
Real Time Systems

Professor Durga Prasad Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Lecture 34

Dynamic Allocation of Tasks

Good morning to all of you. So, in last class we have discussed about static allocation of tasks. We

have seen about the different algorithms such as utilization balancing algorithm, next fit algorithm

and then this bin packing algorithm. So, today we will discuss about the dynamic allocation of

tasks, last class also I have highlighted the differences between the static allocation of tasks and

dynamic allocation of tasks. So, before going to the dynamic allocation of tasks, one more this

offline allocation is remaining, let us cover first that one.

(Refer Slide Time: 0:00:56)

So, that is myopic offline scheduling. So, before going to the dynamic allocation of tasks, we will

first discuss about myopic offline scheduling, then we will discuss about a little bit online multi

processor scheduling, then we will go to our actual topic, dynamic allocation of tasks under this

you will see two important algorithms, that is focused addressing and bidding and buddy

algorithm. We will also discuss about another classification of scheduling or task scheduling, task

allocation in multi processor systems that is partition scheduling and global scheduling. Finally,

we will briefly discuss about the fault tolerant scheduling.

(Refer Slide Time: 0:01:33)

Some of the keywords we will use are schedule tree in this myopic offline scheduling, then request

for bids in this focused on addressing technique, under loaded and over loaded in this buddy

algorithm, then partition scheduling and global scheduling.

(Refer Slide Time: 0:01:50)

Let us start with this myopic offline scheduling, previously what algorithms we have seen meant

the bin packing algorithm, they are normally made for the preemptive tasks. So, what is about non-

preemptive tasks, is there any algorithm exists, if there any algorithm available for scheduling of

what non-preemptive tasks is, so that algorithm is myopic offline scheduling.

So, the myopic offline scheduling heuristic is a scheduling algorithm which is meant explicitly for

the non-preemptive task. This algorithm what does it do? So, because see, please remember in my

previous class I have told like in this bin packing algorithm, et cetera, one of the constraint is that

the task that require only one resource, that is the processor time. The task that do not require any

other additional resources except the processor time.

But here this myopic offline scheduling algorithm it takes account not only of the processing needs,

but also of any requirements that the task may have for the additional resources. So, it also handles

additional resources which was not we are considering in these previous algorithms such as bin

packing algorithm.

So, what could be example of this additional, these tasks, that they may have for some requirement

of additional resources? Let us take a small example. A task may need to have exclusive access to

a block up memory or it may need to have control over a printer so these kinds of additional

resources that can be considered in myopic offline scheduling.

So, this MOS, this Myopic Offline Scheduling, why you are calling it as an offline scheduling

algorithm? Because we are here giving, we are giving with, in advance, the set of tasks, their arrival

times, and the execution times and deadlines. So, since the set of tasks their, arrival times,

execution times and deadlines, they are given in advance to us, so that is why this algorithm is

known as an offline algorithm.

(Refer Slide Time: 0:03:55)

Now, let us see some of the process how this myopic offline scheduling takes place. This myopic

offline scheduling, it proceeds by constructing a schedule tree, a tree called as a schedule tree. So,

what do you mean by schedule tree? Obviously schedule tree is a tree, where some nodes are there,

so what does the node represent?

So, each node represents an assignment and scheduling of a sub set of tasks. So, if it is a tree there

must be root node, what does it represent? The root node is just an empty schedule. The root node,

it represents an empty schedule, so what do the children nodes represent? Each child of a node

consists of the schedule of its parent node, extended by one task. So, each child of a node it consists

of what? It consists of the schedule of its parent note, extended by one task.

So, now we will see in a tree some leaf nodes are there, so what do the leaf nodes represent? A

leaf node consists of a schedule of the entire task set. So, whenever we are coming down to the

bottom of the tree, the leaf nodes are present. So, what do they represent? A leaf node, it consists

of a schedule of the entire set of tasks or the entire task set.

So, if there are n tasks the let us see how many n plus 1, how many level will be there, very basic

data structure concept. The schedule tree for a system having n number of task, it consists of n plus

1 levels. So, now let us see suppose there is a level i, what does it represent? So, level i of the tree,

it consists of the nodes, representing the schedules including exactly the i of the task.

So, when we are considering level i, so level i of the tree, it consists of the nodes, representing the

schedules, including exactly i of the task. So, if you are saying the level 2, so level 2 of the tree it

consists of the nodes representing the schedules including exactly 2 of the task.

(Refer Slide Time: 0:06:04)

Now, let us see the algorithm for myopic offline scheduling. So, first you develop the root node. I

have already told you the root node represents an empty schedule that means it corresponds to no

task having been scheduled, because it is the beginning. So, no tasks having been scheduled so far.

So, this root node it will correspond to no task having been scheduled.

Then gradually we will proceed, constructing the tree, so next step is proceed to build the tree from

where? From that point by developing the other nodes. So, how you can develop the other nodes?

A node is developed as per the following process. So, given a node n, suppose you are given a

node n, then what you should do? Try to extend the schedule represented by that node, how? By

one more task.

So, if a node n is given, try to extend the schedule represented by that node, by one or more tasks,

that is you have to pick up one of the as-yet-unscheduled task. So, there are so many tasks, they

are unscheduled, you pick up one of the as-yet-unscheduled tasks and then try to add it to the

schedule represented by node n.

So, pick up one of the as-yet-unscheduled tasks, the tasks which are so far not scheduled and try

to add it to the schedule represented by the node n. So, now the question is how to pick up this one

of the as-yet-unscheduled tasks, here you can use any heuristic, those heuristic may be shall like

the period, deadline, et cetera, you may consider.

Some of the heuristic might be like that, you will take the next task having what the lowest period,

or the task having the earliest deadline, like that. So, these kinds of heuristics you may use to pick

up for any one of the as-yet-unscheduled tasks from the total number of unscheduled task. You

can pick up one by using any heuristics such as say largest execution time or least period or earliest

deadline, et cetera.

Any of these heuristics you can consider for selecting the node or selecting the task from the total

number of unscheduled tasks. The augmented schedule is normally a child of node of n. So, finally

the augmented schedule is a child node of n. So, in this way we have seen how this myopic offline

scheduling algorithm, it works.

(Refer Slide Time: 0:08:34)

So, now we will see, so far the algorithms we have seen like bin packing algorithm, myopic

algorithm they are all offline algorithms, because, why they are offline? I have already told you,

we consider them as offline because we are given advanced set of tasks, their arrival times,

execution times and deadlines, et cetera.

But this offline scheduling is always, it is not actually, it may not be applied to every

circumstances, but much research till now, on real time scheduling, it has focused on offline

algorithms and offline algorithms what we are doing? So, in offline algorithms that have a prior

knowledge of the tasks to be scheduled, the detailed knowledge about maybe the task set, the

execution time, deadline period, et cetera, they are known in advance.

But in many applications, for example the web servers you can take, web applications. So, there

the real time system does not have the knowledge of the future task arrivals when which task will

arrive. Those information you do not have. You take the example of a web application, a web

server, when a task will come, when a task will arrive, that you cannot say in advance.

So, in many applications like web applications or web servers, the real time system, it does not

have the knowledge of the future task arrivals. So, these tasks may arrive at anytime and the task

parameters, such as the execution time, deadline period, et cetera. They are known only at the

arrival time. They are not known prior, they are not known earlier. They can be known only at the

arrival time.

So, since these tasks. They will be, or these parameters, they will be only known are these what

arrival time, so the system has to make the scheduling decisions online. In those cases, offline

algorithms like bin packing algorithm, myopic algorithm, they cannot work. The system has to

make the scheduling decisions online. How? By using the information of the current task, by using

the information of the tasks, those who have arrived so far, but not by using the information of the

future tasks.

So, that is why the system has to make the scheduling decisions online by using the current

information of the tasks which have arrived, not based on the information of the future tasks. So,

we will not discuss much on this online multiprocessor scheduling, but during the subsequent

slides you can say some of the algorithms they can be used, they are actually online in nature. They

are online algorithms.

(Refer Slide Time: 0:11:13)

So, now let us go to our original topic, that is the dynamic allocation of tasks. I have already told

you last class, the difference between static allocation of task and dynamic allocation of task. These

dynamic allocations of tasks, they are required when? They are required when multiple tasks, they

arrive asynchronously at different nodes and here the tasks are assigned to processors as and when

they arrive, so it is not that you can say that what this is not offline.

You can say that these are also examples of online. Here the tasks are assigned to the processors

as and when the tasks arrive. So, this I have already told in the last class, that the dynamic allocation

of tasks, they incur high run time overhead because the allocator at every node, it keeps track of

the instantaneous load position at every other node, that is why these dynamic allocation

algorithms, they require high run time overhead in comparison to the static algorithms. So, in this

class, we will discuss two important dynamic scheduling algorithms, that is focused addressing

and bidding and buddy algorithm.

(Refer Slide Time: 0:12:16)

First let us see about the focused addressing and bidding. So, focused addressing and bidding it

works like this. In this algorithm two tables are maintained, every processor maintains two tables,

one is the status table, another is the system load table. In status table what does it contain? The

status table it contains the execution time, e i and the periods p i of the tasks, it has committed to

run. So, this processor, it has committed some tasks to run. So, this processor, it maintains the

information such as execution time and periods of the tasks that it has committed to run, where?

In the status table.

Now, let us see what does it store in the system load table? The system load table, it contains the

latest load information of all other processors of the system. So, one is the current processor, so

others are the remaining processors. So, system load table of a processor, it contains the latest load

information of all other processors present in the system.

So, now why it requires the latest load information? Because from the latest load information

available are the other processors, the current processor, it can compute, it can find out the surplus

computing capacity. How much capacity is still there? How much amount of capacity is still

available, which can be used for the different processors.

So, from the latest load information are the other processors. The surplus computing capacity

available at different processors can be determined. So, why it require the latest load information?

Because from the latest load information available at the other processors, the surplus computing

capacity which are available at the different processors, they can be determined and using this

information it can allocate the task to the different processors.

(Refer Slide Time: 0:14:14)

Here the time axis is divided into some windows, what is a window? A window is an interval of

some fixed duration. You can put the duration at 5 millisecond or 10 millisecond or whatever like

that. So, now at the end of each window, what happens? So, let us see how the focus addressing it

works. At the end of each window, each processor, it broadcasts the fraction of its computing

power in the next window that is currently free.

So, at the end of each window, that means at the end of this fixed duration or at the end of this

interval, so each processor it will send the broadcast message regarding what? The fraction of its

computing power, what is its total computing power, how much it is already utilized, how much

fraction of its computing power in the next window, that is currently free.

So, in the next window, how much computing power if free, which can be given to the other tasks.

Suppose the total utilization, suppose is 1, and now it has already utilized 0.6, that means 0.4

amount is free, so that 0.4 can be given to other task in the next window. That is what it means.

So, at the end of each window, each processor. It will send a broadcast message, containing the

fraction of its computing power, in the next window that is currently free. And since broadcast

message it will send to all other nodes.

Now, every processor will receive that broadcast message and what they will do? So, now on

receiving the broadcast message, every processor, they will update the system load table, because

every processor has two tables, system loads table and another is the status table. So, on receiving

this broadcast message, every processor will update the system load table.

(Refer Slide Time: 0:16:03)

Now, let us see how the scheduling or how the allocation takes place. Now, when task arise at a

processor or at a node, what happens? The node or that processor, first checks, whether the task

can be processed locally at that node, because if the utilization is suppose one, and it is currently

0.6, another 0.4, but the task that has arrived, it is having the utilization 0.3. Then easily it can be

fit in there, because 0.4 available, the task that is arriving, its utilization 0.3, then it can be allocated,

it can processed in that node or in that processor itself.

But now if the task that has arrived if it is having utilization of 0.5, then what will happen? It

cannot be processed by that node, because already 0.6 is already utilized, only 0.4 is left, but the

task which is arriving its utilization is 0.5. it is greater than 0.4. So, what will happen? It cannot be

processed at that node. So, then what will happen? Let us see what will happen.

So, first whenever any task arrives or arises at a node or a processor, the node or the processor it

first checks whether that task can be processed locally in that node or not. If yes, then it is fine, it

will update its status table, but if no, that means if that utilization of the task is greater than the

currently available utilization, the task cannot be processed locally at that node, in that case what

will happen?

If not, then this load, this node or processor, it will examine the system load table. Why it will

examine the system load table? Because I have already told you the system load table, it contains

what? It contains the latest load information of all other processors of the system. So, by examining

the system load table it can get the latest load information of other processors. So, then it can see,

okay, processor x is now a little bit free, it is lightly loaded, so accordingly these nodes, these tasks,

it will pass this task to that node, say y, which is having sufficient utilization free, which is having,

which is lightly loaded. So, then this task, this node x can offload the task, can pass the task to the

node y, because it is having what sufficient capacity available.

So, that is what I am saying, I am summarizing quickly what happens in focused addressing mode.

So, when any task is arising at a node, the node or the processor it will first check whether it can

be processed there or not. If the utilization is less than its free time or free utilization then it can be

accommodated there, it can be processed there and then it will update the status table, if the

utilization of the arising task is greater than the free available utilization then it cannot be processed

locally at that node and hence it will examine the system load table in order to know the latest

information of all other processors and it will find out which one is lightly loaded. Then it will

upload the task to that processor. It will pass the task to that processor, may be y.

(Refer Slide Time: 0:19:28)

Now, another step, it is involved in this algorithm it is RFB or request for bid, so now let us say

suppose the second case, that means it is not possible here, because it is already overloaded and it

is having less amount of computing, what capacity, then it is searching for another available

processor in that processor set. So, on an overloaded node, what does it do? It sends out RFBs.

RFB is what? Request For Bid. So, if a processor, suppose processor x it is already overloaded, it

cannot process anymore task, then this overloaded node or processor, it sends out RFBs to whom?

To the identified lightly loaded processors. It will check what? The system load table and from the

system load table it can determine which processors are little bit lightly loaded, sufficient

computing capacity is there, then it will pass that task to that processor which is lightly loaded.

So, an overloaded node, it sends out RFBs to some identified, lightly loaded processors, by looking

at this system, by looking at the system load table. So, these identified, lightly loaded processors

as known as the focused processors, that is why this is known as focused addressing, but please

remember that while the information in this system load table, it is consulting, it is examining the

processor, the overloaded processor is examining the system load table and then it is sending the

message, these RFBs.

By that time, the information in the system table, might be out of that, because this communication

takes some time and by that time this information it may be out of date, that may be obsolete. So,

remember that, the information in the system load table might be out of date, might be obsolete

due to these communication delays.

By the time the focused processor or the slightly loaded processor gets the RFB, by that time it

might have become overloaded, because that information will be obsolete, by that time that lightly

loaded processor, it might have accepted some other tasks, and it will become overloaded. So, this

problem will happen, in case of this, what focused addressing skills.

(Refer Slide Time: 0:21:57)

Now, let us see the drawbacks of this algorithm, this focused addressing and bidding algorithm, it

incurs high communication overhead, because there will be several periodic transmission of status

messages, several broadcast messages will be there and also you have to identify which are lightly

loaded processors that is focused addressing and bidding.

So, due to these two processes, the algorithm incurs high communication overhead. So, the

communication overhead largely depends on the window size. I have already told you what time

axis it is, it contains some windows. So, windows means interval of fixed duration. So, this

communication overhead largely depends upon the window size selected.

If the window size is very large, what will happen? The communication overhead can be reduced,

because the window size is large. So, you have to, you may have to do less number of broadcasting,

but what will be the drawback, if the window size is large, the information at various processors,

by that time, because the time is already a huge gap.

So, by that time the processor receives the message, the information at various processors they will

become irrelevant, they will become obsolete. On the other hand if you will make the window size

less what will happen? The information may be up to do date, but the communication overhead

will be very high. So, these are the pros and cons of making the window size large or small, but

the communication overhead, it largely depends upon the window size selected.

(Refer Slide Time: 0:23:26)

Now, let us quickly look at the other algorithm that is the buddy set algorithm. So, I have already

told you one of the drawback of focus addressing method is that that it incurs high communication

overhead, so this buddy set algorithm, it tries to overcome the high communication overhead of

this focused addressing and bidding algorithm.

It is very much similar to the focused addressing and bidding algorithm. Only differs in one way,

let us say how does it differ. It differs in the manner in which the target processors are found. So,

how that target processors are found? Because in the other case, in focused addressing it broadcast

the message to all, then it finds out which one is the lightly loaded or which are the focused

processors.

But here the target processors are little bit, we will see it is less, it is not all the, what other

processors. So, in that it will be different, so these algorithms differs in the manner, in which the

target processor is found. So, not like this focus addressing. It will not broadcast the message to

all processors. It will send the message to only some specific processors. So, that is why this

algorithm differs in the manner, in which the targets processors are found.

(Refer Slide Time: 0:24:38)

Now, a processor in buddy set algorithm may be neither of the two states, either it may be over

loaded or under loaded, so if the utilization is less than some threshold value we say that the

processor is under loaded, if the utilization is greater than or equal to some threshold value, we

call it as over loaded. So, here no periodic broadcast is required. I have already told you the

difference.

So, here like in focused bidding periodically you have to send the broadcast message, so here no

periodic broadcast is required. So, when you will broadcast the message? So, broadcast will be

done, so broadcast is made only when the status of the processor changes. So, when the status of

the processor changes either from under loaded to over loaded or from over loaded to under loaded,

then only a message will be broadcasted, then only broadcasting will be done.

(Refer Slide Time: 0:25:31)

Now, similarly, whenever the status of a processor changes, as I have already told you one

difference, this buddy algorithm does not broadcast this information to all the processors. To where

it sends? It limits the broadcast only to a subset of processors. So, instead of sending, because the

communication overhead is becoming very much high. So, instead of sending the broadcast

message to all the processors, it broadcasts only to a subset of processors and that subset is known

as the buddy set.

(Refer Slide Time: 0:25:57)

Now, let us see what is the important feature here. So, designing of the buddy set is an important

parameter. How to design that buddy set, how to construct that buddy set design, important

parameter. These buddy sets should not be too large or should not be too small. So, let us take a

small example, how you can find out the buddy set.

If you know different network topologies in multi-hub networks what you can do, the buddy set

of a processor, it is typically the processors that are its immediate neighbors, not all the neighbors

will consider, which are the immediate neighbors of a processor, they will be served as the buddy

set. So, in multi-hub networks the buddy set of a processor is typically the processors which are

its immediate neighbors.

(Refer Slide Time: 0:26:41)

So, highlights of the buddy set algorithm let us quickly see. So, I have already told you here the

nodes that, node can have two states, over loaded or under loaded, based on the threshold, the

selection policy here is like follows, the task which fail admission test at the local node are

considered for transfer. So, if a task cannot be processed at a particular processor that means it

fails the admission test, are that particular local node, then they will be considered, then that will

be considered for transferring to another processor.

(Refer Slide Time: 0:27:15)

The information policy is based on the buddy sets, when a node makes a transition into or out of a

state, that means either from over loaded to under loaded or under loaded to over loaded. Then it

informs, it broadcasts to its buddies or to its buddy sets. The transfer policy is like that, one of the

buddies is chosen as the received. So, in the buddy set, maybe there are a few numbers of a

processors. Out of those few number of processors one of the processor, one of the buddies that

means one of the processors is chosen as the receiver based on the local information available.

Like which is having, so what maybe more available computing facility, that buddy or that

processor may be chosen as the target processors, may be chosen as the receiver processor to

whose? To which the task may be transferred for processing. This is how the buddy set algorithm

works.

(Refer Slide Time: 0:28:07)

Now, let us quickly look at this another important aspect. So, previously I have already told you

for, in the second class we have discussed that one classification of multiprocessor scheduling

algorithms is static and dynamic priority algorithms. So, besides these static and dynamic priority

algorithms, multiprocessor scheduling algorithms can also be classified according to how the tasks

are allocated to the processor. So, based on how the tasks are allocated to the processors, we can

make another classification. So, two such categories we will see here, one is partitioned

scheduling, another is non-partitioned or global scheduling.

(Refer Slide Time: 0:28:42)

So, in partitioned scheduling what is happening? All the jobs generated by a task, they are required

to execute on the same processor. In partition scheduling, all the jobs which are generated by a

task, they are required to be executed, they are required to be processed on the same processor.

This is called partitioned scheduling.

So, the algorithms, like last class we have seen the bin packing algorithms et cetera, they are

coming under this partitioned scheduling and let us see what is happening in non-partitioned

scheduling or global scheduling. As the name suggests global scheduling so here task migration is

allowed. Task migration means what?

The different jobs of the same task, the different jobs raised or the different jobs which are arriving

out of the same task, the different jobs of the same task, they may execute on different processor.

That is why I am saying that task migration is allowed in global scheduling, similarly job migration

is also allowed.

What do you mean by job migration? A job is preempted on a processor. So, supposed a job, it is

preempted on a processor, maybe processor x, it may resume execution on the same processor x

or a different processor y. That is known as job migration. So, in partitioned scheduling task

migration and job migration is not allowed, all the jobs generated by a task are required to execute

or processed on the same processor. Whereas in non-partitioned or global scheduling, both, task

migration and job migrations are allowed.

(Refer Slide Time: 0:30:09)

Now, I have already told you, there are two things, one is static priority scheduling and dynamic

priority scheduling, then here we have seen partitioned scheduling and global scheduling. So,

based on these we can make the permutations tables the above two classification schemes that is

static versus dynamic priority and partitioned versus global algorithm.

So, the above two classification schemes give rise to four general classes of multiprocessor

scheduling algorithms. Like partitioned static priority scheduling, partitioned dynamic priority

scheduling. So, when I am saying static priority scheduling, I can use RMA. When I am saying

dynamic priority scheduling I can use EDF. So, similarly global static priority scheduling and

global dynamic priority scheduling. Let us quickly see about, these are all a little bit deeper things.

We will not go into deeper. We will discuss only what is partition scheduling and what is global

scheduling.

(Refer Slide Time: 0:31:04)

The partition scheduling consists of two distinct algorithms, these we have already told you,

because I have already told you the example is bin packing algorithm, and in bin packing

algorithm. I have already told you that these algorithm consists of two important approaches. One

is task partitioning or allocation algorithm another is scheduling algorithm.

In task partitioning or task allocation algorithm it finds the partition of the task, the classification

of the task or the division of the set of tasks, among the processors and then once this partition is

made, we can apply any scheduling algorithm. The scheduling algorithm, it determines the order

of the execution, the sequence of the executions of the tasks assigned to the same processor.

I have already told you, here in partition scheduling, task migration or job migration, they are not

allowed. So, task migration not allowed means, task assigned to a particular processor. It is only

executed on that processor. It cannot be what transferred, it cannot be processed at some other

different processor.

(Refer Slide Time: 0:32:06)

The advantages of partition scheduling like that, it incurs less run time overhead, because task

partitioning it can be performed before run time and once the task are assigned to the processors

any well known scheduling algorithm with efficient uni processors schedule-ability test can be

used such as you can use RMA or EDF, et cetera.

(Refer Slide Time: 0:32:26)

Now, let us say the possible, some examples of this partitioned scheduling. I have already told you

that this bin packing problem, bin packing algorithm that is coming under this particular

classification, particular class. The task, so in partitioned scheduling on multiprocessors, the task

partitioning problem, it is very much analogous, it is very much similar to to bin packing problem.

Bin packing problem already we have discussed in the previous class. So, among the bin packing

heuristics, four popular algorithms are used. Those are first fit algorithm, next fit algorithm, best

fit algorithm and worst fit algorithm. In the last class we have already discussed first fit algorithm,

two varieties we have seen, first fit random algorithm and first fit decreasing algorithm. So, let us

quickly just look at, I have also taken some examples in the last class. The same examples you

please extend to these things.

(Refer Slide Time: 0:33:23)

So, let us quickly look at, we have already discussed first fit algorithm in last class. So, I will just

skip it. so in this scheme or this algorithm, it allocates a new object to the non-empty bin with

lowest index, that means you have to place the object in the first bin, which can accommodate it,

in such a way that the weight of the new object along with the weights of the existing objects in

the bin, it do not exceed the capacity of the bin.

Here capacity you can considered as the utilization. So, in this case we will try in such that the

utilization should not be greater then maybe 1. If the object cannot fit into any non-empty bin, it

is allocated to the next empty bin. The example already I have taken in the last class. So, please

see yourself that example. That is for the first fit algorithm.

(Refer Slide Time: 0:34:10)

Similarly, next fit algorithm, as its name suggests, next, it maintains a pointer to the current bin,

so what is current bin? A current bin is the bin, to which the last object was allocated, and new

object is allocated to the current bin if it fits into that bin. So, whenever any new object or a new

task is arriving it can be allocated to the current bin or the current processor, if it fits into that bin

or processor.

Else what will happen? Else the task is allocated to the next empty bin, the next empty processor,

that is why this is known as next fit algorithm. Please remember that in first fit algorithm there is

a possibility that we can revisit again, processor 1, processor 2, processor 3, if a task is coming, it

having a very less utilization, again we can go to processor 1. But in next fit algorithm this next fit

algorithm does not revisit the previous bins, previous processors which are possible in first fit

algorithm.

(Refer Slide Time: 0:35:07)

Next it best fit algorithm, so as its name suggest, best fit, this algorithm allocates the new object,

or the new task to the non-empty bin or the non-empty processor with the smallest remaining

capacity into which it can fit. So, supposed there are two bins, two processors, one is the remaining

capacity, 0.4, another is remaining capacity 0.3 and the task it is arriving it is having a utilization

of 0.2, so obviously it will assign to whom? The processor having the remaining capacity 0.3,

because this is the smallest one, in between 0.4 and 0.3 utilization. So, in this case the task will be

allocated to the non-empty bin having the smallest remaining capacity. If an object cannot be

allocated to a non-empty bin, what will happen, it is allocated to the next empty bin. Then there is

worst fit algorithm. It is very much similar to the best fit algorithm, only one difference is there, it

allocates a new object or the new task to the bin or to the processor with the largest remaining

capacity to which it can fit in.

So, here we are considering smallest remaining capacity, so the example I have already given, two

bins are there, suppose in one the remaining capacity or remaining utilization is 0.4, another is 0.3,

the task it is arriving, its utilization is 0.2, it will be fitted to where? To the second one, because it

is having 0.3 utilization, it is less.

But had it been used worst fit algorithm, it will be allocated to this bin having the largest remaining

capacity. That means out of 0.4 and 0.3, if the task requires, 0.2, it is having 0.2 utilization, it will

be allocated to the first processor which is having utilization, remaining utilization 0.4, because

this 0.4 is larger than 0.3.

So, this is the only difference, in this case the task will be assigned to the smallest bin having, to

the bin having smallest remaining capacity but in worst fit algorithm the task will be allocated to

the bin having the largest remaining capacity. This is different. So, last class I have taken one

example for first fit algorithm. Please exercise yourselves and take that same example, apply next

algorithm, best fit algorithm and worst fit algorithm. This is the assignment for you.

(Refer Slide Time: 0:37:26)

Let us see the common approach for this partitioned multiprocessor scheduling, the common

approach to the partitioned multiprocessor scheduling is, that first you have to perform the task

partitioning using some bin packing heuristic, maybe first fit or next fit, et cetera. Then you

schedule the task allocated to the same processor, using some uni processor scheduling algorithm,

maybe RMA or EDF.

Then a scheduling condition associated with the scheduling algorithm it is used to determined the

processor capacity. You can see that this approach offers three levels of degrees of freedom, first

using bin packing heuristic, second using a uni processor scheduling algorithm like RMA or EDF,

third a schedule-ability condition associated with the scheduling algorithm. So, this approach

offers three levels of degrees of freedom, to design a partitioned scheduling on multiprocessor

systems.

(Refer Slide Time: 0:38:18)

We will quickly look at this global scheduling on multiprocessors. I have already told you the

difference between partition scheduling and global scheduling. Here, all active jobs, they are stored

in a single queue, regardless of tasks, that generated the jobs. The assumption here is taken like

this. there is a single system wide priority space and the highest priority job in the queue is selected

for execution whenever a processor becomes idle. So, whenever a processor, it becomes idle, the

highest priority job in the queue is selected for execution and it is allocated to that idle processor.

(Refer Slide Time: 0:38:57)

So, if a new active job is added to the queue then what will happen? If a new active job is added

to the queue with a higher priority then some currently running job, then what will happen? It will

preempt the running job with the lowest priority and the preempted job is returned to where? The

preempted job is returned to the queue, which has to be resumed at a later point of time.

(Refer Slide Time: 0:39:22)

I have already told you, in global scheduling task level migration may occur as well as job level

migration may occur, this I have already explained earlier, job level migration is also known as

full migration. Usually in the global scheduling algorithms no processor is left idle while the

remaining, the active jobs awaiting for execution, this is possible in global scheduling algorithms.

(Refer Slide Time: 0:39:47)

As in partitioned method, here also we can use static priority assignment or dynamic priority

assignment, as in partitioned method static or dynamic priority assignment may be used with the

global scheduling approach. So, what is the example of static priority assignment? That is RMA,

example of dynamic priority assignment is EDF, now let us see, a global RM, that is rate

monitoring scheduling algorithm, it assigns to each job a global priority.

Its name is global scheduling algorithm, obviously it will assign a global priority, how? A global

rate monitoring scheduling algorithm, assigns to each job a global priority equal to what? Equal to

the reciprocal of its task period. That means if the period is P, reciprocal mean 1 by P, and the

higher priority job is the one with the smallest period. So, which one will be the highest priority

job, we have already known RMA in the previous classes. The highest priority job is the one with

the smallest period.

(Refer Slide Time: 0:40:47)

Similarly, what will happen for EDF? A global EDF scheduling algorithm, it assigns to each job a

global priority like RMA, a global EDF scheduling algorithm also assigns to each job a global

priority, equal to what? So, in case of RMA, the global priority is equal to the reciprocal of its, or

inverse of its period, inverse of its task period. But in a global EDF scheduling algorithm it assigns

to each job a global priority, which is equal to what? Which is equal to its absolute deadline, and

what is the highest priorities job? The highest priority job is the one with the earlier absolute

deadline.

I hope you have already read earlier the relative deadline, absolute deadline, you have read earlier.

Then all jobs are considered for execution in accordance with their global priorities. Then all the

jobs they are considered for execution. They will be executed in accordance with their global

priority. So, this is something about the global scheduling multiprocessors.

(Refer Slide Time: 0:41:45)

Just few minutes you will take on this fault tolerant task scheduling, how your real time systems

can be made fault tolerant. Fault tolerance in real time systems can be achieved through task

scheduling. This is a cost-efficient technique. This requires very little redundant hardware

resources, why this is cost efficient technique? This is a cost-efficient technique because it requires

very less, very little redundant hardware resources.

Now, let us see how fault tolerance can be achieved in real time systems. The fault tolerance can

be achieved in real time systems, by scheduling ghost copies, what do you mean by ghost copy?

Ghost copy means redundant copies of a primary task. So, by scheduling the ghost copies or

redundant copies of a primary task fault tolerance can be achieved in real time systems.

(Refer Slide Time: 0:42:37)

These ghost copies may copies may not be exactly identical to the primary copy, the ghost copies

may be stripped down versions so that can be executed in shorter durations. The ghost copies of

different tasks can be over loaded on the same slot. So, if there are multiple numbers of ghost

copies, n number of ghost copes they can be over loaded in the same slot. In case of a success

execution of the primary, the backup copy or the ghost copy may be deallocated, so if the primary

copy is successfully executed then the backup copy or the ghost copy may be deallocated.

(Refer Slide Time: 0:43:08)

So, today we have discussed, first, the myopic offline scheduling algorithm, then we have briefly

highlighted the online multiprocessor scheduling, we have discussed the fundamentals of dynamic

allocation of task and how do they differ from static allocation of tasks. We have explained the

two dynamic allocation algorithms, such as focus addressing and bidding and buddy algorithm.

We have also discussed partition scheduling on multiprocessors and global scheduling on

multiprocessors. Finally, we have briefly presented something about or the basic concepts of fault

tolerant scheduling techniques.

(Refer Slide Time: 0:43:42)

We have taken these things from these two books, thank you very much.

