memory. We should know how to do flash

member. Let us look at quickly what is your flash memory.

(Refer Slide Time: 21:27)

So, flash memory is a form of EEPROM. I hope, you know this hierarchy of the read-only

memory, ROM then there is a read-only memory then PROM programmable read-only

memory, then EEPROM is it not it, erasable programmable read-only memory then EEPROM

or we call as E square PROM. Electrically erasable programmable read-only memory.

So, this flash memory, these are basics of what memories you must have read somewhere else

earlier. So, this flash memory, it is a form of EEPROM. However, what is the difference

between class flash and EEPROM? So, it is a form of EEPROM, but it allows a block to be

erased or retain in a single operation or a single flash, that is why it is known as flash memory.

So, here, this memory flash it allows a blog to be erased or written in a single operation as a

single flash that is why this is known as flash memory. So, this flash memory technically this

is known as Floating Gate Avalanche-Injection Metal Oxide Semiconductor or FAMOS. So,

this is a technically known as FAMOS.

(Refer Slide Time: 22:35)

So, here in flash memory, the electrons are trapped in a floating gate. Writing a byte requires

what, creating a new block. If you want to write a byte, then writing a byte requires creating a

new block. The old block is copied along with the byte to be written. So, here, the old block

that is copied along with the byte to be written, so the flash can be written in a system.

Here, the flash can be written in a system in contrast to E square PROM. So, in E square PROM

this was not possible, but in flash memory, flash can be written in this system. The control

circuitry for erasing is much less in comparison to EEPROM leading to higher capacity. So,

these are some of the basic concepts of flash memory, other details you may see yourself from

any other sources.

(Refer Slide Time: 23:23)

Now, let us look at quickly flash memory technology. Even if what, this is very fundamental,

I thought, this will be interesting. You must know, what do you mean by flash memory? What

is the technology used in flash memory? So, let us quickly look at the flash memory technology.

Each flash memory cell, it resembles just like a standard MOSFET transistor. So, except that

here there are two gates.

So, on the top, there is one gate, and on the bottom, there is another gate. On top is the control

gate, we call a CG as in other MOS transistors, but below, this there is a floating gate, and with

insulated all around by an oxide layer. So, please see, how this flash memory it is what being

built. So, this is a simple diagram showing you about this flash memory.

(Refer Slide Time: 24:14)

So, let's go to look what about the flash programming. So, in flash programming an on-voltage

is applied to the control gate, the channel is turned on, then the electrons flow from the source

to the drain assuming that an NMOS transistor is used. So, regarding the avalanche-injection

who can say the followings.

So, here, a few high energy electrons, they jump through the insulating layer onto to the floating

gate. So, the flash memory it reads at a speed a little bit lower than the DRAM, Dynamic RAM

may be of the order of nanoseconds, and flash memory writes. So, it reads at a speed of little

lower than on DRAM, that is, at the order of nanosecond, whereas, flash memory it writes like

DISK, which is of the maybe milliseconds.

(Refer Slide Time: 25:07)

Memory capacity it is increased. How? Memory capacity is increased by reducing the area

dedicated to control erasing. The number of writes is restricted. Why? The number of writes is

restricted due to what we are in insulating the oxide layer. So, in flash memory, it used to take

12-volts to write. Flash memory used to take 12-volts to write, present generation Flash they

operate at 2.7 volt.

So, let us see one more technological logic multi-level flash technology. With precise multi-

level voltage, what happens, it becomes possible to store more than bit per cell. So, if required

to store more than bit per cell, then what this precise multi-level voltage you can use, and with

the use of precise multi-level voltage it becomes possible to store more than one bit per cell.

So, this is regarding little bit fundamental of flash memory. You can read the more details from

any other sources.

(Refer Slide Time: 26:10)

Now, let us quickly look at to what the other important aspect, that is, the structure upon an

RTOS. Normally, this is a typical structure of a real-time operating system. The bottom you

know, the hardware level is there and then the top, the applications we are interacting with the

applications. Then below the applications level, the kernel, they are just like in other operating

systems there is a kernel.

Here also below the application there is a kernel called as RTOS kernel, real-time operating

system kernel. So, in between the real-time operating systems, kernel layer and hardware layer

there is another layer called logic BSP. So, you know the basics of what is hardware, what is

the RTOS kernel and what is applications. We will only discuss here what do you mean by

BSP?

(Refer Slide Time: 26:53)

BSP stands for Board Support Package, this is your logical layer. This is not a physical, so you

can see that is why we have given what like this what structure. So, this is a logical layer present

in between the operating system, is it not it, between the operating system kernel on this

hardware.

So, this package, Board Support Package BSP, it makes an RTOS target-specific. So, due to

the presence of the BSP, it makes a real-time operating system target-specific, then this BSP

also contains the device drivers. We require several device drivers. I have already told you one

of the features that is required for real-time operating system is handling device drivers.

So, this BSP, this contents the device drivers. It is commonly built with a bootloader. So, this

BSP it is commonly built with a bootloader, that is, with some code to support the loading

operating system. So, bootloader et cetera, you had known earlier. So, this BSP it is commonly

built with a bootloader with code to support the loading operating system. This is a little bit

fundamental about the BSP.

(Refer Slide Time: 28:05)

Now, let us quickly look at the last component of today's discussion, that is, the spectrum for

real-time operating systems. What is this spectrum? Let us quickly look at the spectrum for

real-time operating systems. So, depending on the extent to which various desirable features of

an RTOS are available, the available operating systems can be added in the spectrum.

I have already told you several, what required features of real-time operating systems such are

those priority levels and it should support, what is resource sharing. It should support,

schedulers and then latency time, preemption time et cetera, memory management. These are

the requirements I have already told you.

So, depending on the context to which various desirable features of an real-time operating

system, whether they are available to what extent in any real-time operating system, the

available real-time operating systems can be arranged just like in the spectrum. Then, how to

select? Which operating system will be suitable for you? The choice of a specific operating

system would depend on the application characteristics.

So, what is the, what are the characteristics of your application? So, depending on the

application characteristics, you can choose or the choice of a specific operating system can be

met. So, let us see, what is the spectrum for the real-time operating systems

(Refer Slide Time: 29:24)

This is the real-time operating system spectrum. So, you know about hard real-time tasks and

soft real-time talks earlier. So, now, there are different real-time systems. Broadly, if you see

at the bottom level, we can say them are the general purpose operating systems, and at the top

level we, will see that, we call them as real-time operating systems. So, we are migrating from

top to bottom.

If you will see, in top level, we are dealing with the hard real-time task or this, we are dealing

with hard real-time task. And while we are gradually coming down, we are dealing with the

soft real-time task. I hope, you have already known hard real-time task and soft real-time task.

And so, on the middle, so the top portion of the spectrum we call them as real-time operating

systems, and at the bottom side of the spectrum, we call them are the general purpose operating

systems.

So, examples of general-purpose operating systems are like, Linux, Windows NT, et cetera

which can be used also as some of the real-time operating system. They have, they may have

some features of real-time operating systems, but the upper ones they are specifically meant

for real-time systems. These are popularly known as real-time operating systems.

The examples are like VxWorks, Lynx, QNX, RTLIinux, PSOS, Windows CE, et cetera, these

are real-time operating systems, whereas, Linux, Windows NT et cetera these are general-

purpose operating systems. So, in between these real-time operating systems and the general-

purpose operating system, so some gap here, there.

So, this also, the operating system present in these layers, they are actual debatable whether

you will call them real-time or not that is debatable, but this is the broader spectrum of the real-

time operating systems. In the latter part of this classes we will discuss at least one, one or at

least what few popular real-time operating systems available in the market.

(Refer Slide Time: 31:27)

So, today, we have discussed the basic requirements of an real-time operating system, we have

discussed, some of the basic requirements which are interrupt latency, virtual memory your

memory locking, flash memory et cetera, you have seen. We have also discussed what is the

basic structure of an RTOS. We have also presented the spectrum of the real-time systems,

starting from general-purpose operating systems up to the real-time operating systems.

So, these are the things, we have seen. So, one more important thing we have left, that is one

more important requirement is time services that should be provided by real-time operating

systems. And the most important component is timer, clock resolution, so those are coming

under time services, so that requirement we will discuss in the next class. Thank you very

much.

